Wirtschaftsmathematik - Übungen SS 2019

Größe: px
Ab Seite anzeigen:

Download "Wirtschaftsmathematik - Übungen SS 2019"

Transkript

1 Wirtschaftsmathematik - Übungen SS 019 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {1,, 3, 4, 5, 6, 7} und M = { 1, 0, 1, } sowie die Zuordnungsvorschrift f : M 1 M, x f(x) mit 0 für x gerade und x > 1 für x 1 für x ungerade und durch 3 teilbar sonst Skizzieren Sie diese Zuordnungsvorschrift in einem Pfeildiagramm und begründen Sie, warum durch die Vorschrift f eine Funktion definiert ist! b) Bestimmen Sie jeweils die Bildmenge der Mengen {1,, 3} und {4, 6}. c) Ist die Funktion f injektiv, surjektiv, bijektiv? Existiert eine Inverse zu f? Begründen Sie!. P Gegeben sind die Mengen A = {a 1, a, a 3, a 4 } und B = {b 1, b, b 3 } von Rohstoffen und eine Menge M = {m 1, m, m 3, m 4 } von Maschinen, auf denen die Rohstoffe weiterverarbeitet werden können. Die folgenden Zuordnungsvorschriften geben an, auf welchen Maschinen die jeweiligen Rohstoffe verarbeitet werden. f : A M mit f (a 1 ) = m 1, f (a ) = m, f (a 3 ) = m 3, f (a 4 ) = m 4 g : A M mit g (a 1 ) = m 1, g (a 3 ) = m 3, g (a 4 ) = m h : B M mit h (b 1 ) = m, h (b ) = m 3, h (b 3 ) = m 4 Welche der Vorschriften sind Funktionen? b) Welche der Funktionen aus sind injektiv, surjektiv, bijektiv? c) Bestimmen Sie, wenn möglich, die Umkehrfunktionen! 3. P Gegeben sind die Funktionen f : R + R, x x und g : R R, x x Bilden Sie nun, wenn möglich, die Funktionen f g sowie f g. b) f g = f (g (x)) sowie g f = g (f (x)) Welche Voraussetzungen sind dabei zu beachten? WM Übungen Blatt 4 1 SS 019

2 4. P Gegeben ist die reelle Funktion: f : R R, f (x) = e x 1 Skizzieren Sie diese Funktionen ohne Erstellung einer Wertetabelle. b) Bestimmen Sie den größtmöglichen Definitionsbereich der Funktion und geben Sie die Bildmenge an! c) Untersuchen Sie die Funktion anhand der Skizze auf Monotonie, Beschränktheit sowie das Verhalten im Unendlichen! d) Ist die Funktion f injektiv, surjektiv, bijektiv? 5. Für welche reellen Zahlen x ist die folgende Funktion f(x) definiert? x + 3x + 10 ln(x 6) 6. Bestimmen Sie, wenn möglich, die Inverse zur Polynomfunktion 1 x + 8 im Intervall [-3, -1]! 7. Die nachfolgende Abbildung zeigt den Graphen einer Funktion. Skizzieren Sie die erste Ableitung dieser Funktion! y x 8. Gegeben ist die Funktion x x + 3 Diskutieren Sie diese Funktion, d.h. bestimmen Sie die größtmögliche Definitionsmenge, Nullstellen, Extremstellen, Wendepunkte, Monotonie, das Krümmungsverhalten und das Verhalten im Unendlichen. Skizzieren Sie den Graphen! WM Übungen Blatt 4 SS 019

3 9. Bestimmen Sie die Grenzwerte: lim x x x 4 ln x b) x lim c) lim x x 0 x ln x Gegeben ist die Funktion f : R R mit e 1 x 1. Bestimmen Sie das Taylor-Polynom p(x) zweiten Grades mit Entwicklungsstelle x 0 =! b) Approximieren Sie e 0,5 mit Hilfe des Polynoms aus, indem Sie den Funktionswert von p an der Stelle x = 3 berechnen! 11. P Gegeben ist die Funktion: f : ] ; [ R mit ( f (x) = ln 1 + x ) Bestimmen Sie das Taylor-Polynom p(x) zweiten Grades mit Entwicklungsstelle x 0 = 0! b) Approximieren Sie ln (1, 5) mit Hilfe des Polynoms aus, indem Sie den Funktionswert von p an der Stelle x = 1 berechnen! 1. Berechnen Sie sämtliche Stammfunktionen und das bestimmte Integral im Intervall [0, 1] für: e x + x 1 Hinweis: e 3, P Bestimmen Sie alle Funktionen, deren zweite Ableitung f (x) = 1 e 1 x + x 3 ist! 14. Bestimmen Sie: ˆ x ln(x ) dx b) ˆ1 x (x 3 + 1) 5 dx P Bestimmen Sie: ˆ 3 x x dx b) ˆ4 0 3 x + 1 dx WM Übungen Blatt 4 3 SS 019

4 16. P Gegeben ist die Funktion x 1 x. Berechnen Sie das bestimmte Integral im Intervall [-1, 1] und skizzieren Sie die Funktion! Begründen Sie, warum der Wert des bestimmten Integrals in diesem Fall nicht der Fläche zwischen der Funktion und der x-achse im angegebenen Intervall entspricht! Wie groß ist diese Fläche? 17. Skizzieren Sie die folgenden Funktionen und berechnen Sie, wenn möglich, die uneigentlichen Integrale: ˆ 1 3 dx b) x ˆ 0 (1 + e x ) dx 18. Eine Grenzkostenfunktion ist gegeben durch K (x) = 3x x +. Erklären Sie den Begriff Grenzkosten. Was gibt die Grenzkostenfunktion an? b) Bestimmen Sie die Kostenfunktion, wenn für eine Produktion von zwei Einheiten Gesamtkosten in Höhe von 31 anfallen! c) Wie hoch sind die Fixkosten der Produktion? d) Welche Kosten fallen bei einer Produktion von x = 4 an und wie hoch sind an dieser Stelle die Grenzkosten? e) Bestimmen Sie die Durchschnittskostenfunktion und deren Wert an der Stelle x =! f) Das Produkt wird zu einem konstanten Preis von p = 55 abgesetzt. Bestimmen Sie die Gewinnfunktion, die gewinnmaximale Ausbringungsmenge und den Maximalgewinn! 19. P Die Preis- Absatzfunktion eines Unternehmens kann durch die Funktion beschrieben werden. p(x) = 8 e 1 5 x (8 Punkte) Bestimmen Sie diejenige Produktionsmenge, für die der Erlös maximal wird und zeigen Sie, dass es sich tatsächlich um ein Maximum handelt! b) ( Punkte) Bestimmen Sie die Nachfragefunktion x (p)! c) ( Punkte) Bestimmen Sie den Wert der Grenznachfrage an der Stelle p = und interpretieren Sie den erhaltenen Wert! WM Übungen Blatt 4 4 SS 019

5 0. Der S-förmige Kostenverlauf eines Betriebes wird durch ein Polynom 3. Grades beschrieben. Die Fixkosten der Produktion betragen 6 GE. Die Grenzkosten sind an der Stelle x = 6 minimal. Die Gesamtkosten an dieser Stelle betragen 4 GE. Die Grenzkosten an der Stelle x = 0 betragen 18 GE. Die Preis-Absatzfunktion lässt sich durch p(x) = 3 x + 18 beschreiben. Bestimmen Sie Höchstpreis und Sättigungsmenge! b) Bestimmen Sie die Kostenfunktion K(x), sowie die Erlösfunktion E(x)! c) Ermitteln Sie die gewinnmaximale Ausbringungsmenge sowie den maximalen Gewinn! d) Ab welcher Erzeugungsmenge gilt das Gesetz der schließlich zunehmenden Grenzkosten? 1. In einem Land gilt folgende Form einer progressiven Einkommensteuer: Für Einkommensteile Steuersatz 0 bis einschließlich jährlich 0% über bis einschließlich jährlich 10% über jährlich 0% Erstellen Sie eine stückweise lineare Funktion T (x), die die Höhe der abzuführenden Steuer in Abhängigkeit von der Höhe des Einkommens beschreibt und skizzieren Sie deren Graphen. Ist T (x) differenzierbar und/oder stetig? Welche Monotonieeigenschaften hat T (x)? b) Bestimmen Sie die Grenzsteuerfunktion T (x) zur Steuerfunktion aus und skizzieren Sie deren Graphen. c) Untersuchen Sie die Stetigkeit an der Stelle x = Welche Monotonieeigenschaften hat T (x)? d) Bestimmen Sie die zu entrichtende Einkommensteuer für ein Einkommen der Höhe WM Übungen Blatt 4 5 SS 019

6 . P Gegeben ist die Funktion f : R R, mit: 1 x 1 x x + 5 x > Überprüfen Sie, ob f über ganz R stetig ist! b) Existiert die Ableitung f (x) an der Stelle x =? Begründen Sie! Wenn möglich, bestimmen Sie f (). c) Wie groß ist die Fläche, die die Funktion f und die Funktion g : R R, mit g(x) = 1 im Intervall [0; ] einschließen? Die mit P gekennzeichneten Beispiele sind von den Studierenden vorzubereiten und nach Aufruf durch den/die Lehrveranstaltungsleiter/in an der Tafel zu präsentieren! WM Übungen Blatt 4 6 SS 019

Wirtschaftsmathematik - Übungen WS 2018

Wirtschaftsmathematik - Übungen WS 2018 Wirtschaftsmathematik - Übungen WS 8 Blatt 4: Funktionen von einer Variablen. Gegeben sind die Mengen M = {,,, 3, 4, 5, 6, 7, 8, 9} und M = {,,, } sowie die Zuordnungsvorschrift f : M æ M,x æ f(x) mit

Mehr

Wirtschaftsmathematik - Übungen SS 2018

Wirtschaftsmathematik - Übungen SS 2018 Wirtschaftsmathematik - Übungen SS 218 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1, 2, 3, 4, 5, 6, 7, 8, 9} und M 2 = { 1,, 1, 2} sowie die Zuordnungsvorschrift f : M

Mehr

Wirtschaftsmathematik - Übungen WS 2017/18

Wirtschaftsmathematik - Übungen WS 2017/18 Wirtschaftsmathematik - Übungen WS 17/18 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1,, 1, } sowie die Zuordnungsvorschrift f : M 1 æ

Mehr

Wirtschaftsmathematik - Übungen SS 2017

Wirtschaftsmathematik - Übungen SS 2017 Wirtschaftsmathematik - Übungen SS 017 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {0, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1, 0, 1, } sowie die Zuordnungsvorschrift f : M 1

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

1 Funktionen einer Variablen

1 Funktionen einer Variablen 1 Funktionen einer Variablen 1.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7 Folgen und Reihen. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 2. Untersuchen Sie folgende Folgen auf Monotonie, Beschränktheit, Häufungspunkte und Konvergenz,

Mehr

1 Funktionen einer Variablen

1 Funktionen einer Variablen 1 Funktionen einer Variablen 1.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

Seite 1. ax² + bx + c = 0. Beispiel 1. Die Gewinnschwelle ist G'(x) = 0

Seite 1. ax² + bx + c = 0. Beispiel 1. Die Gewinnschwelle ist G'(x) = 0 Seite 1 Beispiel 1 Die variablen Kosten eines Produktes lassen sich durch die Funktion Kv(x) = -0,1 x² + 10x beschreiben, die fixen Kosten betragen 120 GE. Die Erlösfunktion ist gegeben durch die Funktion

Mehr

Kosten- & Preistheorie Grundlagen

Kosten- & Preistheorie Grundlagen Grundlagen Die Funktionen (Gesamt)Kostenfunktion Beschreibt die anfallenden gesamten Kosten bei einer Produktionsmenge. Stückkostenfunktion / Durchschnittskostenfunktion Beschreibt die durchschnittlichen

Mehr

c) f(x)= 1 4 x x2 + 2x Überprüfe, ob der Punkte A(3/f(3)) in einer Links- oder in einer Rechtskrümmung liegt!

c) f(x)= 1 4 x x2 + 2x Überprüfe, ob der Punkte A(3/f(3)) in einer Links- oder in einer Rechtskrümmung liegt! Zusätzliche Aufgaben zum Üben für die SA_2 1) a) Leite eine Formel zur Berechnung des Scheitels einer Parabel mit Hilfe der Differentialrechnung her! b) Was kann man aus folgenden Berechnungen schließen?

Mehr

Kurvendiskussion: Ganzrationale Funktionen 2. Grades: 1. f(x) = x². 2. f(x) = x² - x f(x) = 2x² - 12x f(x) = - 4x² + 4x + 3

Kurvendiskussion: Ganzrationale Funktionen 2. Grades: 1. f(x) = x². 2. f(x) = x² - x f(x) = 2x² - 12x f(x) = - 4x² + 4x + 3 Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Kurvendiskussion: Ganzrationale Funktionen 2.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester 2015 14.07.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Aufgabe 1 Beschriften Sie in der folgenden Darstellung die einzelnen Funktionen und geben Sie die Bedeutung der Punkte A H an.

Aufgabe 1 Beschriften Sie in der folgenden Darstellung die einzelnen Funktionen und geben Sie die Bedeutung der Punkte A H an. Kosten-Preis-Theorie Aufgabe 1 Beschriften Sie in der folgenden Darstellung die einzelnen Funktionen und geben Sie die Bedeutung der Punkte A H an. Aufgabe 2 Von einer ertragsgesetzlichen Kostenfunktion

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Klausur Wirtschaftsmathematik VO

Klausur Wirtschaftsmathematik VO Klausur Wirtschaftsmathematik VO 07. Mai 206 Bitte leserlich in Druckbuchstaben ausfüllen! NACHNAME: VORNAME: MATRIKELNUMMER: ERLAUBT: nur die Formelsammlung des Instituts! VERBOTEN: Taschenrechner und

Mehr

Ansgar Schiffler Untersuchung einer ökonomischen Funktion

Ansgar Schiffler Untersuchung einer ökonomischen Funktion Ein Unternehmen verkauft sein Produkt zum Preis von 1,5 GE / ME. Die Produktionskosten lassen sich durch die folgende Kostenfunktion beschreiben: y = K(x) = 0,4x³ 4,4x² + 18,18x + 10,3 Es gilt: y: Kosten

Mehr

Erste Schularbeit Mathematik Klasse 8A G am

Erste Schularbeit Mathematik Klasse 8A G am Erste Schularbeit Mathematik Klasse 8A G am 23.11.216 KORREKTUREN und HINWEISE Aufgabe 1. (2P) Funktionsklassen ihren Eigenschaften zuordnen. In der linken Tabelle sind vier Eigenschaften von Funktionen

Mehr

Expertengruppe A: Kostenfunktion

Expertengruppe A: Kostenfunktion Expertengruppe A: Kostenfunktion Gegeben ist eine Kostenfunktion 3. Grades K(x) = x 3 30x 2 + 400x + 512. 1. Lesen Sie aus obigem Funktionsgraphen ab: a) Schnittpunkt des Funktionsgraphen mit der y-achse:

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 7 MINT Mathkurs SS 2017 1 / 25 Vorlesung 7 (Lecture 7) Differentialrechnung differential

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Übungen zur Kostenfunktion kompetenzorientiert

Übungen zur Kostenfunktion kompetenzorientiert Übungen zur Kostenfunktion kompetenzorientiert 1) Eine Mini Produktion von Topfpflanzen hat Fixkosten in der Höhe von 100 pro Monat. Für 10 Stück der Produktion rechnet man mit 150 Gesamtkosten, für 20

Mehr

Klausur Wirtschaftsmathematik VO

Klausur Wirtschaftsmathematik VO Klausur Wirtschaftsmathematik VO 02. Februar 2019 Bitte leserlich in Druckbuchstaben ausfüllen! NACHNAME: VORNAME: MATRIKELNUMMER: ERLAUBT: nur die Formelsammlung des Instituts! VERBOTEN: Taschenrechner

Mehr

Differenzialrechung Herbert Paukert 1

Differenzialrechung Herbert Paukert 1 Differenzialrechung Herbert Paukert 1 DIFFERENZIALRECHNUNG Version 2.0 Herbert Paukert Die Stetigkeit von Funktionen [ 02 ] Definition des Differenzialquotienten [ 06 ] Beispiele von Ableitungsfunktionen

Mehr

Kapitel II Funktionen reeller Variabler

Kapitel II Funktionen reeller Variabler Kapitel II Funktionen reeller Variabler D (Funktion) Es sei f XxY eine Abbildung Die Abbildung f heiß Funktion, falls sie eindeutig ist Man schreibt dann auch: f : X Y f ( x) = y, wobei y das (eindeutig

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 2: Analysis. Sommersemester

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 2: Analysis. Sommersemester Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil 2: Analysis Sommersemester Folgen und Reihen Aufgabe 1 Ein Betrieb erreiche im ersten Jahr einen Umsatz von 120 Mio e. Der

Mehr

Degressiver Kostenverlauf Die Kosten wachsen verhältnismäßig langsamer als die Stückzahl. Gesamtkosten sind streng monoton steigend K'(x) 0

Degressiver Kostenverlauf Die Kosten wachsen verhältnismäßig langsamer als die Stückzahl. Gesamtkosten sind streng monoton steigend K'(x) 0 Gesamtkostenfunktion Gesamtkostenfunktion () Die Gesamtkosten (häufig nur mit osten bezeichnet) setzen sich aus fien osten f und variablen osten v zusammen. osten werden in Geldeinheiten (GE) angegeben.

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Aufgaben zu Ableitung und Integral der ln-funktion

Aufgaben zu Ableitung und Integral der ln-funktion Aufgaben zu Ableitung und Integral der ln-funktion. Bilden Sie von folgenden Funktionen jeweils die. Ableitung. a) f(x) = x+lnx b) f(x) = (lnx) c) f(x) = x(lnx) xlnx+x d) f(x) = e) f) x (lnx ) f(x) = x

Mehr

Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler

Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler Die nachfolgende Zusammenstellung enthält vor allem Klausuraufgaben aus den Jahren 2 bis 211. Hierbei wurden die Aufgaben thematisch geordnet,

Mehr

Analysis in der Ökonomie (Teil 1) Aufgaben

Analysis in der Ökonomie (Teil 1) Aufgaben Analysis in der Ökonomie (Teil 1) Aufgaben 1 In einer Fabrik, die Farbfernseher produziert, fallen monatlich fie Kosten in Höhe von 1 Mio an Die variablen Kosten betragen für jeden produzierten Fernseher

Mehr

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) = 50 Kapitel 2: Rationale Funktionen und ihre Anwendungen 2.2.5 Orthogonale Geraden Geraden, die senkrecht aufeinander stehen, werden als zueinander orthogonale Geraden bezeichnet. Der Graph von g entsteht

Mehr

Klausur Wirtschaftsmathematik VO

Klausur Wirtschaftsmathematik VO Klausur Wirtschaftsmathematik VO 17. Dezember 2018 Bitte leserlich in Druckbuchstaben ausfüllen! NACHNAME: VORNAME: MATRIKELNUMMER: ERLAUBT: nur die Formelsammlung des Instituts! VERBOTEN: Taschenrechner

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Adam Georg Balogh Sommersemester 2017 Dr. rer. nat. habil. Adam Georg Balogh E-mail: adam-georg.balogh@h-da.de 1 Ökonomische Funktionen In

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

hat den maximalen Definitionsbereich R\{0}.

hat den maximalen Definitionsbereich R\{0}. Wir nennen f() die Zuordnungsvorschrift und G f = {(,y) D(f) R : y = f()} den Graph von f. Viele Zuordnungsvorschriften haben einen natürlichen maimalen Definitionsbereich. Oft wird dann nur die Zuordnungsvorschrift

Mehr

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN 0 6 ÜBUNGSAUFGABEN 6 Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln

Mehr

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Analysis Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester 2013 Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Vorwort Die modernen Wirtschaftswissenschaften nutzen in

Mehr

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden.

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. 1. Berechnen Sie die Gleichung der linearen Betriebskostenfunktion! a. Die Fixkosten betragen 300 GE, die variablen

Mehr

Höhere Mathematik II. Variante C

Höhere Mathematik II. Variante C Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante C Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten.

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten. FOS, 11 Jahrgangsstufe (technisch) 6 Stetigkeit Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl auch nur in Intervallen) nicht abreißen und gezeichnet werden können, ohne den Zeichenstift

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6}

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} Ω A A Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} 52 Dann gilt: Mengenalgebra A B = {1,2,3,4,5}

Mehr

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81 Kapitel 5 Reelle Funktionen Josef Leydold Auffrischungskurs Mathematik WS 207/8 5 Reelle Funktionen / 8 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch

Mehr

Nachfrage im Angebotsmonopol

Nachfrage im Angebotsmonopol Nachfrage im Angebotsmonopol Aufgabe 1 Bearbeiten Sie in Ihrem Buch auf der Seite 42 die Aufgabe 13. Aufgabe 2 Die Birkholz AG hat bei einem Marktforschungsunternehmen ermitteln lassen, dass die Nachfrager

Mehr

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 7 3.9.7 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

WHB12 - Mathematik Übungen für die Klausur am

WHB12 - Mathematik Übungen für die Klausur am Aufgabe 1: Sie sehen den Graphen der Gewinnfunktion eines Monopolisten. Sie lautet G(x) = -0,4x² + 3,6x 3,2. G(x) (Euro) 6 5 4 3 2 1-1 1 2 3 4 5 6 7 8 9 10 x (Stück) -2-3 -4 a) Wie hoch sind die Fixkosten

Mehr

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen

Mehr

Abitur 2018 Grundkurs

Abitur 2018 Grundkurs Ott Lengersdorf Abitur 8 Grundkurs Aufgabensammlung zur zentralen Abiturprüfung Mathematik am Berufskolleg Berufliches Gymnasium Fachbereich Wirtschaft und Verwaltung Merkur Verlag Rinteln Wirtschaftswissenschaftliche

Mehr

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit 3. Anwendungen ================================================================= 3.1 Monotonie Eine Funktion f heißt in ihrem Definitionsbereich D monoton steigend, wenn für alle x 1, x 2 D mit x 1 < x

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen Wir haben im letzten Kapitel allgemeine Abbildungen zwischen beliebigen Mengen betrachtet. Hier wollen wir uns nun mit dem Fall beschäftigen, dass sowohl der input als auch

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge) Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f

Mehr

Aufgaben zur e-funktion

Aufgaben zur e-funktion Aufgaben zur e-funktion 1.0 Gegeben ist die reelle Funktion f(x) = 2x 2x e 1 x2 mit x R (Abitur 2000 AII). 1.1 Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion f und bestimmen Sie die Nullstellen

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012 Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie

Mehr

Aufgabe des Monats Mai

Aufgabe des Monats Mai Aufgabe des Monats Mai 2013 1 Ein Monopolist produziere mit folgender Kostenfunktion: K(x) = x 3 12x 2 + 60x + 98 und sehe sich der Nachfragefunktion (Preis-Absatz-Funktion) p(x) = 10, 5x + 120 gegenüber.

Mehr

Bügeleisen* Ein Unternehmen stellt Bügeleisen her. Die Produktionskosten lassen sich näherungsweise durch die folgende Funktion K beschreiben:

Bügeleisen* Ein Unternehmen stellt Bügeleisen her. Die Produktionskosten lassen sich näherungsweise durch die folgende Funktion K beschreiben: Bügeleisen* Aufgabennummer: B_217 Technologieeinsatz: möglich erforderlich T Ein Unternehmen stellt Bügeleisen her. Die Produktionskosten lassen sich näherungsweise durch die folgende Funktion K beschreiben:

Mehr

5 Grundlagen der Differentialrechnung

5 Grundlagen der Differentialrechnung VWA-Mathematik WS 2003/04 1 5 Grundlagen der Differentialrechnung 5.1 Abbildungen Unter einer Abbildung f, f:d W, y= f( ) von einer Menge D (Definitionsbereich) in eine Menge W (Wertemenge) versteht man

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 006 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag,. Juni 006 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 2015 Baden-Württemberg Aufgabe 7 Mathematik in der Praxis Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 2015 1 Die

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Abschnitt IV: Funktionen

Abschnitt IV: Funktionen Nr.01 Es sind bekannt P 1 (- / 1) und P (1 / -5). Bestimmen Sie den Funktionsterm. Nr. 0 Der Graph einer linearen Funktion g hat die Steigung und geht durch den Punkt C (-0,5 / -). Bestimmen Sie den Funktionsterm.

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung GS.06.0 - m_nt-a_lsg_gs.pdf Abschlussprüfung 0 - Mathematik Nichttechnik A I - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. x x x mit der Definitionsmenge Teilaufgabe. (7

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Monopolistischer Betrieb

Monopolistischer Betrieb Aufgabennummer: B_148 Monopolistischer Betrieb Technologieeinsatz: möglich erforderlich S Die Produktion und der Verkauf einiger Produkte eines monopolistischen Betriebes werden untersucht. a) Die lineare

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

WM.4.2 Mathematische Modelle für Kosten- und Gewinnfunktionen

WM.4.2 Mathematische Modelle für Kosten- und Gewinnfunktionen WM.4.2 Mathematische Modelle für Kosten- und Gewinnfunktionen In einem mathematischen betriebswirtschaftlichen relevanten Modell ist die Gesamtkostenfunktion, demnächst einfach Kostenfunktion K(x) genannt,

Mehr

Mathematik 1 für Bauingenieure

Mathematik 1 für Bauingenieure Mathematik 1 für Bauingenieure Name (bitte ausfüllen): Prüfung am 16.1.2015 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben

Mehr

Die gebrochenrationale Funktion

Die gebrochenrationale Funktion Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+

Mehr

Wirtschaftsmathematik - Übungen SS 2018

Wirtschaftsmathematik - Übungen SS 2018 Wirtschaftsmathematik - Übungen SS 208 Blatt : Mathematische Grundlagen. Vereinfachen Sie folgende Ausdrücke: (2x n ) 2 (3x n 3 ) 3 x : (xn+ ) 3 = 9 3 2 x n b) 2x 3 5Ô x 4 Ô 4x = c) ˆ ˆ ı Ù a + b ı Ù (a

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Wirtschaftsmathematik - Übungen SS 2019

Wirtschaftsmathematik - Übungen SS 2019 Wirtschaftsmathematik - Übungen SS 09 Blatt 0: Wiederholung der Grundlagen Dieses Blatt 0 dient zur Orientierung und Selbsteinschätzung der Studierenden. Die Beispiele behandeln Inhalte, die in der Wirtschaftsmathematik

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 7 MINT Mathkurs WS 2016/2017 1 / 20 Stetigkeit einer Funktion (continuity of a

Mehr

Hausaufgabe Analysis-Buch Seite 172, Aufgabe 23. Gegeben ist die Funktion f k mit f k (x) = x2 k 2. , wobei k > 0 ist.

Hausaufgabe Analysis-Buch Seite 172, Aufgabe 23. Gegeben ist die Funktion f k mit f k (x) = x2 k 2. , wobei k > 0 ist. ..6. 5. Hausaufgabe.. Analysis-Buch Seite 7, Aufgabe Gegeben ist die Funktion f k mit f k ( = k, wobei k > ist. k G fk ist der Graph von f k. a Bestimme den maimalen Definitionsbereich und untersuche f

Mehr

Repetitorium Mathe 1

Repetitorium Mathe 1 Übungsaufgaben Skript Repetitorium Mathe 1 WS 2014/15 25./26.01. und 31.01./01.02.2015 Inhaltsverzeichnis 1 Bruchrechnung 2 2 Zahlsysteme 2 3 Arithmetisches und geometrisches Mittel 2 4 Wachstum 2 5 Lineare

Mehr

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2 Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)

Mehr

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester 204 24.09.204 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr