Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt!

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt!"

Transkript

1 Relationen, Funktionen und Partitionen 1. Geordnetes Paar <a,b> <b,a> <a,b> <a,a,b> Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt! <a,b> {a,b} <a,b> = {a,{a,b}} Geordnete Paare können als Mengen geschrieben werden (und haben dann dieselben Eigenschaften), für unsere Zwecke ist das aber meist nicht nötig. 2. Kartesisches Produkt M = {a,b,c} N = {1,2} M N = {<a,1>,<a,2>,<b,1>,<b,2>,<c,1>,<c,2>} Das Kartesische Produkt (Kreuzprodukt) zweier Mengen ist die Menge aller geordneten Paare, deren erstes Element aus der ersten Menge und deren zweites Element aus der zweiten Menge stammt. Es enthält, vereinfacht gesagt, alle Kombinationen von Elementen aus M und N. 3. Relation R₁ M N R₁ = {<a,1>,<a,2>,<b,1>,<b,2>} Eine Relation auf M N ist eine Teilmenge dieses Kartesischen Produktes und damit ebenfalls eine Menge von geordneten Paaren. <a,1> R₁; a R₁ 1. Weil das Paar <a,1> ein Element der Relation R₁ ist, können wir sagen: a steht in der Relation ("Beziehung") R₁ zu 1. Etwas übersichtlicher ist die Darstellung als Pfeildiagramm, auch Graph genannt: Beide Mengen werden (mit allen Elementen!) aufgezeichnet und die in der Relation vorhanden Paare dann mit Pfeilen von links nach rechts markiert.

2 4. Eigenschaften von Relationen M = {a,b,c} M M = {<a,a>,<a,b>,<a,c>,<b,a>,<b,b>,<b,c>,<c,a>,<c,b>,<c,c>} R₂ M M R₂ = {<a,a>,<a,b>,<b,a>,<b,b>,<c,c>} R₂ ist eine Teilmenge des Kartesischen Produktes von M mit sich selbst, man sagt deshalb: R₂ ist eine Relation auf M. Solche Relationen können besondere Eigenschaften haben; für Relationen auf dem Kreuzprodukt zweier verschiedener Mengen gilt das in der Regel nicht. Auch für Funktionen kann man diese Eigenschaften meistens nicht sinnvoll untersuchen! Für die Darstellung als Pfeildiagramm gibt es hier zwei Möglichkeiten. Bei größeren Relationen ist die Erste deutlich übersichtlicher! R₂ ist reflexiv, weil jedes Element von M mit sich selbst in der Relation R₂ steht: {<a,a>,<b,b>,<c,c>} R₂. R₂ ist symmetrisch, weil für jedes Paar in R₂ auch das umgekehrte Paar in R₂ enthalten ist: {<a,b>,<b,a>} R₂, {<b,a>,<a,b>} R₂, {<a,a>,<a,a>} R₂, {<b,b>,<b,b>} R₂. Weil beispielsweise <a,c> nicht in R₂ ist, muss auch <c,a> nicht in R₂ sein. R₂ ist transitiv, weil für jede Kombination von zwei Paaren der Form <x,y>, <y,z> in R₂ auch das Paar <x,z> in R₂ enthalten ist: {<a,b>,<b,a>,<a,a>} R₂, {<b,a>,<a,b>,<b,b>} R₂, {<a,a>,<a,a>,<a,a>} R₂, {<b,b>,<b,b>,<b,b>} R₂. Weil <a,b> in R₂ ist, <b,c> aber nicht, muss auch <a,c> nicht in R₂ sein.

3 Weil R₂ reflexiv, symmetrisch und transitiv ist, ist R₂ eine Äquivalenzrelation. Für alle drei Eigenschaften gilt: Findet man ein Gegenbeispiel (bzw. ein fehlendes Paar), ist die Definition nicht erfüllt und die Eigenschaft damit nicht vorhanden. Ist eine der Eigenschaften nicht gegeben, handelt es sich nicht um eine Äquivalenzrelation. Außerdem kann eine Relation noch linear sein. Dafür muss sie zwei Bedingungen erfüllen: 1. Die Relation muss transitiv sein. 2. Für alle Kombinationen von zwei Elementen aus M, nennen wir sie x und y, muss genau einer der folgenden frei Fälle eintreten: a) x = y, es handelt sich also um dasselbe Element. b) <x,y> ist Element von R. c) <y,x> ist Element von R. Reflexive und symmetrische Relationen verletzen diese Bedingungen immer, deshalb ist R₂ nicht linear. 5. Funktionen Eine Relation, die jedem Element aus der ersten Menge genau ein Element aus der zweiten Menge zuordnet, nennt man eine Funktion. Alle Funktionen sind also Relationen (und damit Mengen), aber nicht alle Relationen sind auch Funktionen! Alles, was in diesem und den folgenden Punkten besprochen wird (außer in Punkt 9), gilt nur für Funktionen. M = {a,b,c} N = {1,2} M N = {<a,1>,<a,2>,<b,1>,<b,2>,<c,1>,<c,2>} f₁ M N f₁ = {<a,1>,<b,2>,<c,1>} Obwohl Mengen (und damit auch Relationen) normalerweise mit Großbuchstaben bezeichnet werden, benutzt man für Funktionen (wie in der Mathematik) oft auch Kleinbuchstaben. Die erste Menge (hier M) wird dann als Definitionsbereich, die zweite Menge (hier N) als Wertebereich bezeichnet. Hier lässt sich die Bedingung für Funktionen gut nachvollziehen. Wenn jedem Element des Definitionsbereichs genau ein Element des Wertebereichs zugeordnet werden muss, dann heißt das: Von jedem Element auf der linken Seite muss genau ein Pfeil zur rechten Seite gehen - wohin genau, ist nicht wichtig!

4 6. Surjektivität, Injektivität, Bijektivität Genau wie "normale" Relationen können auch Funktionen besondere Eigenschaften haben. Wir wissen, dass eine Funktion jedem Element des Definitionsbereichs genau ein Element des Wertebereichs zuordnet. Umgekehrt geht es jetzt darum,wie vielen Elementen des Definitionsbereichs ein Element des Wertebereichs zugeordnet wird. f₁ = {<a,1>,<b,2>,<c,1>} (siehe Pfeildiagramm unter Punkt 5) Eine Funktion ist surjektiv, wenn jedes Element des Wertebereichs mindestens einem Element des Definitionsbereichs zugeordnet wird. Bei jedem Element auf der rechten Seite muss mindestens ein Pfeil ankommen! f₁ ist also surjektiv, weil sowohl 1 als auch 2 zugeordnet werden. Eine Funktion ist injektiv, wenn jedes Element des Wertebereichs höchstens einem Element des Definitionsbereichs zugeordnet wird. Bei jedem Element auf der rechten Seite darf höchstens ein Pfeil ankommen! f₁ ist also nicht injektiv, weil 1 zweimal zugeordnet wird. Eine Funktion istbijektiv, wenn sie surjektiv und injektiv ist, also jedes Element des Wertebereichs genaueinem Element des Definitionsbereichs zugeordnet wird. Bei jedem Element auf der rechten Seite muss genau ein Pfeil ankommen! Das funktioniert natürlich nur, wenn die beiden Bereiche gleich viele Elemente haben. f₁ ist also nicht bijektiv, weil f₁ nicht injektiv ist. 7. Bild f₁[m] = {1,2} N Das Bild von f₁ ist eine Teilmenge des Wertebereichs (hier N) und enthält alle Elemente, die durch f₁ tatsächlich zugeordnet werden. Grob gesagt sind das alle Elemente, auf die mindestens ein Pfeil zeigt! Hätte N noch ein weiteres Element, z.b. 3, das in keinem der Paare von f₁ vorkommt, wäre 3 kein Element von f₁[m]. K = {a,c} M f₁[k] = {1} Das (direkte) Bild von K unter f₁ ist ebenfalls eine Teilmenge des Wertebereichs und enthält alle Elemente, die durch f₁ einem der Elemente von K zugeordnet werden. Weil K die Elemente a und c enthält, enthält f₁[k] alle Elemente, die a und c in f₁[k] zugeordnet werden (also 1, weil <a,1>,<c,1> f₁). 8. Induzierte Partition P₁(M) = {{a,c},{b}} f₁ induziert eine Partition auf dem Definitionsbereich (hier M). Diese Partition gruppiert alle Elemente des Definitionsbereichs danach, welches Element des Wertebereichs ihnen durch f₁ zugeordnet wird. Also: a und c werden zusammengefasst, weil beiden die 1 zugeordnet wird, und b steht alleine, weil ihm als einzigem Element die 2 zugeordnet wird. (Hier heißt die Partition P₁, aber der Name ist im Prinzip egal.)

5 9. Konverse Relation R₁ = {<a,1>,<a,2>,<b,1>,<b,2>} R₁ = {<1,a>,<2,a>,<1,b>,<2,b>} Um die zu R₁ konverse Relation R₁ zu bilden, dreht man alle Paare aus R₁ um. R₁ ist dann natürlich auch eine Relation, aber nicht unbedingt dieselbe. Für eine Relation R gilt R = R₁ nur dann, wenn R symmetrisch ist. f₁ = {<a,1>,<b,2>,<c,1>} f₁ = {<1,a>,<2,b>,<1,c>} Zu f₁ kann man auf die gleiche Art die konverse Relation f₁ bilden. f₁ ist aber keine Funktion, weil dem Element 1 (das hier zum Definitionsbereich gehört) zwei verschiedene Elemente zugeordnet werden, nämlich a und c. Nur bei bijektiven Funktionen ist auch die konverse Relation eine Funktion! 10. Mathematische Funktionen f(x) = x² = {<0,0>,<1,1>,<2,4>,<3,9>,<4,16>,<5,25>,<6,36>,...} Auch mathematische Funktionen könnte man theoretisch als Menge schreiben. Definitions- und Wertebereich wären dann die natürlichen (oder ganzen, rationalen, reellen,...) Zahlen. f(x) = y <x,y> f(2) = 4 <2,4> f(3) = 9 <3,9> Man setzt einfach nacheinander Zahlen ein und bildet Paare aus den Zahlen selbst und ihrem Funktionswert. Weil die Zahlen aber unendlich sind, wird man natürlich mit dem Aufschreiben niemals fertig. f(x) = x² g(x) = 5x f g = f(g(x)) = (g(x))² = (5x)² = 25x² f g ist die Komposition (oder auch Verkettung) von f und g. Dazu schreibt man die äußere Funktion (hier f, also x²) hin und ersetzt dann x (und wirklich nur x) durch die zweite Funktion (hier g, also 5x). g(x) = 5x : 5 0,2g(x) = x 0,2x = g (x) Analog zur konversen Relation kann man zu g die Umkehrfunktion g bilden. Dazu löst man die Funktion nach x auf und "tauscht" dann die beiden Variablen. g(x) = 5x g (x) = 0,2x g g = g(g (x)) = 5(0,2x) = x Verkettet man die beiden Funktionen, kommt man wieder auf x - sie heben sich also quasi auf.

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 20 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren

Mehr

Mengenlehre. Yanhai Song. Proseminar Mathematische Modellierung. Fakultät für Informatik Technische Universität München. 12.Juni.

Mengenlehre. Yanhai Song. Proseminar Mathematische Modellierung. Fakultät für Informatik Technische Universität München. 12.Juni. Mengenlehre Yanhai Song songy@in.tum.de Proseminar Mathematische Modellierung Fakultät für Informatik Technische Universität München 12.Juni.2001 Zusammenfassung Die Mengenlehre gehört zu den vier Teilgebieten

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

2. Relationen und Funktionen

2. Relationen und Funktionen 2. Relationen und Funktionen 15 2. Relationen und Funktionen Nachdem wir Mengen eingeführt haben, wollen wir nun auch mehrere von ihnen miteinander in Beziehung setzen können. Das Grundkonzept hierfür

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra 2005-2013 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

1 Loesungen zu Analysis 1/ 1.Uebung

1 Loesungen zu Analysis 1/ 1.Uebung Loesungen ausgewaehlter Beispiele zu Analysis I, G. Bergauer, Seite 1 1 Loesungen zu Analysis 1/ 1.Uebung 1.1 Einleitung Gegeben Mengen X, A mit A X. Sei die Menge durch A = {a X : a erfuellt B} gegeben,

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Übungsaufgaben Aufgabe 0.1 Ermitteln Sie x R aus folgenden Gleichungen (a) log 2 (x + 14)

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 5. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 5. Vorlesung 1 / 30 Themen

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch Blatt 0: Mathematik I für Ingenieure (B) apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch 10.10.016 Abbildungen und Kompositionen Allgemeine Erklärungen: Siehe Seite 1 zu Anmerkungen zu Mengen und Abbildungen!

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Mehr über Abbildungen

Mehr über Abbildungen Mehr über Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de alle Abbildungen Die Menge aller Abbildungen von A nach B wird mit B A bezeichnet. Es

Mehr

Eigenschaften von Relationen. Relationen können rechtseindeutig linkseindeutig rechtstotal linkstotal sein.

Eigenschaften von Relationen. Relationen können rechtseindeutig linkseindeutig rechtstotal linkstotal sein. Eigenschaften von Relationen w d a c b x z y u Relationen können rechtseindeutig linkseindeutig rechtstotal linkstotal sein. Rechtseindeutige Relationen d M a c b N w x z y u Eine Relationen heißt rechtseindeutig,

Mehr

Kapitel 11. Dimension und Isomorphie

Kapitel 11. Dimension und Isomorphie Kapitel 11. Dimension und Isomorphie Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/77 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

3 ist eine Primzahl zugeordnet, während der Zahl 4 die Eigenschaft

3 ist eine Primzahl zugeordnet, während der Zahl 4 die Eigenschaft Kapitel 7 Relationen Ω bezeichne die Menge aller Aussagen. 7.1 Grundbegriffe 7.1.1 Definition. Sei n: N, und X 1,...,X n Datentypen. Dann heißt jede Konstruktion P vom Typ ein n-stelliges Prädikat. P :

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N, Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

4. Abbildungen. Was ist eine Abbildung? Eigenschaften: injektiv surjektiv bijektiv Umkehrabbildung. Rolf Linn. 4. Abbildungen GM 4-1

4. Abbildungen. Was ist eine Abbildung? Eigenschaften: injektiv surjektiv bijektiv Umkehrabbildung. Rolf Linn. 4. Abbildungen GM 4-1 4. bbildungen Was ist eine bbildung? Eigenschaften: injektiv surjektiv bijektiv Umkehrabbildung 4. bbildungen GM 4-1 Wozu bbildungen? In der Mathematik In fast allen Gebieten der Mathematik spielen bbildungen

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Kapitel 1 Mathematische Objekte In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Objekte wie Tupel, Mengen, Relationen und Funktionen. Außerdem erklären wir die

Mehr

Analysis I. Vorlesung 4. Angeordnete Körper

Analysis I. Vorlesung 4. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich

Mehr

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Abbildungen Die wichtigsten Relationen sind die Abbildungen: Eine Abbildung (A,B,f ) von A nach

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

1 Funktionen. 1.1 Definitionen und Bezeichnungen

1 Funktionen. 1.1 Definitionen und Bezeichnungen 1 1 Funktionen 1.1 Definitionen und Bezeichnungen Eine Funktion f ist eine eindeutige Abbildung einer Menge X in eine andere Y. Ist x X, dann ist f(x) y Y das Bild des Elementes x. x heißt das Urbild des

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

A B A und B w w w w f f f w f f f f. A B A oder B (A B) w w w w f w f w w f f f

A B A und B w w w w f f f w f f f f. A B A oder B (A B) w w w w f w f w w f f f Kapitel 1 Zum Aufwärmen 1.1 Aussagen Eine Aussage im üblichen Sinn ist nicht unbedingt eine Aussage im mathematischen Sinn. Aussagen wie Mathe ist doof sind keine Aussagen im mathematischen Sinn, weil

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

Bestimmung der Dimension

Bestimmung der Dimension Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach Weglassen eines v i (1 i n) entstehenden

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik

Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik Ergänzende Übungen Lineare Algebra I Wintersemester 2010/11 Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik 1 Äquivalenz Was bedeutet Äquivalenz? Wie wird der Begriff

Mehr

Wiederholungsblatt zur Gruppentheorie

Wiederholungsblatt zur Gruppentheorie Wiederholungsblatt zur Gruppentheorie von Christian Elsholtz, TU Clausthal, WS 1999/2000 Um Ihnen zu helfen, die Gruppentheorie zu wiederholen, stelle ich hier einige wichtige Beispiele und einige Lösungen

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Klausurvorbereitung für die Semesterferien - 20 Aufgaben -

Klausurvorbereitung für die Semesterferien - 20 Aufgaben - Klausurvorbereitung für die Semesterferien - 20 Aufgaben - Sebastian Heger B.Sc. - SoSe 2010 Mathematik für Informatiker II bei Prof. Dr. J. Baumeister Aufgabe 1. (Mengenbeweise) Seien ABC beliebige Mengen.

Mehr

Lineare Algebra I. Lösung 3.1:

Lineare Algebra I. Lösung 3.1: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei

Mehr