Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)"

Transkript

1 DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen und Funktionen) Hinweis: Ist bei Aufgaben keine spezielle Schreibweise für Relationen angegeben, die Sie verwenden sollen, so stellen Sie die Relationen als Mengen von Paaren dar. Sei M eine beliebige Menge. Die Notation M n für ein n N ist eine abkürzende Schreibweise für das n-fache kartesische Produkt von M mit sich selbst, z.b. bedeuet M das gleiche wie M M. Relationen aufstellen Aufgabe 8. (Relationen formal darstellen) Welche Beziehungen stellen die folgenden Relationen dar? Notieren Sie die Relation dann formal. Beispiel: {(,, ), (,, ), (, 3, 3),..., (,, ), (,, 4), (, 3, 6),..., (3,, 3), (3,, 6), (3, 3, 9),... } Die Relation stellt die Multiplikation natürlicher Zahlen dar, die ersten beiden Komponenten sind die beiden Faktoren, die letzte das Ergebnis. Formal würde die Relation {(a, b, c) N 3 a b = c} lauten. (a) {(0, 0), (0, ), (0, ), (0, 3),..., (, ), (, ), (, 3),..., (, ), (, 3), (, 4),... } (b) {(, ), (, ), (3, 3), (4, 4), (5, 5),... } (c) {(4, 4), (4, 8), (4, ), (4, 6),... } (d) {(,, ), (,, 3), (, 3, 4),..., (,, 3), (,, 4), (, 3, 5),..., (3,, 4), (3,, 5), (3, 3, 6),... } (e) {(, ), (, 3), (3, 5), (4, 7), (5, ), (6, 3),... } Aufgabe 8. Notieren Sie formal Relationen, die die folgenden Eigenschaften beschreiben. Beispiel: Studenten haben eine eigene Matrikelnummer {(x, y) Studenten M atrikelnummern x hat Matrikelnummer y} (a) Menschen haben Vornamen (b) Menschen haben Mütter (c) Menschen haben Großmütter (Hinweis: Stellen Sie diese Relation mit Hilfe der Relation aus (b) und einer weiteren Relation dar.) (d) natürliche Zahlen haben eine Binärdarstellung Aber Achtung: Die Notation ist überlagert, d.h. es gibt in anderen Kontexten eine weitere Möglichkeit, was diese Schreibeweise bedeuten kann. Achten Sie darauf, welche der Definitionen Sie im jeweiligen Fall anwenden müssen.

2 Aufgabe 8.3 Zeichnen Sie die als Mengen angegebenen Relationen als Pfeildiagramm. Geben Sie außerdem die Matrixdarstellung an. Beispiel: Sei {(, ), (, 3), (, 3)} gegeben. Die graphische Darstellung sieht wie folgt aus: 3 (a) {(, ), (3, 4), (, 4), (4, )} über der Menge {,, 3, 4, 5} (b) {(, ), (, ), (3, 3), (4, 4)} über der Menge {,, 3, 4} (c) {(a, b) {,, 3, 4, 5, 6} a teilt b} (d) {(a, b) a {,, 3} b {a, b, c}} (e) {(a, b) {a, b, c,..., x, y, z} b ist der Nachfolger von a im Alphabet} Aufgabe 8.4 Geben Sie die als Matrix angegebenen Relationen als Pfeilbilder an. Hinweis: Es handelt sich um Relationen über natürlichen Zahlen. Die Nummer der Reihe gibt die erste, die Nummer der Spalte die zweite Komponente des Tupels an. Beispiel: ( ) 0 beschreibt die Relation {(, ), (, )} mit dem Pfeilbild (a) (b) (c) ( ) (d) (e) Aufgabe 8.5 Beschreiben Sie jeweils die Matrizendarstellung (a) reflexiver (b) transitiver (c) antisymmetrischer (d) symmetrischer Matrizen über natürlichen Zahlen. Hinweis: Am besten wählen Sie sich jeweils ein bis zwei Relationen, die diese Eigenschaft haben, stellen diese als Matrix dar und suchen charakteristische Merkmale.

3 Aufgabe 8.6 Geben Sie zu den Relationen 8.4 die inversen Relationen als Menge, als Pfeilbild und in Matrixdarstellung an. Beispiel: Inverse Relation ( zum ) Beispiel von 8.4: Die inverse Relation lautet ebenfalls {(, ), (, )}, 0 die Matrixdarstellung und das Pfeilbild damit wieder 0 Aufgabe 8.7 Zeichnen Sie die Komposition der folgenden Relationen. Die Relation sind in der Reihenfolge zu komponieren, wie sie in der Aufgabenstellung aufgeführt sind. Beispiel: {(, 3), (3, )} und {(, ), (3, 3)} damit ist die Komposition, die zu bilden ist, {(, 3), (3, )} {(, ), (3, 3)}. Es lässt sich (, 3) mit (3, 3) und (3, ) mit (, ) über die Definition der Komposition zusammenbringen. Als Pfeilbild sieht die Komposition so aus: 3 (a) {(, ), (, 3), (, 3)} und {(3, ), (, ), (3, )} über {,, 3} (b) {(a, b) N a = b + } und {(a, b) N a > 0 a = b } (c) {(, 4), (, 4), (3, 4)} und {(4, 4)} über {,, 3, 4} (d) {((, ), (, )), ((, )(, )), ((, ), (3, )), ((3, ), (4, ))} und {((, ), (3, 4)), ((3, ), (, )), ((, ), (, 3)), ((3, ), (4, 4))} über ({,, 3, 4} ) Einschub Definition Man sagt a teilt b (Notation a b), wenn es ein k Z gibt, so dass b = a k. Aufgabe 8.8 Beweisen Sie : a teilt b genau dann, wenn b kongruent 0 modulo a ist. 3

4 3 Eigenschaften von Relationen Aufgabe 8.9 Welche der folgenden Relationen sind reflexiv, transitiv, symmetrisch oder antisymmetrisch? Beweisen Sie Ihre Antwort. Beispiel: R := {(a, a) a N} über den natürlichen Zahlen Die Menge ist reflexiv, transitiv, symmetrisch und antisymmetrisch. Textbeweis Erklärungen Schlussregel Reflexivität: x N : (x, x) R Sei x in N beliebig. Dann gilt: x = x. x : x = x ( :Bew), ( :Anw) Damit ist ( x, x) R Transitivität: x, y, z N : (x, y) R (y, z) R (x, z) R (Subst)(Definition der Relation) Seien x, y, z beliebig in N und ( x, y) und ( y, z) in R enthalten. ( :Bew),( :Bew),( :Bew), ( :Bew), ( :Anw),(Subst) ( Kommutativität ), ( :Anw) Dann gilt x = y und y = z. Damit gilt dann auch x = z und somit (x, z) R. Antisymmetrie: x, y : (x, y) R (y, x) R x = y Seien x und y beliebig in N. Ist x y, dann ist kein Paar mit x und y in der Relation enthalten. Damit ist die Prämisse von Antisymmetrie immer falsch, die Aussage damit wahr. Für x = y ist die Konklusion von Antisymmetrie erfüllt und die Aussage damit wahr. Symmetrie: x, y : (x, y) R (y, x) R Seien x und y beliebig in R. Dann ist x = y und damit ( x, y) = ( y, x). Angewendeter Satz: x, y, z N : x = y y = z x = z Angewendeter Satz: x, y N : x y (y = x) Angewendeter Satz: x, y N : x = y ( x, y) = ( y, x) (Subst)(Definition Relation), (Subst)(Definition Relation) ( :Anw), ( :Anw), ( :Anw), ( :Anw) ( :Bew), ( :Bew) (FU), ( :Anw), ( :Anw), ( :Anw) (Subst)(Definition ) (W) ( :Bew), ( :Bew) (Subst) (Definition Relation), ( :Anw),( :Anw), ( :Anw), (Subst) (Definition Relation) (a) {(, ), (, ), (3, 3)} über der Menge {,, 3} (b) {(, ), (, ), (3, 3)} über der Menge {,, 3, 4} (c) {(, ), (, 3), (3, ), (, ), (3, ), (, 3)} über {,, 3} (d) {(a, b) N a b} über den natürlichen Zahlen 4

5 Aufgabe 8.0 Welche der folgenden Relationen sind links-total bzw. rechts-total? Geben Sie zunächst Quellund Zielmenge, sowieso Definitions- und Wertebereich an und beweisen Sie dann wie in 8.9 Ihre Behauptung. Beispiel: {(, ), (, )} über {,, 3} ist weder links-total, noch rechts-total, da der 3 kein Wert zugeordnet wird und die 3 nicht getroffen wird. (a) {(, ), (, )} über {, } (b) {(, ), (, 3), (3, )} über {,, 3} (c) {(a, a + ) a N} über N (d) {(a, a ) a N a > 0} (e) {(a, a) a N} (f) {(a, b) N a b} über N Aufgabe 8. Geben Sie ein Beispiel dafür an, dass es Relationen gibt, die weder symmetrisch noch antisymmetrisch sind. Aufgabe 8. Geben Sie eine Relation an, die sowohl symmetrisch als auch antisymmetrisch ist. Aufgabe 8.3 Schließen Sie die folgenden Relationen reflexiv, transitiv und symmetrisch ab: Beispiel: {(, ), (, 3), (3, )} wird reflexiv über {,, 3} abgeschlossen durch Hinzufügen der Paare (, ), (, ) und (3, 3). Die Symmetrie-Eigenschaft erhält man, indem man die Paare (, ), (3, ) und (, 3) zur Menge hinzufügt. Die Menge ist nun schon transitiv, da alle möglichen Paare aus {,, 3} {,, 3} enthalten sind. (a) {(, ), (, )} über {, } (b) {(, ), (, )} über {,, 3} (c) {(, ), (, ), (, 3)} über {,, 3} (d) {(, ), (, ), (, 3), (, 4)} über {,, 3, 4} (e) {(, ), (, 3), (, 4), (4, ), (3, ), (, ), (, )} über {,, 3} Aufgabe 8.4 Schließen Sie die leere Menge über einer beliebigen Menge M reflexiv, transitiv und symmetrisch ab. Aufgabe 8.5 Schließen Sie die Relation x ist Ahne von y transitiv, symmetrisch und reflexiv ab. Welche Relation erhalten Sie? Aufgabe 8.6 Welche Eigenschaften haben diese natürlichsprachlichen Relationen? Notieren Sie die Relation zunächst als Menge und geben Sie dabei auch die Mengen an, über der die Relationen definiert sind. Beispiel: x ist Haustiert von y Formal lautet diese Relation {(x, y) Haustier Mensch x ist Haustier von y}. Die Relation kann nicht reflexiv, transitiv, symmetrisch oder antisymmetrisch sein, da Quellmenge und Zielmenge nicht übereinstimmen. Sie ist links-total, da jedes Haustier ein Menschen hat, der dieses Haustier besitzt (ansonsten wäre das Tier kein Haustier), sie ist aber nicht rechts-total, da es Menschen gibt, die keine Haustiere haben. 5

6 (a) x ist Vater von y (b) x ist Großvater von y (c) x ist Schwester von y (d) x ist die Matrikelnummer von y (e) x ist das Studienfach von y (f) x studiert y Aufgabe 8.7 Zeigen Sie jeweils die Äquivalenz der alternativen Charakterisierungen (aus der Vorlesung) zu den ursprüngenlichen von Transitivität, Antisymmetrie und Symmetrie. 4 Äquivalenzrelationen und Ordnungsrelationen Aufgabe 8.8 Beweisen Sie, dass (also die Relation R := {(A, B) A B}) eine Ordnungsrelation ist. Hinweis: Sie benötigen die Definition von für den Beweis. Aufgabe 8.9 Nehmen Sie an, in der Definition von Ordnungsrelation würde die Eigenschaft reflexiv durch die Eigenschaft irreflexiv ersetzt, d.h. eine Relation wäre eine Ordnungsrelation genau dann, wenn sie irreflexiv, transitiv und antisymmetrisch ist. Nennen Sie nun zwei Ordnungsrelationen. Hinweis: Irreflexivität einer binären Relation R über einer Menge M ist definiert als x M : (x, x) R. Aufgabe 8.0 Finden Sie eine Äqivalenzrelation, eine Ordnungsrelation, eine Totalordnung und eine Wohlordnung, die bisher noch nicht in der Vorlesung genannt wurden. Aufgabe 8. Was ist das minimale Element der Ordnungsrelation auf den natürlichen Zahlen? 5 Funktionen - spezielle Relationen Aufgabe 8. Welche der folgenden Funktionen sind injektiv, surjektiv oder bijektiv? Beweisen Sie Ihre Antwort. Beispiel: Sei f : R R, f(x) = x. f ist weder injektiv, da z.b. die und die auf den gleichen Wert abgebildet werden, noch surjektiv, da z.b. nicht getroffen wird. Damit ist die Funktion auch nicht bijektiv (nach Definition). (a) f : R \ {0} R, f(x) = x (b) f : R R, f(x) = x (c) f : R \ {0} R, f(x) = x (d) f : R R, f(x) = x 3 (e) f : R R, f(x) = x + 6

7 6 Beweise mit Funktionen Aufgabe 8.3 Beweisen oder widerlegen Sie: Sind zwei Funktionen f und g injektiv so ist ihre Komposition f g surjektiv. bijektiv injektiv surjektiv bijektiv, Aufgabe 8.4 Beweisen Sie die folgenden drei Aussagen. Seien dafür f und g beliebige Funktionen: (a) Ist f g injektiv, so ist f injektiv. (b) Ist f g surjektiv, so ist g surjektiv. (c) Ist f g bijektiv, so ist f injektiv und g surjektiv. Aufgabe 8.5 Identifizieren Sie hier, welche der Schlussregeln angewendet worden sind. Dabei bezeichne id x die Funktion id: X X, x x ür eine beliebige Menge X. Zeichnen Sie auch den dazugehörigen Beweisbaum. Hinweis: Folgender Beweis stammt (mit kleinen Anpassungen) aus der Grundvorlesung Lineare Algebra. Textbeweis Erklärungen Schlussregel Behauptung: Seien M und N Mengen und sei f : M N eine Funktion. Dann ist f genau dann bijektiv, wenn eine Abbildung g : N M existiert mit g f = id M und f g = id N. Beweis: Hinrichtung: zu zeigen: Es existiert g : N M mit g f = id M und f g = id N = f ist bijektiv. Annahme: Es existiert g : N M mit g f = id M und f g = id N. Sei y N. Setze x als g(y) M. Dann gilt: f(x) = f(g(y)) = (f g)(y) = id N (y) = y für alle y N. Damit ist f surjektiv. Seien x und x M mit f(x) = f(x ). Dann gilt: x = id M (x) = (g f)(x) = g(f(x)) = g(f(x )) = (g f)(x ) = id M (x ) = x. Damit ist f injektiv. Es folgt: f ist bijektiv. Rückrichtung Man bezeichne mit x y x M, so dass f(x) = y mit y N. Nun definiere man g : N M, y x y. Für jedes y M gilt: (f g)(y) = f(g(y)) = f(x y) = y = id N (y). Man wähle x M mit f(x) = y mit y N. zu zeigen:f ist bijektiv = Es existiert g : N M mit g f = id M und f g = id N Annahme: f ist bijektiv Da f bijektiv ist, gibt es für jedes y N genau ein x M mit f(x) = y. 7

8 Textbeweis Erklärungen Schlussregel Dann ist x = x y, da f injektiv ist. Es gilt: (g f)(x) = g(f(x)) = g(y) = x y = x = id M (x). Damit erfüllt g die geforderden Eigenschaften. 8

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

modulo s auf Z, s. Def

modulo s auf Z, s. Def 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 Ähnlich wie Funktionen besitzen Relationen charakteristische Eigenschaften. Diese Eigenschaften definieren wie

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt

Mehr

Abbildungen, injektiv, surjektiv, bijektiv

Abbildungen, injektiv, surjektiv, bijektiv Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle Lineare Algebra Jung Kyu Canci Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle Herbstsemester 2015 2 Inhaltsverzeichnis 1 Einführung in die Lineare Algebra 5 1.1 Elementare

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Die Lösungshinweise dienen

Mehr

Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt!

Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt! Relationen, Funktionen und Partitionen 1. Geordnetes Paar Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Lösungen 2 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 2 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 2 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 26. September 2016, Fehler und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

Formale Methoden 1. Gerhard Jäger 14. November Uni Bielefeld, WS 2007/2008 1/17

Formale Methoden 1. Gerhard Jäger 14. November Uni Bielefeld, WS 2007/2008 1/17 1/17 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 14. November 2007 2/17 Komposition von Relationen und Funktionen seien R A B und S B C Relationen neue

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Teil 4. Mengen und Relationen

Teil 4. Mengen und Relationen Teil 4 Mengen und Relationen KAPITEL 10 Äquivalenzrelationen und Faktormengen 1. Äquivalenzrelationen Wir nennen eine Relation von A nach A auch eine Relation auf A. DEFINITION 10.1. SeiΡeine Relation

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive

Mehr

Musterlösung zur Probeklausur Lineare Algebra I

Musterlösung zur Probeklausur Lineare Algebra I Musterlösung zur Probeklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten Sie

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 3 Grundlagen der Mathematik Präsenzaufgaben (P4) Wir betrachten die Menge M := P({1, 2, 3, 4}). Dann gilt 1 / M,

Mehr

Diskrete Strukturen Vorlesungen 5 und 6

Diskrete Strukturen Vorlesungen 5 und 6 Sebastian Thomas RWTH Aachen, WS 2016/17 07.11.2016 09.11.2016 Diskrete Strukturen Vorlesungen 5 und 6 3 Abbildungen In diesem Abschnitt führen wir Abbildungen zwischen Mengen ein. Während Mengen von der

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 20 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 1. Klausur Wintersemester 2013/

Mathematik für Betriebswirte I (Lineare Algebra) 1. Klausur Wintersemester 2013/ Mathematik für Betriebswirte I (Lineare Algebra). Klausur Wintersemester 20/204 06.02.204 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:... Vorname:... Matrikelnummer: Studienfach:... Name des

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Auf Z definieren wir eine Relation durch x, y Z : (x y : x y ist gerade) a) Zeigen Sie, dass

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Homotopie von Abbildungen und Anwendungen

Homotopie von Abbildungen und Anwendungen Homotopie von Abbildungen und Anwendungen Proseminar Fundamentalgruppen und ihre Anwendungen Bearbeitung: Daniel Schliebner Herausgabe: 04. Juli 2007 Daniel Schliebner Homotopie von Abbildungen und Anwendungen

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch Blatt 0: Mathematik I für Ingenieure (B) apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch 10.10.016 Abbildungen und Kompositionen Allgemeine Erklärungen: Siehe Seite 1 zu Anmerkungen zu Mengen und Abbildungen!

Mehr

Inhalt. PROLOG-1A: Mathematik? PROLOG-1B: Aussagen. PROLOG-2: Mengen, Funktionen. PROLOG-3A: Mathematik in Semestern 1+2

Inhalt. PROLOG-1A: Mathematik? PROLOG-1B: Aussagen. PROLOG-2: Mengen, Funktionen. PROLOG-3A: Mathematik in Semestern 1+2 Inhalt PROLOG-1A: Mathematik? PROLOG-1B: Aussagen PROLOG-2: Mengen, Funktionen PROLOG-3A: Mathematik in Semestern 1+2 PROLOG-3B: Funktionen, Induktion, Ungleichungen Mathematik in Semestern 1+2 Mathematik

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

Diskrete Strukturen. Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 4

Mehr

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y 6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Lösungen der Übungsaufgaben I

Lösungen der Übungsaufgaben I Mathematik für die ersten Semester (2. Auflage): Lösungen der Übungsaufgaben I C. Zerbe, E. Ossner, W. Mückenheim 1.1 Beweisen Sie, dass die folgenden Aussagen stets wahr sind, also zur Ableitung wahrer

Mehr

Analysis I Marburg, Wintersemester 1999/2000

Analysis I Marburg, Wintersemester 1999/2000 Skript zur Vorlesung Analysis I Marburg, Wintersemester 1999/2000 Friedrich W. Knöller Literaturverzeichnis [1] Barner, Martin und Flohr, Friedrich: Analysis I. de Gruyter. 19XX [2] Forster, Otto: Analysis

Mehr

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Für die Abgabe der Bearbeitungen

Mehr

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3.

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3. 3. Relationen 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen 3. Relationen GM 3-1 Wozu Relationen? Mathematik Theoretische Informatik Kryptographie

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen

Mehr

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B.

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Mathematik I für Informatiker Relationen auf einer Menge p. 1 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist der,

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

A B A und B w w w w f f f w f f f f. A B A oder B (A B) w w w w f w f w w f f f

A B A und B w w w w f f f w f f f f. A B A oder B (A B) w w w w f w f w w f f f Kapitel 1 Zum Aufwärmen 1.1 Aussagen Eine Aussage im üblichen Sinn ist nicht unbedingt eine Aussage im mathematischen Sinn. Aussagen wie Mathe ist doof sind keine Aussagen im mathematischen Sinn, weil

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Relationalstrukturen Definition Sei A eine nichtleere Menge, R ist eine k-stellige

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt Karlsruhe Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Dr. S.Wugalter WS 2017/18 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge

Mehr

Formale Methoden 1. Gerhard Jäger 7. November Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 7. November Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 7. November 2007 2/18 Geordnete Paare Mengen sind ungeordnet: {a, b} = {b, a} für viele Anwendungen braucht

Mehr

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar). Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra 2005-2013 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr