modulo s auf Z, s. Def

Größe: px
Ab Seite anzeigen:

Download "modulo s auf Z, s. Def"

Transkript

1 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/ Präsenzaufgaben: 1) Seien A und B zwei endliche Mengen mit A = 6 und B = 8. Wieviele Elemente hat die Potenzmenge Pot (A B) etwa? Schätzen Sie die Anzahl der Dezimalstellen von P ot(a B). Es darf 2 10 = benutzt werden. Lösung: 2 48 = (2 10 ) 4.8 (10 3 ) 4.8 = Ergebnis: ca. 15 Stellen nach dem Komma. 2) Betrachte die Kongruenzrelation R s modulo s auf Z, s. Def (a) Diskutieren Sie (7, 3) R 4, (7, 4) R 4, (3, 7) R 4, ( 3, 7) R 4, (1, 7) R 4, (7, 7) R 4, ( 7, 7) R 4. Schreiben Sie die wahren Aussagen auch in unter Verwendung des Kongruenz-Symbols. Lösung: 7 3 mod 4, 3 7 mod 4, 1 7 mod 4, 7 7 mod 4 (b) Warum ist jede ganze Zahl m ein Teiler der Null 2? Lösung: Weil 0 = 0 m, also r := 0 die Teilerbdingung erfüllt. (c) Jeder bei einer Division durch s IN auftretende Rest ist aus {0, 1, 2,..., s 1}. Zu jedem dieser s Reste gehört eine Äquivalenzklasse von R s. Geben Sie zu s := 4 für alle diese vier Klassen je zwei Elemente m 1 und m 2 mit m 1 < 0, m 2 > 10 an und überprüfen Sie, dass m 1 m 2 mod s. Lösung: Rest 0: m 1 := 4, m 2 := 12, Rest 1: m 1 := 3, m 2 := 13, Rest 2: m 1 := 2, m 2 := 14, Rest 3: m 1 := 1, m 2 := 15. m 1 und m 2 gehören jeweils derselben Äquivalenzklasse an. 3) Sei A die Menge aller Bahnhöfe in Deutschland. Eine zweistellige Relation R auf A sei durch (a, b) R : Ein Zug fährt ohne Halt von a nach b definiert. Diskutieren Sie die Eigenschaften (Reflexivität, Symmetrie, Antisymmetrie, Transitivität) dieser Relation. Was ändert sich, wenn man statt von einem Zug von einer Zugverbindung (auch mit mehreren Zügen) spricht? 1 (m, n) R s : s teilt (m n). 2 m heißt Teiler von n : Es gibt ein r Z : n = r m. 1

2 Lösung: Reflexivität gibt keinen Sinn, Symmetrie ist wohl gegeben, aber nicht sicher, Antisymmetrie und Transitivität nicht, letzteres nur bei der Zugverbindung. 4) Sei A die Menge aller (auch schon verstorbenen) Menschen. Sei eine Relation auf A durch (a, b) R : a und b haben eine gemeinsame Großmutter definiert. Diskutieren Sie die Eigenschaften (Reflexivität, Symmetrie, Antisymmetrie, Transitivität) dieser Relation. Lösung: reflexiv: ja, Symmetrie auch, Antisymmetrie nicht, Transitivität nicht, z.b. wenn a und b Kusinen oder Vettern sind. Beachte, dass jeder Mensch in der Regel 2 Großmütter hat. 5) Zwei Kreise in der Ebene sollen einer Zentrumsbeziehung genügen, wenn sie den gleichen Mittelpunkt haben. Ist dies eine Äquivalenzrelation? Was sind gegebenenfalls die Äquivalenzklassen? Wie könnte man eine Relation zwischen Kreisen definieren, damit eine Ordnungsrelation entsteht? Lösung: Ja, eine Äquivalenzklasse ist durch den gemeinsamen Mittelpunkt charakterisiert. Ordnungsrelation entsteht, wenn man die Größe der Radien zum Vergleich heranzieht. Oder wenn man die Enthaltensein-Relation verwendet. 6) Welche der folgenden Aussagen ist wahr? Die Menge aller Primzahlen ist eine Relation auf IN Relation auf IN ist eine Teilmenge von IN IN.. Lösung: Falsch. Eine Aus m mod 3 = 2 folgt m 2 mod 3. ( 5, 11) R mod 4. 5 = (11 mod 4). 3 = (11 mod 4) mod 4. Aus m n mod s folgt stets m = n mod s. Aus m = n mod s folgt stets m n mod s. Die Gleichheitsrelation von Zahlen ist eine Ordnungsrelation. Die -Relation von Zahlen ist eine Ordnungsrelation. 2

3 Abbildung 1: Zu Aufgabe 17a Abbildung 2: Zu Aufgabe 17a Die >-Relation von Zahlen ist eine Ordnungsrelation. Jede nicht symmetrische Relation ist antisymmetrisch. Jede anti-symmetrische Relation ist nicht symmetrisch. Lösung: Eine Falle!! In der Regel ist die Aussage richtig. Mit einer einzigen Ausnahme: Nur die Gleichheitsrelation, bei der (a, b) R mit a b niemals zutrifft, ist sowohl anti-symmetrisch als auch symmetrisch. Übungsaufgaben: (Abgabe in den Übungen) Aufgabe 17: (a) (3) In den Abbildungen 1 und 2 sehen Sie zwei endliche Teilmengen von IN 0 IN 0. Sie stellen einen Ausschnitt zweier Ihnen sehr bekannter Relationen dar. Welche? Es genügt die Angabe der Relation und ihre Überprüfung an Hand von je drei verschiedenen Punkten der Abbildungen. Lösung: Die Relationen m ist Teiler von n (Beispiele: (1, 0), (1, 3), (3, 3)) und die Relation R 3 (Beispiele (1, 1), (1, 4), (3, 0)). 3

4 Abbildung 3: Aufgabe 17b (b) (3) Erstellen Sie entsprechend eine Abbildung für die Relation (m, n) R : ggt (m, n) = 1. (ggt steht für größter gemeinsamer Teiler.) Hierbei sollen Sie sich auf A := {n IN : n 7} beschränken. Lösung: s. Abb. 3. Beachte, dass diese Relation nicht reflexiv, wohl aber symmetrisch ist dies kann man an der Zeichnung erkennen, da die Diagonale eine Symmetrieachse ist. (c) Die Teilungs-Relation R auf IN, definiert durch (m, n) R : m teilt n ist eine Ordnungsrelation! Zeigen Sie die Transitivität unter ausdrücklichem Verweis auf die Def. 4.3 (Definition von Teiler). Lösung: Zu zeigen: (m, n) R (n, p) R = (m, p) R, in Worten: Aus m teilt n und n teilt p folgt m teilt p. Beweis: Wir müssen auf die Teiler-Definition 4.3 zurückgreifen, d.h. wir müssen aus k IN : n = k m und l IN : p = l n folgern, dass r IN : p = r m. Durch Einsetzen erhalten wir p = l n = l k m, so dass wir nur r := k l setzen brauchen! Aufgabe 18: Sei M eine Menge und P :=Pot M die Potenzmenge von M. (a) (5) Wir führen auf P eine Relation R durch (A, B) R : A B ein. Es geht also um die Enthaltensein-Relation von Mengen. Untersuchen Sie die vier Eigenschaften Reflexivität, Symmetrie, Antisymmetrie und Transitivität. Lösung: Wegen A A für alle A P ist die Relation reflexiv. Sie ist nicht symmetrisch, da sie anti-symmetrisch ist. Denn: Wenn A B, aber auch A B, wenn also A eine echte Teilmenge von B ist, kann B nicht in A enthalten sein, d.h., es gilt (B, A) / R. Die Relation ist transitiv, da für alle Teilmengen A, B und C von M aus A B und B C stets A C folgt. Beweis: Wegen A B (Definition!) folgt aus x A, dass x B. Wegen B C folgt aus x B auch x C. Insgesamt folgt aus x A also x C. Daher (Definition!) gilt A C. 4

5 (b) (5) Wir führen für endliche Mengen M auf P eine Relation R durch (A, B) R : A = B ein. Zeigen Sie, dass es sich um eine Äquivalenzrelation handelt. Geben Sie für M := {1, 2} alle Äquivalenzklassen an. Lösung: Wegen A = A für alle A M gilt die Reflexivität. Da die Gleichheitsrelation für Zahlen eine Äquivalenzrelation ist, gilt auch hier Symmetrie und Transitivität. Jede Äquivalenzklasse besteht aus all den Teilmengen von M, die gleich viel Elemente haben. Ist M = n, so gibt es also n + 1 Äquivalenzklassen. Es gibt für M := {1, 2} drei Äquivalenzklassen. Die eine enthält nur die leere Menge, die zweite alle einelementigen Teilmengen ({1}, {2}), die dritte die Menge M selbst und sonst nichts. Aufgabe 19: Sie wissen, wie man m mod s für m, s IN berechnet (Rest bei Division von m durch s). Die präzise Definition lautet (und kann so auf Z verallgemeinert werden): Es gilt für s IN und m Z: r = m mod s : k Z : m = k s + r r IN 0 mit 0 r < s. Hinweis: Weil r := m mod s ein Rest modulo s ist, wird 0 r < s verlangt. (a) (2) Zeigen Sie (durch Angabe eines k in obiger Definition): 16 mod 5 = 4. Lösung: Setze k := 4: Es ist 16 = ( 4) (b) (2) Sei s := 4. Finden Sie vier verschiedene Paare (m 1, m 2 ) Z Z mit erstens m 1 m 2 mod s und zweitens vier verschiedenen Werten von m 1 mod s. Berechnen Sie zum Vergleich auch jeweils m 2 mod s. Lösung: (0, 4), (1, 5), (2, 6), (3, 7). Die Werte von m 1 mod s sind nacheinander 0, 1, 2, 3. Die Werte von m 2 mod s stimmen mit den Werten von m 1 mod s überein. (c) (4) Zeigen Sie unter Verwendung der obigen Definition des modulo-operators mod, dass gilt: r = m mod s = r m mod s. Hinweis: Per Definition ist r := m mod s IN 0 und 0 r < s. Lösung: Wenn r = m mod s gibt es nach Definbtion des modulo-operators ein k Z mit m = k s + r. Daher ist m r ein Vielfaches von s und daher (nach definition der Kongruenz) ist r m mod s. 5

6 (d) (2) Die Umkehrung (r Z r m mod s = r = m mod s) ist falsch. Geben Sie ein Gegenbeispiel an. Lösung: s := 4, m := 7, r := 11. Dann ist m mod s = 3 r. (e) (Zusatzaufgabe, 3 Punkte) Zeigen Sie allgemein m 1 m 2 mod s m 1 mod s = m 2 mod s. Lösung: m 1 m 2 mod s heißt nach Definition, dass s ein Teiler von m 1 m 2 ist. Nach der Teilerdefinition ist dies gleichwertig damit, dass es ein k Z gibt mit m 1 m 2 = k s. Auf der anderen Seite gibt es k j Z mit m j = k j s + (m j mod s), j = 1, 2. Hieraus folgt m 1 m 2 = (k 1 k 2 )s + ((m 1 mod s) (m 2 mod s)). D.h., dass m 1 m 2 genau dann ein Vielfaches von s ist, wenn m 1 mod n = m 2 mod s. 6

3) Definiere (die Relation!) R IN IN durch (m, n) R : m ist ein Teiler von n. Finden Sie einige Elemente in R.

3) Definiere (die Relation!) R IN IN durch (m, n) R : m ist ein Teiler von n. Finden Sie einige Elemente in R. 21. November 2006 Arbeitsblatt 4 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 14.11.06 Präsenzaufgaben: 1) Ein

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

2 Lösungen zu Kapitel 2

2 Lösungen zu Kapitel 2 2 Lösungen zu Kapitel 2 2. Lösung. Die Funktion f ist nicht injektiv. So gibt es (unendlich) viele Paare (x, y) mit f(x, y) = 0, etwa (0, 0) und (/2, ). Die Funktion f ist surjektiv. Zum Beispiel gilt

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 2018/2019 18.10.2018 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum

Mehr

Relationen und Funktionen

Relationen und Funktionen Vorkurs Mathematik Dr. Regula Krapf Sommersemester 018 Relationen und Funktionen Definition. Seien M und N Mengen. Eine Relation auf M N ist eine Teilmenge R M N. Falls (x,y) R, so schreibt man auch x

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2013/2014 1/61 Anmerkung Änderung im Wintersemester 2013/2014:

Mehr

Relationen. Ein wichtiger Spezialfall ist der, dass die Mengen identisch sind:

Relationen. Ein wichtiger Spezialfall ist der, dass die Mengen identisch sind: Relationen Es seien zwischen und und Mengen. Eine (binäre) Relation ist eine Teilmenge von. Ein wichtiger Spezialfall ist der, dass die Mengen identisch sind: und Eine binäre Relation auf einer Menge ist

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B.

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Mathematik I für Informatiker Relationen auf einer Menge p. 1 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist der,

Mehr

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die

Mehr

Wir notieren den Zusammenhang mit Schnitt und Vereinigung.

Wir notieren den Zusammenhang mit Schnitt und Vereinigung. Die Potenzmenge Elemente einer Menge können auch selbst Mengen sein. (1.20) Definition. Sei M eine Menge. Die Potenzmenge von M, geschrieben Pot M, ist die Menge aller Teilmengen von M. (1.21) Beispiele.

Mehr

Aufgabe 3. Sei A eine Menge von Zahlen und neg das Tripel. neg = (A, A, R) A = N A = Z A = R A = R \ {0} mod : N 0 N N 0

Aufgabe 3. Sei A eine Menge von Zahlen und neg das Tripel. neg = (A, A, R) A = N A = Z A = R A = R \ {0} mod : N 0 N N 0 Funktionen Aufgabe 1. Finden Sie 3 Beispiele von Funktionen und 3 Beispiele von partiellen Funktionen, die nicht total sind. Es sollten auch mehrstellige Funktionen darunter sein. Aufgabe 2. Zeigen Sie,

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen 1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen Einleitung 1 Wie der Name schon sagt sind Äquivalenzrelationen besondere Relationen. Deswegen erkläre ich hier ganz allgemein, was Relationen

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Lösungen der Übungsaufgaben I

Lösungen der Übungsaufgaben I Mathematik für die ersten Semester (2. Auflage): Lösungen der Übungsaufgaben I C. Zerbe, E. Ossner, W. Mückenheim 1.1 Beweisen Sie, dass die folgenden Aussagen stets wahr sind, also zur Ableitung wahrer

Mehr

Es gibt 11 gleichwahrscheinliche Ergebnisse von Augensummen beim Wurf mit zwei

Es gibt 11 gleichwahrscheinliche Ergebnisse von Augensummen beim Wurf mit zwei 16. Januar 2007 Arbeitsblatt 10 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 9.1.07 Präsenzaufgaben: 1. Mit welcher

Mehr

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Von allen, die bis jetzt nach Wahrheit

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

Musterlösung MafI 1 - Blatt 5

Musterlösung MafI 1 - Blatt 5 Musterlösung MafI 1 - Blatt 5 Titus Laska Aufgabe 1 (Relationen). Die drei Relationen R, S, T N N sind jeweils auf Reflexivität, Symmetrie und Antisymmetrie zu untersuchen. Lösung. Erinnerung. Sei R A

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 6

Mehr

Diskrete Mathematik ICE SS Übungsblatt 01

Diskrete Mathematik ICE SS Übungsblatt 01 Diskrete Mathematik ICE SS2019 12.03.2019 Übungsblatt 01 Aufgabe 1. Beweise durch vollständige Induktion die folgende Formel für die Summe: n n(3n 1) (3k 2) =. 2 k=1 ( ) Zusatzaufgabe. Finde die Folge

Mehr

Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:...

Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:... 8. März 2011 Prof. Dr. W. Bley Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) 1 2 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

Grundbegriffe der Informatik Tutorium 14

Grundbegriffe der Informatik Tutorium 14 Grundbegriffe der Informatik Tutorium 14 Tutorium Nr. 16 Philipp Oppermann 11. Februar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik

Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik Ergänzende Übungen Lineare Algebra I Wintersemester 2010/11 Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik 1 Äquivalenz Was bedeutet Äquivalenz? Wie wird der Begriff

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Lösungen zu Kapitel 2 Lösung zu Aufgabe 1: Wir zeigen die Behauptung durch vollständige Induktion über n. Die einzige Menge mit n = 0 Elementen ist die leere Menge. Sie besitzt nur sich selbst als Teilmenge,

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Finden Sie eine Relation R und eine Menge A so dass

Finden Sie eine Relation R und eine Menge A so dass Relationen Aufgabe 1. Überlegen Sie, wie man folgende Relationen R grafisch darstellen könnte und entscheiden Sie, ob die Relationen reflexiv auf A, symmetrisch bzw. transitiv sind. Geben Sie eine kurze

Mehr

Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M.

Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M. 1.5 Relationen Es seien M und N Mengen. Definition Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M. Terminologie und Notation Es sei R M N eine Relation

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1 Mathematik (BG27) 2 3 { Objekt} { Menge } { Element } { } Reihenfolge spielt keine Rolle Unterscheidbarkeit der Objekte (redundanzfrei) 4 Objekt, 58 7,6 Beschreibung 81521 4/2,3/1,4 2 4 315 77 3,23 32

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Kapitel 0: Grundbegriffe Gliederung

Kapitel 0: Grundbegriffe Gliederung Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechenbarkeitstheorie 4. Komplexitätstheorie 5. Kryptographie 0/2, Folie 1 2009 Prof. Steffen Lange - HDa/FbI - Theoretische Informatik

Mehr

n(n + 1)(2n + 1). 6 j 2 = Hinweis: Setze für n IN n(n + 1)(2n + 1) 6 A(n) : und wähle die Bezeichnung s n := n (2j + 1) = n2 (2j + 1) = (n + 1)2

n(n + 1)(2n + 1). 6 j 2 = Hinweis: Setze für n IN n(n + 1)(2n + 1) 6 A(n) : und wähle die Bezeichnung s n := n (2j + 1) = n2 (2j + 1) = (n + 1)2 15. Dezember 2006 Arbeitsblatt 9 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 19.12.06 Präsenzaufgaben: 1. Zu

Mehr

1.5 Restklassen, Äquivalenzrelationen und Isomorphie

1.5 Restklassen, Äquivalenzrelationen und Isomorphie Lineare Algebra I WS 2015/16 c Rudolf Scharlau 39 1.5 Restklassen, Äquivalenzrelationen und Isomorphie In diesem Abschnitt wird zunächst der mathematische Begriff einer Relation kurz und informell eingeführt.

Mehr

Grundlagen und Diskrete Strukturen Wiederholungsaufgaben

Grundlagen und Diskrete Strukturen Wiederholungsaufgaben TU Ilmenau Institut für Mathematik Dr. Jens Schreyer Teil 1: Aussagenlogik Aufgabe 1 Grundlagen und Diskrete Strukturen Wiederholungsaufgaben Stellen Sie die Wahrheitstafel für die aussagelogische Formel

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

6. Boolesche Algebren

6. Boolesche Algebren 6. Boolesche Algebren 6.1 Definitionen Eine Boolesche Algebra ist eine Algebra S,,,, 0, 1,, sind binäre, ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt: 1 und sind assoziativ und kommutativ.

Mehr

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Relationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 2 Hinweise 1. Eine Möglichkeit ist, auf diese Forderungen massgeschneiderte Relationen explizit anzugeben. Dies ist aber nicht

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 Ähnlich wie Funktionen besitzen Relationen charakteristische Eigenschaften. Diese Eigenschaften definieren wie

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018

1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018 1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018 1. Gegeben seien die nichtleeren Mengen X und Y, nichtleere Teilmengen A 1,A 2 von X, nichtleere Teilmengen B 1,B 2 von Y, und eine Funktion f : X

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Durch welches 3-Tupel wird die Umkehrfunktion von p = (2, 3, 1) dargestellt?

Durch welches 3-Tupel wird die Umkehrfunktion von p = (2, 3, 1) dargestellt? 23. Januar 2007 Arbeitsblatt 11 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 16.1.07 Präsenzaufgaben: 1. Bekanntlich

Mehr

= =

= = 9. Januar 2007 Arbeitsblatt 9 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 19.12.06 Präsenzaufgaben: 1. Zu Beginn

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

Relationen (Teschl/Teschl 5.1)

Relationen (Teschl/Teschl 5.1) Relationen (Teschl/Teschl 5.1) Eine (binäre) Relation zwischen den Mengen M und N ist eine Teilmenge R der Produktmenge M N. Beispiele M Menge aller Studierenden, N Menge aller Vorlesungen, R : {(x, y)

Mehr

2.2 der Größenbegriff

2.2 der Größenbegriff (mit Äquivalenzrelationen) Maximilian Geier Institut für Mathematik, Landau Universität Koblenz-Landau Zu Größen gelangt man ausgehend von realen Gegenständen durch einen Abstraktionsvorgang. Man geht

Mehr

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3.

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3. 3. Relationen 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen 3. Relationen GM 3-1 Wozu Relationen? Mathematik Theoretische Informatik Kryptographie

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/77 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 1 Mengen 2 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen Mehrstellige Relationen 3 Abbildungen 4

Mehr

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Auf Z definieren wir eine Relation durch x, y Z : (x y : x y ist gerade) a) Zeigen Sie, dass

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128 Aufgabe 1 Wir betrachten die beiden Zahlen a = 57 101 3 und b = 3 57 79 101 (4+2+4=10 Punkte) ( Es gilt: 3, 57, 79, 101 P ) Hier liegt ein Fehler in der Aufgabenstellung vor, denn wegen 57 = 3 19 ist 57

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Übungen zur Diskreten Mathematik I

Übungen zur Diskreten Mathematik I 1 Aufgabe 1 Überprüfen Sie, ob die folgenden Aussagen Tautologien sind (i) (A B) (( A) ( B)), (ii) (A B) (( A) ( B)), (iii) ((A B) C) ((A C) (B C)), (iv) ((A B) C) ((A C) (B C)), (v) (A = B) (( A) B)),

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Diskrete Mathematik I

Diskrete Mathematik I Diskrete Mathematik I Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 08/09 DiMa I - Vorlesung 01-13.10.2008 Mengen, Relationen, Funktionen, Indirekter Beweis 1 / 59 Organisatorisches

Mehr

7 Äquivalenzrelationen

7 Äquivalenzrelationen 71 7 Äquivalenzrelationen 7.1 Äquivalenzrelationen und Klassen Definition Eine Relation R auf einer Menge oder einem allgemeineren Objektbereich heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch

Mehr