Numerische Methoden und Algorithmen in der Physik

Größe: px
Ab Seite anzeigen:

Download "Numerische Methoden und Algorithmen in der Physik"

Transkript

1 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47

2 Methode der kleinsten Quadrate Likelihood Methode χ 2 -Wahrscheinlichkeitsverteilung χ 2 -Test Numerische Methoden und Algorithmen in der Physik Christian Autermann 2/ 47

3 Übersicht Methode der kleinsten Quadrate Literaturliste Methode der kleinsten Quadrate Beispiel Varianz Likelihood Methode χ 2 -Wahrscheinlichkeitsverteilung χ 2 -Test Numerische Methoden und Algorithmen in der Physik Christian Autermann 3/ 47

4 Informationen Material: Stroustrup: The C++ Programming Language, 3rd edition cpp/ B. Stroustrup: C++ In-depth Series A. Koenig, B. E. Moo: Accelerated C++ Press et al: Numerical Recipes, 3rd edition T. H. Cormen et al: Introductions to Algorithms, 2nd edition V. Blobel, E. Lohrmann: Statistische und numerische Methoden der Datenanalyse Numerische Methoden und Algorithmen in der Physik Christian Autermann 4/ 47

5 Parameteranpassung Übersicht In der Physik muss oft eine Theorie die durch einen Satz von Parametern beschrieben werden kann, an eine Menge von Messwerten angepasst werden. Im Physikerjargon nennt man dies Fit. In dieser Vorlesung sollen Fit-Methoden und ihre Eigenschaften eingeführt werden. Danke an C. Sander für Vorlesungsmaterial! Numerische Methoden und Algorithmen in der Physik Christian Autermann 5/ 47

6 Problemstellung Methode der kleinsten Quadrate Gegeben seien N + 1 Messpunkte (x 0, y 0 )... (x N, y N ) Diese Messpunkte sollen einer Funktion y = f (x) gehorchen, wobei die Funktion (also das Modell ) durch m + 1 Parameter a 0... a M beschrieben ist. Beispiel: y = a 0 x Numerische Methoden und Algorithmen in der Physik Christian Autermann 6/ 47

7 Parameteranpassung Das Problem kann mit unterschiedlichen Voraussetzungen auftreten: Die gesuchte Funktion hängt linear oder nicht-linear von den freien Parametern des Modells ab Die gesuchte Funktion lässt sich als Polynom m-ter Ordnung schreiben Die y-werte (und x-werte) der Messpunkte sind mit unterschiedlich großen Fehlern behaftet oder besitzen ein unterschiedlich großes Gewicht. Numerische Methoden und Algorithmen in der Physik Christian Autermann 7/ 47

8 Parameteranpassung Lineare Abhängigkeit von Parametern: f (x) = a 0 f 0 (x) + a 1 f 1 (x) a m f m (x) (1) Spezialfall: f (x) lässt sich durch Polynomzerlegung darstellen f 0 (x) = 1 f 1 (x) = x f 2 (x) = x 2. f m (x) = x m Parameteranpassung Bestimmung der Koeffizienten a i durch die Methode der kleinsten Quadrate Numerische Methoden und Algorithmen in der Physik Christian Autermann 8/ 47

9 Methode der kleinsten Quadrate (χ 2 -Fit) Ansatz: Die optimalen Parameter a i sind solche, für welche die Summe der quadratischen Abweichung zu den Messwerten y i minimal ist: Q = NX (f (x i ) y i ) 2 = i=0 NX i=0 r 2 i (2) Bei linearer Abhängigkeit gilt mit Gleichung (1): Q = NX i=0! 2 mx a k f k (x i ) y i (3) k=0 Im Minimum von Q verschwinden die partiellen Ableitungen nach den freien Parametern: Q = 0 (4) a i â Minimierungsproblem! Numerische Methoden und Algorithmen in der Physik Christian Autermann 9/ 47

10 Methode der kleinsten Quadrate (χ 2 -Fit) Q a i = 2 N j=0 (f (x j ) y j ) f (x j) a i = 0 (5) In der expliziten Darstellung von f (x) nach Gl. (1): f (x j ) f i (x j ) (6) a i ( Q N m ) = 2 a k f k (x j ) y j f i (x j ) = 0 (7) a i j=0 k=0 wobei j = 0..m. Diese insgesamt m + 1 Gleichungen können als Matrixgleichung geschrieben werden. Numerische Methoden und Algorithmen in der Physik Christian Autermann 10/ 47

11 Methode der kleinsten Quadrate (χ 2 -Fit) Normalengleichung 0 Pi f 0(x i ) 2 P i f 0(x i ) f 1 (x i )... P i f P 1(x i ) f 0 (x i ) i f 1(x i ) P i fm(x i ) f 0 (x i ) P i fm(x i ) f 1 (x i )... P i f 0(x i ) f m(x i ) P i f 1(x i ) f m(x i ) Pi fm(x i ) a 0 a 1 C B a m 1 0 C A = P i f 0(x i ) y i P i f 1(x i ) y i P. i fm(x i ) y i 1 C A Diese Normalengleichung der Form C a = b kann durch Invertierung der Matrix C gelöst werden: a = C 1 b (8) Numerische Methoden und Algorithmen in der Physik Christian Autermann 11/ 47

12 Methode der kleinsten Quadrate (χ 2 -Fit) Spezialfall: Fit mit Polynomdarstellung Es sei f (x) = P m (x) = a 0 + a 1 x 1 + a 2 x a m x m also f k (x) = x k für k = 0... m. Damit nimmt die Matrixgleichung folgende Form an: 0 Pi (x0 i )2 Pi (x0 i xi 1 )... P i (x0 i xi m ) Pi (x1 i xi 0 ) P P i (x1 i )2... i (x1 i xi m ) Pi (xm i xi 0 ) Pi (xm i xi 1 )... Pi (xm i ) a 0 a 1 C B a m 1 0 C A = P P i x0 i y i i x1 i y i. P i xm i y i 1 C A Durch Kürzen lässt sich diese Gleichung noch weiter vereinfachen. Numerische Methoden und Algorithmen in der Physik Christian Autermann 12/ 47

13 Fehlerbehaftete Messpunkte Seien jetzt die einzelnen y i statistisch unabhängige Daten mit dem jeweiligen Fehler σ i : Die Beiträge in der Summe der kleinsten Quadrate müssen jetzt entsprechend der Fehler gewichtet werden, also Q = N (f (x i ) y i ) 2 Q = i=0 N (f (x i ) y i ) 2 σ 2 (9) i=0 Numerische Methoden und Algorithmen in der Physik Christian Autermann 13/ 47

14 Beispiel für eine Messung mit 11 Messpunkten Alle Datenpunkte haben individuelle Fehler Numerische Methoden und Algorithmen in der Physik Christian Autermann 14/ 47

15 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 0 Numerische Methoden und Algorithmen in der Physik Christian Autermann 15/ 47

16 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 1 Numerische Methoden und Algorithmen in der Physik Christian Autermann 16/ 47

17 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 2 Numerische Methoden und Algorithmen in der Physik Christian Autermann 17/ 47

18 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 3 Numerische Methoden und Algorithmen in der Physik Christian Autermann 18/ 47

19 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 4 Numerische Methoden und Algorithmen in der Physik Christian Autermann 19/ 47

20 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 5 Numerische Methoden und Algorithmen in der Physik Christian Autermann 20/ 47

21 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 6 Numerische Methoden und Algorithmen in der Physik Christian Autermann 21/ 47

22 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 7 Numerische Methoden und Algorithmen in der Physik Christian Autermann 22/ 47

23 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 8 Numerische Methoden und Algorithmen in der Physik Christian Autermann 23/ 47

24 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 9 Numerische Methoden und Algorithmen in der Physik Christian Autermann 24/ 47

25 Beispiel für eine Messung mit 11 Messpunkten Fit für m = 10 (identisch mit Interpolationspolynom) Numerische Methoden und Algorithmen in der Physik Christian Autermann 25/ 47

26 Varianz der Parameter Bestimmung der Varianzen σ k der Parameter a k durch Fehlerfortpflanzung σ 2 k = NX ak i=0 y i «2 σ 2 i (10) Aus der Bestimmungsgleichung des Lösungsvektors a = C 1 b und der Definition von C und b lässt sich zeigen, dass Die Matrix C 1 wird auch Kovarianzmatrix genannt. Allgemein gilt: σ 2 k = C 1 kk (11) Korrelation(x i x j ) = Kovarianz(x i x j ) p Varianz(xi ) pvarianz(x j ) (12) Numerische Methoden und Algorithmen in der Physik Christian Autermann 26/ 47

27 Übersicht Methode der kleinsten Quadrate Likelihood Methode Definition Beispiel Gaußischer Spezialfall χ 2 -Wahrscheinlichkeitsverteilung χ 2 -Test Numerische Methoden und Algorithmen in der Physik Christian Autermann 27/ 47

28 Maximum Likelihood Methode Die den Messwerten x 1... x n zugrunde liegende und a-priori bekannte Wahrscheinlichkeitsdichte sei f (x a), wobei a für einen oder mehrere unbekannte Parameter steht, von dem die Wahrscheinlichkeitsdichte abhängt. Aus dieser ein- oder mehrdimensionalen Wahrscheinlichkeitsdichte wird die Likelihood-Funktion L(a) definiert: L(a) = f (x 1 a) f (x 2 a)... f (x n a) = Der beste Wert für die Parameter a ist definiert durch ny f (x i a) (13) i=1 L(â) = Maximum (14) In der Praxis arbeitet man oft mit dem negativen Logarithmus der Likelihood-Funktion l(a), man sagt Log-Likelihood-Funktion. l(a) = 2 ln L(a) (15) l(â) = Minimum (16) Numerische Methoden und Algorithmen in der Physik Christian Autermann 28/ 47

29 Beispiel: Zerfallswinkelverteilung eines Elementarteilchens Die Zerfallswinkelverteilung eines bestimmten Teilchens sei durch folgende Wahrscheinlichkeitsdichtefunktion gegeben: f (x a) = 1 (1 + a cos θ) (17) 2 Die Funktion ist für alle mögliche Werte für a auf 1 normiert, so dass sich für die negative Log-Likelihood-Funktion ergibt: F (a) = 2 nx ln 1 2 (1 + a cos θ i) (18) i=1 Numerische Methoden und Algorithmen in der Physik Christian Autermann 29/ 47

30 Beispiel: Gaußische Wahrscheinlichkeitsdichtefunktion Für eine Gauß-Wahrscheinlichkeitsdichte geht die Likelihood-Methode in die Methode der kleinsten Quadrate über. f (x i a) = 1 2 e (x i a) 2 2σ i 2 (19) 2πσ i Die negative Log-Likelihood-Funktion wird damit zu (Vergleich mit Gl. (9)): F (a) = konst + 2 nx i=1 (x i a) 2 2σ 2 i Für den Fehler der besten Schätzung des Mittelwertes â gilt: σ(â) = d 2 F da 2 (20) 12 â«(21) In diesem Beispiel ist σ(â) = ( P 1/σ 2 i ) 1 2. Sind alle Gewichte gleich σi = σ gilt: σ(â) = σ n (22) Numerische Methoden und Algorithmen in der Physik Christian Autermann 30/ 47

31 Übersicht Methode der kleinsten Quadrate Likelihood Methode χ 2 -Wahrscheinlichkeitsverteilung Übersicht Exponentialverteilung χ 2 -Verteilung χ 2 -Test Numerische Methoden und Algorithmen in der Physik Christian Autermann 31/ 47

32 Wahrscheinlichkeitsverteilungen Diskrete Wahrscheinlichkeitsverteilungen (Abzählbar) Binomialverteilung ( letzte Vorlesung) Poisson-Verteilung ( letzte Vorlesung) Kontinuierliche Wahrscheinlichkeitsverteilungen Gleichverteilung ( letzte Vorlesung) Gauß- oder Normalverteilung ( letzte Vorlesung) Exponentialverteilung χ 2 -Verteilung Numerische Methoden und Algorithmen in der Physik Christian Autermann 32/ 47

33 Exponentialverteilung Beispiel: Zeitabstände zwischen zwei Kernzerfällen j λ e λ x für 0 x inf f (x, λ) = 0 sonst (23) Mittelwert: µ = 1 λ Varianz: σ 2 = 1 λ 2 Numerische Methoden und Algorithmen in der Physik Christian Autermann 33/ 47

34 χ 2 -Verteilung Seien x 1... x n unabhängige Zufallsvariablen, die der standardisierten Gauß-Verteilung (µ = 0 und σ = 1) genügen, so folgt die Summe der Quadrate u = χ 2 = i (x i ) 2 (24) einer χ 2 -Verteilung mit k Freiheitsgraden: f k (u) = mit Γ(x) = 1 2 ( u 2 ) n 2 1 e u 2 Γ( k 2 ) (25) inf 0 e t t x 1 dt für x > 0 (26) Die x i können mehrere gleiche Messungen sein, oder z.b. Messpunkte auf einer Kurve Numerische Methoden und Algorithmen in der Physik Christian Autermann 34/ 47

35 Mittelwert u = χ 2 = k Varianz σ 2 = 2n χ 2 -Verteilung Die Wahrscheinlichkeit, in einer Stichprobe x 1... x n ein χ 2 zu finden das kleiner ist als x: F k (x) = x 0 f k (t)dt (27) Numerische Methoden und Algorithmen in der Physik Christian Autermann 35/ 47

36 Übersicht Methode der kleinsten Quadrate Likelihood Methode χ 2 -Wahrscheinlichkeitsverteilung χ 2 -Test Prüfung von Hypothesen mit dem χ 2 Test 1. Beispiel für χ 2 -Test 2. Beispiel für χ 2 -Test Interpretation des χ 2 -Test Numerische Methoden und Algorithmen in der Physik Christian Autermann 36/ 47

37 Prüfung von Hypothesen Interpretation von Daten Häufige Aufgabenstellung (nicht nur) in der Physik: Interpretation von Messdaten im Rahmen eines Modells Dazu gehöhren: Aufstellung einer Hypothese (Das Modell) Bestimmung der Parameter des Modells Überprüfung der Hypothese anhand der Messdaten Ziel: Die Übereinstimmung von Messdaten und Modell zu quantifizieren Methoden: χ 2 -Test, Studentscher t-test, Kolmogorov-Smirnov-Test,... Numerische Methoden und Algorithmen in der Physik Christian Autermann 37/ 47

38 χ 2 -Test Seien x 1... x n Messpunkte unabhängiger gaußverteilter Variablen, mit den Varianzen σ i und den Erwartungswerten E i, so folgt die Summe der Quadrate einer χ 2 -Verteilung mit n Freiheitsgraden: n u = χ 2 (x i E i ) 2 i=1 σ 2 i (28) Im Falle korrelierter Zufallsvariablen muss das χ 2 über die Kovarianzmatrix V definiert werden: u = χ 2 = n n i=1 j=1 (x i E 1 ) V 1 ij (x j E j ) (29) Sind die Erwartungswerte E i durch ein zugrunde liegendes Modell vorgegeben und nicht durch die Daten selbst bestimmt, so ist die Zahl der Freiheitsgrade gleich der Zahl der Messpunkte n. Numerische Methoden und Algorithmen in der Physik Christian Autermann 38/ 47

39 χ 2 -Test Für den Mittelwert der χ 2 -Verteilung gilt: χ 2 = n (30) Für den Mittelwert pro Freiheitsgrade n (oder degrees of freedom d.o.f. ) gilt demnach: χ 2 Daraus folgt: n = 1 (31) Falls die Hypothese (das Modell) zutrift, so sollte man im Mittel (etwa nach häufigen Wiederholen der Messreihe) χ 2 /d.o.f. = 1 finden. Die Güte der Hypothese lässt sich durch die integrierte χ 2 -Verteilung quantifizieren Numerische Methoden und Algorithmen in der Physik Christian Autermann 39/ 47

40 Zahl der Freiheitsgrade Bei einem vorgegebenen bestimmten Modell ist die Zahl der Freiheitsgrade d.o.f. gleich der Zahl der Messpunkte. Sollen ein einem χ 2 -Fit m freie Parameter a m des Modells bestimmt werden, so gilt: χ 2 a i 0 (32) Jede dieser m Bedingungen reduziert den statistischen Variationsspielraum der Messwerte gegenüber der Vorhersage des Modells und verringert die Zahl der Freiheitsgrade: d.o.f. = n m (33) Zur Überprüfung der Analyse benutzt man χ 2 min /d.o.f.. Numerische Methoden und Algorithmen in der Physik Christian Autermann 40/ 47

41 Beispiel für χ 2 Test Polynom 1. Ordnung, (11 Datenpunkte): d.o.f. = 9 χ 2 = 75.4/9 = 8.37 d.o.f. Wahrscheinlichkeit dieses χ 2 (oder ein noch größeres) zu finden: P = 1 F 9 (75.4) = Numerische Methoden und Algorithmen in der Physik Christian Autermann 41/ 47

42 Beispiel für χ 2 Test Polynom 3. Ordnung, (11 Datenpunkte): d.o.f. = 7 χ 2 = 19.4/7 = 2.78 d.o.f. Wahrscheinlichkeit dieses χ 2 (oder ein noch größeres) zu finden: P = 1 F 7 (19.4) = Numerische Methoden und Algorithmen in der Physik Christian Autermann 42/ 47

43 Beispiel für χ 2 Test Polynom 4. Ordnung, (11 Datenpunkte): d.o.f. = 6 χ 2 = 5.22/6 = 0.87 d.o.f. Wahrscheinlichkeit dieses χ 2 (oder ein noch größeres) zu finden: P = 1 F 6 (5.22) = 0.52 Numerische Methoden und Algorithmen in der Physik Christian Autermann 43/ 47

44 Gleiche Daten, größere Fehler Polynom 4. Ordnung, (11 Datenpunkte): d.o.f. = 6 χ 2 = 0.60/6 = 0.10 d.o.f. Wahrscheinlichkeit dieses χ 2 (oder ein noch größeres) zu finden: P = 1 F 6 (0.6) = Numerische Methoden und Algorithmen in der Physik Christian Autermann 44/ 47

45 Interpretation des χ 2 Wertes χ 2 /d.o.f. 1 Dies ist ein Zeichen dafür, dass die Hypothese (das Modell) falsch ist, oder die Fehler der Messung unterschätzt wurden, oder der Datensatz inkonsistent ist. χ 2 /d.o.f. 1 Dies unterstützt die Hypothese χ 2 /d.o.f. 1 Ist meist ein Zeichen dafür, dass die Fehler überschätzt wurden Numerische Methoden und Algorithmen in der Physik Christian Autermann 45/ 47

46 Interpretation des χ 2 Wertes χ 2 /d.o.f. 1 Kritische Betrachtung der Messwerte und des Modells ist trotzdem wichtig! Polynom 0. Ordnung, (11 Datenpunkte): d.o.f. = 10 χ 2 = 11.4/10 = 1.14 d.o.f. Wahrscheinlichkeit dieses χ 2 (oder ein noch größeres) zu finden: P = 1 F 10(11.4) = 0.32 Bei falscher Hypothese und überschätzten Fehlern kann man trotzdem ein gutes χ 2 /d.o.f. erhalten. Numerische Methoden und Algorithmen in der Physik Christian Autermann 46/ 47

47 Parameteranpassung Was vernachlässigt wurde Systematische, also unter den Messwerten korrelierte, Fehler Nicht-normalverteilte Zufallsvariablen Viele andere moderne statistische Analysemethoden Limitberechnung... Numerische Methoden und Algorithmen in der Physik Christian Autermann 47/ 47

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) 0 KIT 06.01.2012 Universität des Fabian Landes Hoffmann Baden-Württemberg und nationales Forschungszentrum

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 8. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Mai 2011 3. Schätzung von Parametern Problemstellung: Aus fehlerbehafteten Messungen möglichst genaue Ergebnisse erarbeiten zusammen mit Aussagen

Mehr

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1)

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1) Kapitel 4 Stichproben und Schätzungen 4.1 Stichproben, Verteilungen und Schätzwerte Eine physikalische Messung ist eine endliche Stichprobe aus einer Grundgesamtheit, die endlich oder unendlich sein kann.

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse PHY31 Herbstsemester 016 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Parameteranpassung mit kleinsten Quadraten und Maximum Likelihood

Parameteranpassung mit kleinsten Quadraten und Maximum Likelihood Parameteranpassung mit kleinsten Quadraten und Maximum Likelihood Armin Burgmeier 27. November 2009 1 Schätzwerte 1.1 Einführung Physikalische Messungen sind immer fehlerbehaftet. Man misst niemals den

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr

Computergestützte Datenanalyse in der Kern- und Teilchenphysik

Computergestützte Datenanalyse in der Kern- und Teilchenphysik Computergestützte Datenanalysein der Kern- und Teilchenphysik p. 1/?? Computergestützte Datenanalyse in der Kern- und Teilchenphysik Vorlesung 4 Jan Friedrich Computergestützte Datenanalysein der Kern-

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Schätzung von Parametern

Schätzung von Parametern Schätzung von Parametern Schätzung von Parametern Quantitative Wissenschaft: Messung von Parametern Gemessene Werte weichen durch (statistische und systematische) Messfehler vom wahren Wert des Parameters

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY23) Herbstsemester 207 Olaf Steinkamp 36-J-05 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Rechnernutzung in der Physik

Rechnernutzung in der Physik Rechnernutzung in der Physik Teil 3 Statistische Methoden in der Datenanalyse Roger Wolf 15. Dezember 215 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University of the State of

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Statistik und Datenanalyse (Handout zum Seminarvortrag von Norman Bhatti, gehalten am )

Statistik und Datenanalyse (Handout zum Seminarvortrag von Norman Bhatti, gehalten am ) Statistik und Datenanalyse (Handout zum Seminarvortrag von Norman Bhatti, gehalten am 9.0.) Motivation Unter Statistik versteht man die Lehre von den Methoden zum Umgang mit quantitativen Informationen,

Mehr

Verteilungen mehrerer Variablen

Verteilungen mehrerer Variablen Kapitel 3 Verteilungen mehrerer Variablen 3. Eigenschaften von Verteilungen mehrerer Variablen Im allgemeinen muss man Wahrscheinlichkeiten für mehrere Variable, die häufig auch voneinander abhängen, gleichzeitig

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp PHY3 Herbstsemester 04 Olaf Steinkamp Physik-Institut der Universität Zürich Winterthurerstrasse 90 CH-8057 Zürich olafs@physik.uzh.ch Büro: 36-J- Tel.: 044-635.57.63 Vorlesungsprogramm Einführung, Messunsicherheiten,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Moderne Methoden der Datenverarbeitung in der Physik I

Moderne Methoden der Datenverarbeitung in der Physik I Moderne Methoden der Datenverarbeitung in der Physik I Prof. Dr. Stefan Schael / Dr. Thomas Kirn I. Physikalisches Institut MAPLE II, Krypthographie Wahrscheinlichkeit Zufallszahlen, Wahrscheinlichkeitsdichten,

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Statistische Methoden der Datenanalyse Vorlesung im Sommersemester 2008 H. Kolanoski Humboldt-Universität zu Berlin Inhaltsverzeichnis Literaturverzeichnis iii 1 Grundlagen der Statistik 3 1.1 Wahrscheinlichkeit............................

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Spezielle Verteilungen

Spezielle Verteilungen Spezielle Verteilungen Prof. Sabine Attinger Jun. Prof. Anke Hildebrandt Beschreibende Statistik Lagemaße: 1. Mittelwert: µ = x = 1 n n i= 1 x i 3. Median=0.5 Perzentil Beschreibende Statistik Streumaße:

Mehr

Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen

Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen Vorwort zur fünften Auflage Liste der Beispiele Häufig benutzte Symbole und Bezeichnungen v xiv xvii 1 Einleitung 1 1.1 Typische Aufgaben der Datenanalyse 1 1.2 Zum Aufbau dieses Buches 2 1.3 Zu den Programmen

Mehr

I. Zahlen, Rechenregeln & Kombinatorik

I. Zahlen, Rechenregeln & Kombinatorik XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen 2013-11-13 Statistik - Fehlerrechnung - Auswertung von Messungen TEIL I Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Literatur Eindimensionaler Fall: Grundbegriffe Wahrscheinlichkeitsverteilungen:

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Vorlesung: Computergestützte Datenauswertung Einige (wichtige) Verteilungen

Vorlesung: Computergestützte Datenauswertung Einige (wichtige) Verteilungen Vorlesung: Computergestützte Datenauswertung Einige (wichtige) Verteilungen Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Inhaltsverzeichnis. Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen

Inhaltsverzeichnis. Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen Vorwort zur fünften Auflage Liste der Beispiele Häufig benutzte Symbole und Bezeichnungen v xiv xvii 1 Einleitung 1 Typische Aufgaben der Datenanalyse 1 1.2 Zum Aufbau dieses Buches 2 Zu den Programmen

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Vorlesung Stetige Verteilungen / Mathematische Behandlung

Vorlesung Stetige Verteilungen / Mathematische Behandlung B E A C D Z Faultät Verehrswissenschaften Friedrich List Professur für Verehrsströmungslehre Verehrssystemtheorie I+II (V.-Wirtschaft) Vorlesung..0 Stetige Verteilungen / Mathematische Behandlung Neufert,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Mehrdimensionale Verteilungen und Korrelation

Mehrdimensionale Verteilungen und Korrelation Vorlesung: Computergestützte Datenauswertung Mehrdimensionale Verteilungen und Korrelation Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in

Mehr

Datenanalyse für Naturwissenschaftler und Ingenieure

Datenanalyse für Naturwissenschaftler und Ingenieure Siegmund Brandt Datenanalyse für Naturwissenschaftler und Ingenieure Mit statistischen Methoden und Java-Programmen 5. Auflage 4y Springer Spektrum Inhaltsverzeichnis Vorwort zur fünften Auflage Liste

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 11.12.2008 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Einführung Verfahren für

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Mathematische und statistische Hilfsmittel für Pharmazeuten

Mathematische und statistische Hilfsmittel für Pharmazeuten Mathematische und statistische Hilfsmittel für Pharmazeuten Dr. Helga Lohöfer Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Fassung vom September 2003 Inhaltsverzeichnis I Elementare

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Statistische Methoden der Datenanalyse Vorlesung im Sommersemester 2002 H. Kolanoski Humboldt-Universität zu Berlin Inhaltsverzeichnis Literaturverzeichnis iii 1 Grundlagen der Statistik 3 1.1 Wahrscheinlichkeit..................................

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Statistische Datenanalyse

Statistische Datenanalyse Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise

Mehr

Statistik in Geodäsie, Geoinformation und Bauwesen

Statistik in Geodäsie, Geoinformation und Bauwesen Wilhelm Benning Statistik in Geodäsie, Geoinformation und Bauwesen 2., überarbeitete und erweiterte Auflage Herbert Wichmann Verlag Heidelberg Matrix-Theorie 1 1.1 Matrizen und Vektoren 1 1.2 Matrixverknüpfungen

Mehr

Modellierung von Unsicherheit in Systemen

Modellierung von Unsicherheit in Systemen Modellierung von Unsicherheit in Systemen Motivation Systeme Zeitdiskrete, lineare und nicht-lineare Systeme, Beispiele Wahrscheinlichkeiten Zufallsvariablen, Wahrscheinlichkeitsdichten, mehrdimensionale

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Kapitel VI - Maximum-Likelihood-Schätzfunktionen

Kapitel VI - Maximum-Likelihood-Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VI - Maximum-Likelihood-Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Inferenzstatistik in Regressionsmodellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Statistische Inferenz

Statistische Inferenz Statistische Inferenz Prinzip der statistischen Inferenz Datensätze = Stichproben aus einer Gesamtpopulation (meistens) Beispiel : Messung der Körpertemperatur von 106 gesunden Individuen man vermutet,

Mehr

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Interaktionseffekte Varianz-Kovarianz-Matrix Interaktionseffekte Varianz-Kovarianz-Matrix

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele Woche 5: Deskriptive Statistik Teil VII Patric Müller Deskriptive Statistik ETHZ WBL 17/19, 22.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Zuverlässigkeitstheorie

Zuverlässigkeitstheorie 3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli

Mehr

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung 5 Konfidenzschätzung 5. Einige Grundbegriffe zur Konfidenzschätzung Diesem Kapitel liegt das parametrische Modell {X, B X, P } mit P {P Θ} zugrunde. {Θ, B Θ } sei ein Meßraum über Θ und µ ein σ-finites

Mehr