FEM isoparametrisches Konzept

Größe: px
Ab Seite anzeigen:

Download "FEM isoparametrisches Konzept"

Transkript

1 FEM isoparametrisches Konzept home/lehre/vl-mhs--e/deckblatt.tex. p./

2 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente. Finite-Element-Typen. Geometrie. Interpolations-Ansatzfunktion 5. Kartesische-natürliche Koordinaten. Lagrange sche und Hermite sche Elementfamilie home/lehre/vl-mhs--e/inhaltsverzeichnis.tex. p./

3 Interpolationsfunktion für die finiten Elemente Bei der Methode der finiten Elemente gilt folgendes: Die globale Funktion einer gesuchten Funktion besteht aus einer Summe von lokalen Funktionen: EX Z dg e e= G e N e i GALERKIN Verfahren: Interpolationsfunktion entspricht der Gewichtsfunktion RITZ Verfahren: globales Variationsprinzip wird aus der Summe der lokalen Variationsprinzipien konstruiert. home/lehre/vl-mhs--e/interpolationsfunktion.tex. p./

4 Interpolationsfunktion für die finiten Elemente Kritischer Schritt bei der FEM: Wahl geeigneter Interpolationsfunktionen Interpolationsfunktionen werden gebildet durch die Form der finiten Elemente, die Approximationsordnung. Finite Elemente hängen ab von der Geometrie des globalen Gebietes, der gewünschten Genauigkeit des Gebietes, der einfachen Integration über das Gebiet. home/lehre/vl-mhs--e/interpolationsfunktion.tex. p./

5 Finite Element Typen Um spezielle physikalische Probleme formulieren zu können, sind oft mehrere Elementtypen erforderlich. Sie werden unterschieden nach der Geometrie (-D, -D oder -D), Wahl der Interpolationsfunktion (Polynome; LAGRANGE sche oder HERMITE sche Polynome), Wahl der Elementkoordinaten (Kartesische oder natürliche Koordinaten), Wahl der an den Knoten spezifizierten Variablen (LAGRANGE sche Gruppe oder HERMITE sche Gruppe von Variablen). home/lehre/vl-mhs--e/fe Typen.tex. p.5/

6 Geometrie b) Quadratische Elemente mit gekrümmten Seitenkanten a) Quadratische Elemente mit geraden Seitenkanten c) Kubische Elemente home/lehre/vl-mhs--e/geometrie.tex. p./

7 Interpolations Ansatzfunktion Polynome: Beispiel: Eindimensionale Elementapproximation u = a 0 + a x + a x + a x +... oder u = a 0 + a i x i mit i = lineare Veränderliche i = quadratische Veränderliche i = kubische Veränderliche -D-Element mit zwei Knoten Für zwei Knoten benötigen wir eine lineare Veränderlichkeit. home/lehre/vl-mhs--e/ansatzfunktion.tex. p./

8 Interpolations Ansatzfunktion Alternative Methode: r = x l ξ = ξ=0 ξ= u = a 0 + a r für lineares Element Für jeden Knoten aufgestellt und die Konstanten ermittelt folgt ũ = N û + N û = N j û j mit j =, und den Interpolationsfunktionen N = ( r) ( home/lehre/vl-mhs--e/ansatzfunktion.tex N = ( + r) ( = a 0 a 0 = a 0 + a 0 = a 0 a = a 0 + a.. p.8/

9 Interpolations Ansatzfunktion x Bei einer quadratischen Approximation wird ein -Knoten -D-Element benötigt. Achtung: Wenn für die Ableitung der Interpolationsfunktionen dimensionslose Koordinaten benutzt werden, spricht man von einem natürlichen Koordinatensystem und natürlichen Koordinaten. LAGRANGE SCHE ELEMENTE: LAGRANGE SCHE ELEMENTE werden benötigt, um die Inversion der Koeffizientenmatrix für die Approximation höherer Ordnung zu vermeiden (siehe Chung). HERMITE SCHE ELEMENTE: Wichtig in der Statik: Die Stetigkeit der Ableitung einer Funktion an den Knoten wird mit Hilfe der HERMITE schen Polynome gesichert. home/lehre/vl-mhs--e/ansatzfunktion.tex. p.9/

10 Interpolations Ansatzfunktion l -Knoten -D, kubischer Ansatz ũ(ξ) = H 0 j (ξ)û j + H j (ξ) «û ξ ũ(ξ) = N r w r r =,,, j =,.0 0 H H H x -0. H home/lehre/vl-mhs--e/ansatzfunktion.tex. p.0/

11 Interpolations Ansatzfunktion w = ũ N = H 0 = ξ + ξ w = ũ N = H 0 = ξ ξ w = ũ N = H = ξ ξ + ξ w = ũ N = H = ξ ξ w = M entspricht also einem HERMITE schen Polynom fünften Grades! EI (M ˆ= Biegemoment) home/lehre/vl-mhs--e/ansatzfunktion5.tex. p./

12 Kartesische natürliche Koordinaten Isoparametrische Elemente Definition: Es wird die gleiche parametrische Funktion, die die Geometrie beschreibt, für die Interpolation der Variablen (Verschiebung, Wasserstand etc.) innerhalb eines Elementes benutzt. Beispiel: Ermittlung der Elementmatrix für ein -Knoten -D-Element (siehe Wollrath). Einführung eines lokalen Koordinatensystems, da im lokalen Koordinatensystem die Basisfunktionen für jedes Element gleich sind. Zum Beispiel N : s r N = ` = ( + r)( + s) Analog: N = ( r)( + s) N = ( r)( s) N = ( + r)( s) home/lehre/vl-mhs--e/koordinaten.tex. p./

13 Kartesische natürliche Koordinaten Weitere Beispiele für Interpolationsfunktionen: y. Interpolationsfunktion für ein -D-Element mit einer von bis 9 variablen Knotenzahl s s = + 5 Knoten 9 8 s = 0 r r = - r = 0 r = + s = - x Nur hinzufügen,wenn Knoten i definiert ist home/lehre/vl-mhs--e/koordinaten.tex. p./

14 Kartesische natürliche Koordinaten i = 5 i = i = i = 8 i = 9 h = ( + r)( + s) h h 8 h 9 h = ( r)( + s) h 5 h h 9 h = ( r)( s)..... h h h 9 h = ( + r)( s) h h 8 h 9 h 5 = ( r )( + s) h 9 h = ( s )( r) h 9 h = ( r )( s) h 9 h 8 = ( s )( + r) h 9 h 9 = ( r )( s ) home/lehre/vl-mhs--e/koordinaten.tex. p./

15 Kartesische natürliche Koordinaten. Interpolationsfunktion eines -D-Elementes mit einer von 8 bis 0 variablen Knotenzahl z r t s y x h = g (g 9 + g + g )/ h = g (g + g + g 8 )/ h = g (g 9 + g 0 + g 8 )/ h = g (g + g 5 + g 9 )/ h = g (g 0 + g + g 9 )/ h 8 = g 8 (g 5 + g + g 0 )/ h = g (g + g + g 0 )/ h i = g i für i = 9,..., 0 h 5 = g 5 (g + g + g )/ home/lehre/vl-mhs--e/koordinaten.tex. p.5/

16 Kartesische natürliche Koordinaten g i = 0, wenn Knoten i nicht enthalten ist; g i = G(r, r i ) G(s, s i ) G(t, t i ) sonst G(β, β i ) = ( + β iβ) für β i = ± G(β, β i ) = ( β ) für β i = 0 β = r, s, t Bei technischen Anwendungen (z.b. Grundwasser W ĥ) sind häufig Ausdrücke nach den kartesischen Koordinaten zu differenzieren oder zu integrieren. Da die Funktion durch isoparametrische Koordinaten dargestellt wird, sucht man eine Transformationsbeziehung zwischen den beiden Koordinatensystemen. Z.B.: N i = x y 5 N i home/lehre/vl-mhs--e/koordinaten5.tex. p./

17 Kartesische natürliche Koordinaten Mit Kettenregel: x = r y = r ` r x + s r + y s ` s x s y 9 >= >; = r x r y s x s y 5 r s 5 Die Berechnung von r x etc. ist nicht einfach möglich, deshalb wird folgender Weg beschritten: Für das -D -Knoten-Element lautet die inverse Beziehung: r s 5 = x r x s y r y s 5 " # x y = J x y 5 (J ˆ= JACOBI Matrix) home/lehre/vl-mhs--e/koordinaten.tex. p./

18 Kartesische natürliche Koordinaten Die JACOBI Matrix kann leicht bestimmt werden unter Ausnutzung der Beziehung: P x = n e i= N i x i (lineare Interpolation der Koordinaten zwischen den Knoten, n e = Anzahl der Knoten pro Element) x = [N, N, N, N ] y = [N, N, N, N ] x x x x y y y y 5 5 home/lehre/vl-mhs--e/koordinaten.tex. p.8/

19 Kartesische natürliche Koordinaten r s 5 = = N N N N x y r r r r x y 5 x y 5 N N N N s s s s {z x y } J x y " # ( + s) ( + s) ( s) ( s) ( + r) ( r) ( r) ( + r) 5 x y x y x y 5 x y {z } J x y 5. home/lehre/vl-mhs--e/koordinaten8.tex. p.9/

20 y Z.B.: Kartesische natürliche Koordinaten cm y cm x cm cm cm cm x 0.5 cm x = r ; y = s J = 0 0 x= (+r)(+s)() + (-r)(+s)(-) + (-r)(-s)(-) + (+r)(-s)(+) y = (+r)(+s)(5/) + (-r)(+s)(/) + (-r)(-s)(-/) + (+r)(-s)(-/) J = (+s) 0 (+r) home/lehre/vl-mhs--e/koordinaten9.tex. p.0/

21 Kartesische natürliche Koordinaten Es ist also: x y 5 = J r s. 5 z t home/lehre/vl-mhs--e/koordinaten0.tex. p./

22 LAGRANGE SCHE und HERMITE SCHE Elementfamilie Einteilung der Elemente in Kategorien (unabhängig von der geometrischen Form): Die LAGRANGE sche Familie besteht aus finiten Elementen, bei denen die Werte an den Knoten spezifiziert werden, während bei der HERMITE schen Familie sowohl die Funktion als auch die Ableitungen an den Knoten bestimmt werden. Die LAGRANGE sche und die HERMITE sche Familie können beide durch Polynome dargestellt werden, die man aus dem PASCAL schen Dreieck/Tetraeder ableiten kann. Z.B.: Kubischer Ansatz für ein -D-Problem: c 0 + c x + c y + c x + c xy + c 5 y + c x + c x y + c 8 xy + c 9 y = û home/lehre/vl-mhs--e/elementfamilie.tex. p./

23 LAGRANGE SCHE und HERMITE SCHE Elementfamilie x y x z x x y y y x x z z x x y x y y x y yz x x y x y x y y x x y y x z x z z yz x 5 x y x y x y x y y 5 x y y z y Pascal sches Dreieck Pascal scher Tetraeder home/lehre/vl-mhs--e/elementfamilie.tex. p./

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/cover_sheet.tex. p./26 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types 3. Geometry 4. Interpolation Approach Function

Mehr

FEM - Zusammenfassung

FEM - Zusammenfassung FEM - Zusammenfassung home/lehre/vl-mhs-1-e/deckblatt.tex. p.1/12 Inhaltsverzeichnis 1. Bedingungen an die Ansatzfunktion 2. Randbedingungen (Allgemeines) 3. FEM - Randbedingungen home/lehre/vl-mhs-1-e/deckblatt.tex.

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE 4.2 FINITE-ELEMENTE-DISKRETISIERUNG Elementierung und Diskretisierung Im Gegensatz zum räumlichen Fachwerk, bei dem bereits vor der mathematischen Diskretisierung ein konstruktiv diskretes Tragwerk vorlag,

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE Approximation der äußeren virtuellen Arbeit Die virtuelle Arbeit der äußeren Lasten lässt sich als Funktion der vorgeschriebenen Knotenlasten N i 1 und der vorgeschriebenen Streckenlast p 1 ξ 1 angeben.

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE Eigenschaften Der wesentliche Nachteil neunknotiger biquadratischer Lagrange Elemente ist die gegenüber dem bilinearen Element erhöhte Anzahl von Elementfreiheitsgraden. Insbesondere die beiden Freiheitsgrade

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/folien/vorlesung/4_fem_isopara/cover_sheet.tex page of 25. p./25 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 06.0.206 Zusammenfassung 8. Vorlesung. Schiefwinklige Scheibenelemente Numerischer

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Interpolation Functions for the Finite Elements

Interpolation Functions for the Finite Elements Interpolation Functions for the Finite Elements For the finite elements method, the following is valid: The global function of a sought function consists of a sum of local functions: GALERKIN method: the

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Rekonstruktion kontinuierlicher Daten Interpolation multivariater Daten Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester

Mehr

2. Finite Elemente. Die Methode der finiten Elemente ist ein spezielles Bubnow-Galerkin-Verfahren:

2. Finite Elemente. Die Methode der finiten Elemente ist ein spezielles Bubnow-Galerkin-Verfahren: 2. Finite lemente Die Methode der finiten lemente ist ein spezielles Bubnow-Galerkin-Verfahren: Zur Lösung der Gleichung K [ ~ u,u]+d [ ~ u, u]+m [ ~ u, ü]=l[ ~ u ] ~ u wird folgender Ansatz gemacht: u=

Mehr

Galerkin Finite-Elemente-Methode

Galerkin Finite-Elemente-Methode Leo-Paul Obame Ndong 9. November 2017 1 / 23 Inhaltsverzeichnis 2 / 23 1. Unterteilung von D = (a,b) in Teilintervalle oder Elemente 3 / 23 1. Unterteilung von D = (a,b) in Teilintervalle oder Elemente

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa 103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine

Mehr

Finite Differenzen Methode (FDM)

Finite Differenzen Methode (FDM) Finite Differenzen Methode (FDM) /home/lehre/vl-mhs-1/folien/vorlesung/2_fdm/deckblatt_fdm.tex Seite 1 von 15. p.1/15 Inhaltsverzeichnis 1. Problemdarstellung 2. Bilanzgleichungen 3. Finite Differenzen-Approximation

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

9. Parametrische Kurven und Flächen

9. Parametrische Kurven und Flächen 9. Parametrische Kurven und Flächen Polylinien bzw. Polygone sind stückweise lineare Approximationen für Kurven bzw. Flächen Nachteile: hohe Zahl von Eckpunkten für genaue Repräsentation erforderlich interaktive

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Kapitel 9 Räumlicher Spannungszustand

Kapitel 9 Räumlicher Spannungszustand Kapitel 9 Räumlicher Spannungszustand 9 9 9 Räumlicher Spannungszustand 9.1 Problemdefinition... 297 9.2 Die Grundgleichungen des räumlichen Problems... 297 9.2.1 Die Feldgleichungen des räumlichen Problems...

Mehr

0.1 Modellierung von Kurven und Flächen mittels B-Splines

0.1 Modellierung von Kurven und Flächen mittels B-Splines Vorlesung vom 28.04.06 Skript erstellt von Antonia Wittmers und Maria Gensel 0.1 Modellierung von Kurven und Flächen mittels B-Splines Das Wort Spline, übersetzt mit längliches, dünnes Stück Holz oder

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsæter Peter Hammond mit Arne Strøm Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte Auflage Übersetzt und fachlektoriert durch Dr. Fred Böker Professor für

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

Einführung FEM, 1D - Beispiel

Einführung FEM, 1D - Beispiel Einführung FEM, D - Beispiel home/eichel/lehre/mhs/fem_intro/deckblatt.tex. p./6 Inhaltsverzeichnis D Beispiel - Finite Elemente Methode. D Aufbau Geometrie 2. Bilanzgleichungen 3. Herleitung der Finiten

Mehr

Kapitel 3 Finite Element Methode

Kapitel 3 Finite Element Methode Kapitel 3 Finite Element Methode. Grundlagen der Methode der Finiten Elemente (FEM) Dir erste Methode bei der Grundzüge der FEM zu finden sind, wurde vor mehr als 5 Jahre von Schellbach beschrieben um

Mehr

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung)

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) 7. Modelle für Flächen gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) man unterscheidet 2 Typen: finite Interpolationen / Approximationen: endliche Zahl von Stützstellen / Kontrollpunkten

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

Teil 2: Kurven und Flächen

Teil 2: Kurven und Flächen Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin Unstetige Galerkin-Verfahren und die lineare Transportgleichung Tobias G. Pfeiffer Freie Universität Berlin Seminar DG-Verfahren, 26. Mai 2009 , Voraussetzungen & Ziele Voraussetzungen Kenntnisse in Numerik

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure Ziya ~anal Mathematik für Ingenieure Grundlagen, Anwendungen in Maple und C++ 2., aktualisierte und erweiterte Auflage STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Grundwissen 1.1 Absolutwert............

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Prüfung in Methode der finiten Elemente. Matrikelnummer: Studiengang: Wiederholer

Prüfung in Methode der finiten Elemente. Matrikelnummer: Studiengang: Wiederholer Universität Stuttgart INSTITUT MECH NIK FUR Prüfung in Methode der finiten Eemente Name, Vorname: Matrikenummer: Studiengang: Wiederhoer Emai: Unterschrift: Hauptfach: Bitte beachten Sie Fogendes: 1. Es

Mehr

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011 Finite Elemente Fakultät Grundlagen April 211 Fakultät Grundlagen Finite Elemente Übersicht 1 2 Approximation Fakultät Grundlagen Finite Elemente Folie: 2 Differenzenmethode für U xx (x, y) + U yy (x,

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

1.3.2 Partielle und totale Ableitung

1.3.2 Partielle und totale Ableitung 0 1.3. Partielle und totale Ableitung Ziel: Verallgemeinerung der Differential- und Integralrechnung auf mehrere Dimensionen Eine Verallgemeinerung von einfachen (eindimensionalen, 1D skalaren Funktion

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Mathematik 2 für Nichtmathematiker

Mathematik 2 für Nichtmathematiker Mathematik 2 für Nichtmathematiker Funktionen - Folgen und Reihen - Differential- und Integralrechnung - Differentialgleichungen - Ordnung und Chaos von Professor Dr. Manfred Precht Dipl.-Math. Karl Voit

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Computergraphik I. Freiformkurven. aus: Farin Curven und Flächen im CAGD. Oliver Deussen Freiformkurven 1

Computergraphik I. Freiformkurven. aus: Farin Curven und Flächen im CAGD. Oliver Deussen Freiformkurven 1 Freiformkurven aus: Farin Curven und Flächen im CAGD Oliver Deussen Freiformkurven 1 Definition für gebogene Kurven und Flächen Anwendungen: CAD: Automobil-, Flugzeug-, Schiffsbau Computergraphik: Objektmodellierung

Mehr

Splines und B-Splines

Splines und B-Splines 5. Mai 2009 Wozu Splines? Ausgangssituation: Punkte Möglichst weiche Kurve mittels der Punkte generieren Interpolation zwischen den Punkten Lineare Interpolation replacements P(1) P(0) P(t) P(t) = t P(1)

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

Polynome im Einsatz: Bézier-Kurven im CAD

Polynome im Einsatz: Bézier-Kurven im CAD Polynome im Einsatz: Bézier-Kurven im CAD Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 25 Kurven im Raum Eine Kurve im

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

4 Finite-Element Räume

4 Finite-Element Räume Finite Elemente I 143 4 Finite-Element Räume Wie im eindimensionalen Fall werden bei der Anwendung der FEM auf mehrdimensionale Randwertaufgaben endlichdimensionale Unterräume von Ansatz- und Testräumen

Mehr

7 Differential- und Integralrechung für Funktionen

7 Differential- und Integralrechung für Funktionen Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer

Mehr

Knut Sydsæter Peter Hammond Arne Strøm Andrés Carvajal. Übersetzt und fachlektoriert durch Prof. Dr. Fred Böker

Knut Sydsæter Peter Hammond Arne Strøm Andrés Carvajal. Übersetzt und fachlektoriert durch Prof. Dr. Fred Böker Übersetzt und fachlektoriert durch Prof. Dr. Fred Böker Knut Sydsæter Peter Hammond Arne Strøm Andrés Carvajal Mathematik für Wirtschaftswissenschaftler - PDF Mathematik für Wirtschaftswissenschaftler

Mehr

H.J. Oberle Analysis III WS 2012/ Differentiation

H.J. Oberle Analysis III WS 2012/ Differentiation H.J. Oberle Analysis III WS 2012/13 13. Differentiation 13.1 Das Differential einer Abbildung Gegeben: f : R n D R m, also eine vektorwertige Funktion von n Variablen x = (x 1,..., x n ) T, wobei D wiederum

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung Technische Universität Chemnitz 8. April 203 Fakultät für Mathematik Höhere Mathematik I.2 Aufgabenkomple : Funktionen, Interpolation, Grenzwerte, Ableitung Letzter Abgabetermin: 30. April 203 in Übung

Mehr

künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten).

künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten). Computergrafik / Animation künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten). Punkte, werden auch "Kontrollpunkte" genannt Wesentlicher Punkt:

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Technische Universität Dresden Fakultät Informatik Institut für Software- und Multimediatechnik Dozent: Dr. Mascolous Referent: Gliederung / Einleitung 1 / 25 1. Kurven

Mehr

Bezeichnungen, Abkürzungen, Vereinbarungen

Bezeichnungen, Abkürzungen, Vereinbarungen Bezeichnungen, Abkürzungen, Vereinbarungen Vereinbarungen In dieser Arbeit wird überwiegend die symbolische Schreibweise verwendet Bei Verwendung der Tensorschreibweise durchlaufen griechische Buchstaben

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure Mathematik für Ingenieure Grundlagen - Anwendungen in Maple Bearbeitet von Ziya Sanal 3., vollständig überarbeitete und erweiterte Auflage 2015. Buch mit CD-ROM. XII, 816 S. Kartoniert ISBN 978 3 658 10641

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsæter Peter Hammond mit Arne Strøm Übersetzt und fachlektoriert durch Dr. Fred Böker

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

1 Partielle Differentiation

1 Partielle Differentiation Technische Universität München Christian Neumann Ferienkurs Analysis 2 Vorlesung Dienstag SS 20 Thema des heutigen Tages sind Differentiation und Potenzreihenentwicklung Partielle Differentiation Beim

Mehr

Rudolf Brinkmann Seite und W = {x 3 x 6}

Rudolf Brinkmann Seite und W = {x 3 x 6} Rudolf Brinkmann Seite 0.0.008 Lineare Funktionen Es soll der Graph der Funktion f = {,y y = f() = } in den Bereichen D { } = und W = { 6} - - 0 f() = -6-0 6 9 erstellt werden. 6 6 5 0 Definition Eine

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

Berechnung von Extrema

Berechnung von Extrema KAPITEL 2 Berechnung von Extrema 1. Partielle Ableitungen Definition 2.1 (partielle Ableitung). Sei U R n offen und e j der j-te Einheitsvektor. Eine Funktion f : U R ist in x u partiell differenzierbar

Mehr