Theoretische Physik 1, Mechanik

Größe: px
Ab Seite anzeigen:

Download "Theoretische Physik 1, Mechanik"

Transkript

1 Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen

2 Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator

3 Physikalische Definition eines Vektors Betrachte einen Vektor v im dreidimensionalen Raum. In Bezug auf ein rechtwinkliges Koordinatensystem habe er die Komponenten,,. In Bezug auf ein Koordinatensystem, dass um den Winkel α um die z-achse gedreht ist, sind die Komponenten von v: v x, v y, v z, wobei y v y y α vx v x x x v x = cos α + sinα, v y = sinα + cos α, v z =, d.h. v x cos α sinα 0 = R α, R α = sinα cos α Drehen wir das Koordinatensystem nun um den Winkel β um die neue y-achse, und dann um den Winkel γ um die ganz neue z-achse, so sind die Koordinaten von v schließlich,, :

4 = R γ = R β v x v y v z cos γ sinγ 0, R γ = sinγ cos γ 0, cos β 0 sinβ, R β = sinβ 0 cos β Nach einer allgemein(st)en Drehung des Koordinatensystems, hier als Beispiel durch drei Eulersche Winkel α, β, γ beschrieben, transformieren sich die Komponenten des Vektors v wie folgt: = R(α,β,γ), R(α,β,γ) = R γ R β R α = cos γ cos β cos α sinγ sinα cos γ cos β sinα+sinγ cos α cos γ sinβ sinγ cos β cos α cos γ sinα sinγ cos β sinα+cos γ cos α sinγ sinβ. sinβ cos α sinβ sinα cos β

5 Ein Tripel a x,a y,a z von Zahlen, dass in Bezug auf ein rechtwinkliges Koordinatensystem definiert ist und bei einer Rotation des Koordinatensystems durch die Eulerschen Winkel α,β,γ in a x,a y,a z transformiert wird, wobei a x a y a z = R(α,β,γ) a x a y a z, ist im physikalischen Sinn ein Vektor im dreidimensionalen Raum. Die Matrizen R = (R i j ), welche die Transformation der Komponenten bei Rotationen beschreiben, sind orthogonale Matrizen, d.h. RR T = R T R = 1, bzw. 3 k=1 R i kr j k = 3 k=1 R k ir k j = δ i, j [δ i, j = Kronecker-Symbol: Eins für i = j und Null für i j]. Skalarprodukt zweier Vektoren: v w = + w y + ; hängt nicht von der Wahl des (rechtwinkligen) Koordinatensystems ab: Rotation w y T v w = ( ) v x T w y w z = = R T R w y T w y = T w y

6 Ein Tripel a x,a y,a z von Zahlen, dass in Bezug auf ein rechtwinkliges Koordinatensystem definiert ist und bei einer Rotation des Koordinatensystems durch die Eulerschen Winkel α,β,γ in a x,a y,a z transformiert wird, wobei a x a y a z = R(α,β,γ) a x a y a z, ist im physikalischen Sinn ein Vektor im dreidimensionalen Raum. Die Matrizen R = (R i j ), welche die Transformation der Komponenten bei Rotationen beschreiben, sind orthogonale Matrizen, d.h. RR T = R T R = 1, bzw. 3 k=1 R i kr j k = 3 k=1 R k ir k j = δ i, j [δ i, j = Kronecker-Symbol: Eins für i = j und Null für i j]. Skalarprodukt zweier Vektoren: v w = + w y + ; hängt nicht von der Wahl des (rechtwinkligen) Koordinatensystems ab: Rotation w y T v w = ( ) v x T w y w z = = R T R w y T w y = T w y

7 Ein Tripel a x,a y,a z von Zahlen, dass in Bezug auf ein rechtwinkliges Koordinatensystem definiert ist und bei einer Rotation des Koordinatensystems durch die Eulerschen Winkel α,β,γ in a x,a y,a z transformiert wird, wobei a x a y a z = R(α,β,γ) a x a y a z, ist im physikalischen Sinn ein Vektor im dreidimensionalen Raum. Die Matrizen R = (R i j ), welche die Transformation der Komponenten bei Rotationen beschreiben, sind orthogonale Matrizen, d.h. RR T = R T R = 1, bzw. 3 k=1 R i kr j k = 3 k=1 R k ir k j = δ i, j [δ i, j = Kronecker-Symbol: Eins für i = j und Null für i j]. Skalarprodukt zweier Vektoren: v w = + w y + ; hängt nicht von der Wahl des (rechtwinkligen) Koordinatensystems ab: Rotation w y T v w = ( ) v x T w y w z = = R T R w y T w y = T w y

8 Eine Größe, die bei Drehung des Koordinatensystems invariant bleibt ist ein Skalar. Ein Tensor zweiter Stufe, T i j, besteht aus 3 3 Zahlen (zwei Indizes laufen von eins bis drei), die sich bei Rotationen des (rechtwinkligen) Koordinatensystems wie folgt transformieren: T i j T i j = k=1 l=1 R i k R j l T k l. Ein Tensor dritter Stufe hat drei Indizes und transformiert sich entsprechend mit drei Matrizen R. So kann man einen Vektor auch als Tensor erster Stufe und einen Skalar als Tensor nullter Stufe verstehen. Das Vektorprodukt zweier Vektoren v und w ist: w y v w def =. w y Die Komponenten von v w transformieren sich bei Rotationen des Koordinatensystems wie Komponenten eines Vektors (in 3D!). Spatprodukt dreier Vektoren: u ( v w) = ( u v) w.

9 Eine Größe, die bei Drehung des Koordinatensystems invariant bleibt ist ein Skalar. Ein Tensor zweiter Stufe, T i j, besteht aus 3 3 Zahlen (zwei Indizes laufen von eins bis drei), die sich bei Rotationen des (rechtwinkligen) Koordinatensystems wie folgt transformieren: T i j T i j = k=1 l=1 R i k R j l T k l. Ein Tensor dritter Stufe hat drei Indizes und transformiert sich entsprechend mit drei Matrizen R. So kann man einen Vektor auch als Tensor erster Stufe und einen Skalar als Tensor nullter Stufe verstehen. Das Vektorprodukt zweier Vektoren v und w ist: w y v w def =. w y Die Komponenten von v w transformieren sich bei Rotationen des Koordinatensystems wie Komponenten eines Vektors (in 3D!). Spatprodukt dreier Vektoren: u ( v w) = ( u v) w.

10 Eine Größe, die bei Drehung des Koordinatensystems invariant bleibt ist ein Skalar. Ein Tensor zweiter Stufe, T i j, besteht aus 3 3 Zahlen (zwei Indizes laufen von eins bis drei), die sich bei Rotationen des (rechtwinkligen) Koordinatensystems wie folgt transformieren: T i j T i j = k=1 l=1 R i k R j l T k l. Ein Tensor dritter Stufe hat drei Indizes und transformiert sich entsprechend mit drei Matrizen R. So kann man einen Vektor auch als Tensor erster Stufe und einen Skalar als Tensor nullter Stufe verstehen. Das Vektorprodukt zweier Vektoren v und w ist: w y v w def =. w y Die Komponenten von v w transformieren sich bei Rotationen des Koordinatensystems wie Komponenten eines Vektors (in 3D!). Spatprodukt dreier Vektoren: u ( v w) = ( u v) w.

11 Eine Größe, die bei Drehung des Koordinatensystems invariant bleibt ist ein Skalar. Ein Tensor zweiter Stufe, T i j, besteht aus 3 3 Zahlen (zwei Indizes laufen von eins bis drei), die sich bei Rotationen des (rechtwinkligen) Koordinatensystems wie folgt transformieren: T i j T i j = k=1 l=1 R i k R j l T k l. Ein Tensor dritter Stufe hat drei Indizes und transformiert sich entsprechend mit drei Matrizen R. So kann man einen Vektor auch als Tensor erster Stufe und einen Skalar als Tensor nullter Stufe verstehen. Das Vektorprodukt zweier Vektoren v und w ist: w y v w def =. w y Die Komponenten von v w transformieren sich bei Rotationen des Koordinatensystems wie Komponenten eines Vektors (in 3D!). Spatprodukt dreier Vektoren: u ( v w) = ( u v) w.

12 Eine Größe, die bei Drehung des Koordinatensystems invariant bleibt ist ein Skalar. Ein Tensor zweiter Stufe, T i j, besteht aus 3 3 Zahlen (zwei Indizes laufen von eins bis drei), die sich bei Rotationen des (rechtwinkligen) Koordinatensystems wie folgt transformieren: T i j T i j = k=1 l=1 R i k R j l T k l. Ein Tensor dritter Stufe hat drei Indizes und transformiert sich entsprechend mit drei Matrizen R. So kann man einen Vektor auch als Tensor erster Stufe und einen Skalar als Tensor nullter Stufe verstehen. Das Vektorprodukt zweier Vektoren v und w ist: w y v w def =. w y Die Komponenten von v w transformieren sich bei Rotationen des Koordinatensystems wie Komponenten eines Vektors (in 3D!). Spatprodukt dreier Vektoren: u ( v w) = ( u v) w.

13 Eine Größe, die bei Drehung des Koordinatensystems invariant bleibt ist ein Skalar. Ein Tensor zweiter Stufe, T i j, besteht aus 3 3 Zahlen (zwei Indizes laufen von eins bis drei), die sich bei Rotationen des (rechtwinkligen) Koordinatensystems wie folgt transformieren: T i j T i j = k=1 l=1 R i k R j l T k l. Ein Tensor dritter Stufe hat drei Indizes und transformiert sich entsprechend mit drei Matrizen R. So kann man einen Vektor auch als Tensor erster Stufe und einen Skalar als Tensor nullter Stufe verstehen. Das Vektorprodukt zweier Vektoren v und w ist: w y v w def =. w y Die Komponenten von v w transformieren sich bei Rotationen des Koordinatensystems wie Komponenten eines Vektors (in 3D!). Spatprodukt dreier Vektoren: u ( v w) = ( u v) w.

14 Geometrische Interpretation: Sei θ der Winkel zwischen den Vektoren v und w; v w w w θ v die Länge z.b. von v ist v = v v = u v 2 x + v2 y + v2 z. Dann ist v w = v w cos θ; v w = v w sin θ ; die Richtung von v w ist dadurch gegeben, dass v w senkrecht auf v und w steht, v ( v w) = 0, w ( v w) = 0, und dass v, w und v w ein Rechts-System bilden, d.h. eine von v nach w gedrehte Rechtsschraube bewegt sich in Richtung v w. Das Spatprodukt u ( v w) ist ein Skalar; sein Betrag ist das Volumen des von den Vektoren u, v und w aufgespannten Parallelepipeds (s. Abb. oben rechts), und es ist positive (negativ) wenn u, v und w ein Rechts- (Links-)System bilden. v

15 Der Nabla-Operator Sei f ( r) eine relle Funktion von r = (x,y,z) T. Um einen gegebenen Punkt r 0 approximieren wir f durch eine in den drei Variablen x, y, z lineare Funktion, f ( r) r r 0 f ( r 0 ) + c x (x x 0 ) + c y (y y 0 ) + c z (z z 0 ), und wir nehmen an, dass diese Approximation im Grenzfall r r 0 immer besser wird. Die dabei auftretenden reellen Zahlen c x, c y, c z sind die jeweiligen partiellen Ableiungen der Funktion f nach x, y, und z am Ort r 0 : f (x,y 0,z 0 ) f (x 0,y 0,z 0 ) def c x = lim = f, x x0 x x 0 x r0 f (x 0,y,z 0 ) f (x 0,y 0,z 0 ) def c y = lim = f, y y0 y y 0 y r0 f (x 0,y 0,z) f (x 0,y 0,z 0 ) def c z = lim = f. z z0 z z 0 z r0

16 Der Nabla-Operator ist ein Differentialoperator; er bildet die Funktion f auf die Funktion f ab. f ist eine Funktion, welche jedem Punkt r im Definitionsbereich von f den Vektor der Partiellen Ableitungen am Ort r zuordnet. präzise: r f ( r ) x f ( r ) y f ( r ) z r = r, geläufig: r f x f y f z. Eine kleiene Änderung r von r führt zur Veränderung f von f, f = r f = r f cos( r, f ), d.h. f zeigt in Richtung des stärksten Anstiegs von f. Kettenregel: Sei r eine Funktion einer reellen Variablen t (z.b. der Zeit). Für t t 0 nähern wir r(t) r(t 0 ) + r, r = (t t 0 ) d r t=t0. Die Ableitung der Funktion f ( r(t)) nach t beschreibt die Änderung df, welche durch die (kleine) Änderung dt hevorgerufen wird, df f ( r(t)) f ( r(t 0 )) = lim = d r dt t0 t t0 t t 0 dt f = f dx x dt + f dy y dt + f dz z dt. dt

17 Für eine Funktion r, die nur vom Betrag r = r = x 2 + y 2 + z 2 abhängt, f = f (r), gilt wg. z.b. r x = x r : f x = df r dr x = df x dr r, f y = y r, f z = z r = f = df r dr r. F/ x 1 Verallgemeinerung auf n Variable : F(x1,...x n ) =. F/ x n (x 1,... x n ) (x 1,...x n )+( x 1,... x n ) = F F(x 1,... x n )+ F, für x i 0 : F = F x, d.h. F = n i=1 F x i x i. Homogene Funktion vom Grade k : F(αx 1,... αx n ) = α k F(x 1,... x n ). n F Eulersches Theorem für homogene Funktionen : x i = k F. x i i=1

18 Stationäre Punkte einer Funktion von mehreren Variablen Für Funktionen f (x 1,...x n ) von n Variablen (nicht nur n = 3) ( ist der n-dimesionale Gradient f f =,... f ) T. x 1 x n Eine kleine Verschiebung x der Variablen führt zu einer Änderung n f des Funktionswerts : f x 0 = f f x = x i. x i Die Bedingung für ein Maximum, Minimum oder sonstigen stationären (z.b. Sattel-) Punkt der Funktion f ist f = 0. Um einen Punkt x zu finden, bei dem f der unter ν Nebenbedingungen, l j (x 1,... x n ) = 0, stationär ist, konstruiert man mit Hilfe von ν Lagrangeschen Multiplikatoren λ j eine Hilfsfunktion F(x 1,...x n ;λ 1,... λ ν ) = f j λ jl j und sucht einen Punkt, an dem die alle n + ν partielle Ableitungen von F verschwinden. F λ j = 0 l j = 0 (1), F x i = 0 f = i=1 ν λ j lj (2). (1): Nebenbedingungen erfüllt; (2): f = 0 auf Höhenlinien der l j. j=1

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I Uwe Thiele Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Version vom 5. April 2015 Inhaltsverzeichnis 1 Grundlagen

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

2.1 Ableitung eines Vektors nach einem Skalar

2.1 Ableitung eines Vektors nach einem Skalar Kapitel 2 Differentiation von Feldern 2.1 Ableitung eines Vektors nach einem Skalar Wir betrachten einen Vektor im Raum, der sich zeitlich verändert, d.h. a(t). Für einen Zeitpunkt t + t gilt dann a =

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II Physik Energie II Arbeit bei variabler Kraft Was passiert wenn sich F in W = Fx ständig ändert? F = k x Arbeit bei variabler Kraft W = F dx Arbeit bei variabler Kraft F = k x W = F dx = ( k x)dx W = F

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

1 Einführung in die Vektorrechnung

1 Einführung in die Vektorrechnung 3 1 Einführung in die Vektorrechnung Neben der Integral- und Differentialrechnung ist die Vektorrechnung eine der wichtigsten mathematischen Disziplinen für die Ausbildung in einem Ingenieurfach, da in

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Mehrdimensionale Differentialrechnung Übersicht

Mehrdimensionale Differentialrechnung Übersicht Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Höhere Mathematik III für Physiker Analysis 2

Höhere Mathematik III für Physiker Analysis 2 Ralitsa Bozhanova Jonas Kindervater Ferienkurs im Anschluss an das Wintersemester 2008 Höhere Mathematik III für Physiker Analysis 2 16. bis 20. Februar 2009 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Der

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 1 Bearbeitung: 28.10.2011

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Die Laplace-Gleichung

Die Laplace-Gleichung Die Laplace-Gleichung Dr. Piotr Marecki April 19, 2008 1 Einführung Die Randwertprobleme für die Laplace Gleichung, 2 V (x) = 0, (1) spielen in der Theoretischen Physik eine wichtige Rolle, u.a. : In der

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Anhang A. Etwas Mathematik. A.1 Krummlinige Koordinaten. Ebene Polarkoordinaten

Anhang A. Etwas Mathematik. A.1 Krummlinige Koordinaten. Ebene Polarkoordinaten Anhang A Etwas Mathematik A.1 Krummlinige Koordinaten A.1.1 Ebene Polarkoordinaten Anstelle der kartesischen Koordinaten x 1 und x 2 führt man unter Verwendung der Transformation x 1 = ρ cosϕ, ρ = x 2

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Heinrich-Hertz-Oberschule, Berlin

Heinrich-Hertz-Oberschule, Berlin Reellwertige Funktionen mehrerer Variabler Teilnehmer: Maximilian Ringleb Jakob Napiontek Kay Makowsky Mallku Schlagowski Trung Duc Nguyen Alexander Reinecke Herder-Oberschule, Berlin Heinrich-Hertz-Oberschule,

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (2. Juli 25) für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Sei f(x, y) eine in einem Gebiet zweimal stetig differenzierbare

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 3 Funktionen mehrerer Variablen Hans Walser: Modul 3, Funktionen mehrerer Variablen ii Modul 3 für die Lehrveranstaltung Mathematik für Naturwissenschaften

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

1.2 Das kartesische Koordinatensystem

1.2 Das kartesische Koordinatensystem Kapitel 1 Vektoralgebra 1.1 Einführung Am ersten Kapitel widmen wir uns den Grundlagen der Vektoralgebra, wobei wir speziell auf die Definitionen von Skalaren und Vektoren eingehen und Produkte zwischen

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G JoachimlRisius Vektorrechnung Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G Inhaltsverzeichnis 1. Darstellung von Punkten durch Koordinatensysteme 11 1.1. Die

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

7. Funktionen mehrerer Variablen, Felder

7. Funktionen mehrerer Variablen, Felder 7. Funktionen mehrerer Variablen, Felder Wiederholung: Eine Funktion f von n Veränderlichen ist eine Vorschrift, die jedem geordneten n-tupel (x 1,x 2,..., x n ) reeller Zahlen aus einer nicht-leeren Definitionsmenge

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 17: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 17: Woche vom Übungsaufgaben 3. Übung SS 17: Woche vom 18.4-21. 4. 2017 Heft Ü 3: 4.1.2 (Auswahl); 4.1.4; 4.1.7; 4.1.10 (Auswahl); 4.2.3 (Auswahl); 2 Aufgaben zur Schmidt-Orthogonalisierung (s. PDF - homepage von Dr.

Mehr

Übungsaufgaben Vektoren

Übungsaufgaben Vektoren Kallenrode, www.sotere.uos.de Übungsaufgaben Vektoren 1. Gegeben sind die Einheitsvektoren in Zylinderkoordinaten e ϱ = cos ϕ sin ϕ, e ϕ = sin ϕ cos ϕ und e z = 0 0 0 0 1 und Kugelkoordinaten: sin ϑ cos

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante

Mehr

Koordinatensysteme (Angabe von Positionen und Richtungen im Raum) Ebene Polarkoordinaten: Kreiskoordinaten

Koordinatensysteme (Angabe von Positionen und Richtungen im Raum) Ebene Polarkoordinaten: Kreiskoordinaten Koordinatensysteme (Angabe von Positionen und Richtungen im Raum) Ebene Polarkoordinaten: Kreiskoordinaten a) geradlinige b) geradlinige orthogonale c) krummlinige orthogonale d) krummlinige jeweils mit

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie 38 KAPITEL. DYNAMIK EINES MASSENPUNKTES.3 Arbeit und Energie Wenn sich ein Massenpunkt in einem Kraftfeld bewegt so wird er entweder beschleunigt oder abgebremst. Man sagt auch an ihm wird vom Kraftfeld

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Inhaltsverzeichnis 8 Funktionen mehrerer Variabler 8. Einführende Definitionen und Bemerkungen....................... 8. Graphische Darstellungsmöglichkeiten.......................... 8. Grenzwert und

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

5.2 Drehimpuls, Drehmoment und Trägheitstensor

5.2 Drehimpuls, Drehmoment und Trägheitstensor 186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Abbildung 14: Ein Vektorfeld im R 2

Abbildung 14: Ein Vektorfeld im R 2 Vektoranalysis 54 Vektoranalysis Wir wollen nun Vektorfelder betrachten. Es sei U R n. Ein Vektorfeld im R n ist eine Abbildung v : U R n, die jedem Punkt x ihres sbereichs U einen Vektor v(x) zuordnet.

Mehr

Kapitel 3. Transformationen

Kapitel 3. Transformationen Oyun Namdag Am 08.11.2007 WS 07/08 Proseminar Numerik: Mathematics for 3D game programming & computer graphics Dozenten: Prof. Dr. V. Schulz, C. Schillings Universität Trier Kapitel 3 Transformationen

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 1. Vektorrechnung und Geometrie Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Musterlösungen Serie 1

Musterlösungen Serie 1 D-MAVT D-MATL Analysis II FS 03 Prof. Dr. P. Biran Musterlösungen Serie. Frage Wie lautet der Gradient der Funktionf : R R,(x,y x y +y? f(x,y = x +xy +. f(x,y = ( xy x + f(x,y = ( x + xy Der Gradient vonf

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander: Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr