3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5

Größe: px
Ab Seite anzeigen:

Download "3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5"

Transkript

1 Contents 1 Ziele dieser Uebung 1 2 Finite-Differenzen-Methode 1 3 Das Programm 3 4 Dateien 4 5 Aufgaben 4 6 Ausblick 5 1 Ziele dieser Uebung 1.1 Einleitung Wir erweitern das Problem aus der letzten Uebung und betrachten ein instationaeres Konvektions- Diffusions-Problem. Zunaechst werden wir ein aehnlich einfaches Programm betrachten, wie in der letzten Uebung. In den Aufgaben sollen Sie diese jedoch strukturieren. 1.2 Die Ziele dieser Uebung sind Vertiefung Finite-Differenzen-Methode (zeitabhaengig, Ableitungsdiskretisierung mit Richtung) Waermer werden mit C++ Erste Konvergenzuntersuchungen Erweiterung eines einfachen Finite-Differenzen-Loesers 1.3 Neue Funktionalitaet Wir verzichten zunaechst auf neue programmtechnische Funktionalitaet im Vergleich zum letzten Mal. Neue Funktionen/Strukturen sollen mit Hilfe der Aufgaben kennen gelernt werden. 2 Finite-Differenzen-Methode 2.1 Das Konvektions-Diffusions-Problem Wir betrachten die folgende Differentialgleichung mit Ω = (0, 1), Randwerten und Anfangswerten t u(x, t) a xx u(x, t) + b x u(x, t) = f(x, t), x Ω, t (0, T ] u(0, ) = u(1, ) = 0 u(, 0) = u 0 (x) C 2 ( Ω), u 0 (0) = u 0 (1) = 0. Wir nehmen an, dass eine eindeutige Loesung existiert mit u C 2 (Ω) C 0 ( Ω). Wir nennen a den Diffusionskoeffizienten und b die Konvektionsgeschwindigkeit. 1

2 2.2 Approx. von 1.Abl. (zentral) [Wdhl.] Eine einfache Ableitung wird approximiert mit der (zentralen) finiten Differenz x u = δ x u u(x i+1) u(x i 1 ). 2h Hier ist h der Abstand von zwei Gitterpunkten. Motivieren laesst sich diese Wahl als Sekante durch die Funktionswerte an den Punkten x h und x + h welche als Approximation der Ableitung am Punkt x benutzt wird. 2.3 Approx. von 1.Abl. (links-/rechtsseitig) [Wdhl.] Alternativ kann man auch mit links- oder rechtseitigen Differenzen, z.b. x u = δ x u u(x i+1) u(x i ) h arbeiten. In dieser Uebung werden wir sehen, dass es Sinn machen die links- oder rechtsseitige Differenzen den zentralen Differenzen vorzuziehen. 2.4 Approx. von 2.Abl. (zentral) [Wdhl.] Fuer die zweite Ableitung erhaelt man die uebliche finite Differenzen Approximation: 2.5 Zeitdiskretisierung (1) xx u = δ xx u u(x i+1) 2u(x i ) + u(x i 1 ) h 2 Bei der Finite-Differenzen-Methode wird jetzt fuer jeden Gitterpunkt eine Gleichung formuliert. Zusaetzlich zu der Diskretisierung der Ortsableitungen, muessen wir auch in der Zeit diskretisieren. Dafuer benutzen wir auch Finite-Differenzen, betrachten aber zunaechst nur eine Variante. Wir diskretisieren t u(x, t) u(x, tn ) u(x, t n 1 ) t 2.6 Zeitdiskretisierung (2) Zur Zeitdiskretisierung der Gleichung werten wir alle uebrigen Terme zu dem Zeitpunk t n 1 aus. Das entspricht einer Diskretisierung mit dem expliziten Euler-Verfahren. Wir schreiben dazu formal t u = F (t) und diskretisieren dies mit u(x, t n ) u(x, t n 1 ) = F (t n 1 ). t Hierbei ist F der Ausdruck der sich aus der Ortsdiskretisierung von a xx u + b x u f ergibt. 2.7 Voll-diskretisierte Gleichungen Sei u n i die Approximation an u(x i, t n ) (f n i analog), so erhalten wir mit dem expliziten Euler Verfahren und finiten Differenzen: u n i = u n 1 i + t(f n i + a δ xx (u n 1 i 1, un 1 i, u n 1 i+1 ) b δ x(u n 1 i 1, un 1 i, u n 1 i+1 )) fuer alle i {1,.., N 1}. Hierbei ist δ xx (a, b, c) die Finite-Differenzen-Approximation die sich an dem Knoten mit Wert b, und den Nachbarwerten a (links) und c (rechts) ergeben. Analog ist δ x (,, ) eine Finite-Differenzen-Approximation der ersten Ableitung. 2

3 3 Das Programm 3.1 Startpunkt Wir starten mit dem Code aus Uebung 01 und passen diesen so an, dass oben genanntes Problem geloest werden kann. Einige Schritte erklaeren wir hier, die letzteren sind als Aufgabe formuliert. 3.2 Grundlage Quellcode Arbeiten Sie entweder mit dem Code aus Uebung 01 weiter (ggf. kopieren und umbenennen). In lesson02_src.tar.gz finden Sie eine entsprechende (umgenannte) Kopie. 3.3 Zeitintegrationsschleife (1) Fuehren Sie eine Variable dt fuer die Zeitschrittweite ein: const double dt = 1e-3; // time step size und entfernen Sie den Richardson-paramater ω (damping). 3.4 Zeitintegrationsschleife (2) Bestimmen Sie die Anzahl der Zeitschritte nsteps: int nsteps = round(1.0/dt); und tauschen Sie die Richardsons-iterationsschleife for (int k=0; k<100*n*n; ++k) { gegen eine Zeitschleife for (int k=1; k<=nsteps; ++k) // starting from k=1 as k=0 is initial data { double tn = k * dt; // current time step 3.5 Variablenbenennung Da wir mit einem expliziten Euler-Verfahren arbeiten, laesst sich die Zeitdiskretisierung auffassen als u n = u n 1 + tf n 1 wobei u n, u n 1 und F n 1 als die Vektoren zu verstehen sind, die u(, t n ), u(, t n 1 ) und F (, t n 1 ) approximieren mit F n 1 = a δ xx u n 1 + b δ x u n 1 f n 1. D.h. es ist sinnvoll die Variable cur_res (das Residuum) umzubenennen zu F oder aehnlichem. Eine Abfrage ob das Residuum klein ist, ist bei dem instationaeren Problem auch nicht mehr relevant und kann somit entfernt werden. 3

4 3.6 Anfangswerte Fuer die Loesung des Problems sind jetzt natuerlich auch die Anfangswerte wichtig. ersetzen wir Deswegen u[i] = 0.0; // initial value for u mit u[i] = myinitial(x[i]); // initial value for u wobei myinitial eine selbst definierte Funktion ist, welche die Anfangswerte bereitstellt. 4 Dateien 4.1 Ausgangspunkt fuer diese Uebung Die Schritte, die oben erklaert wurden, resultieren in den folgenden Dateien. In der convdiff1d.cc Datei sind zusaetzlich noch die Aufgaben vorbereitet und markiert: lesson02_src.tar.gz convdiff1d.pdf convdiff1d.beamer.pdf convdiff1d.html 5 Aufgaben 5.1 Programmierung (1): Schreiben Sie das Programm der letzten Uebung auf das neue Problem um und geben Sie fuer t {0.0, 0.25, 0.5, 0.75, 1.0} die Loesung in eine Datei aus. Waehlen Sie anfangs die Parameter N = 20, t = , a = 1, b = 0, u 0 (x) = x (1 x), f = 1. Loesen Sie das Problem und betrachten Sie die Loesung zum Zeitpunkt t = Mit dem Problem arbeiten (1): Welche Zeitschrittgroessen sind zulaessig? Versuchen Sie t {10 4, 10 3, 10 2 } fuer N {10, 20, 40} aus. Was faellt Ihnen auf? Waehlen Sie den Parameter fuer t in Abhaengigkeit von N so, dass Ihr Verfahren immer stabil ist. 5.3 Mit dem Problem arbeiten (2): Waehlen Sie nun a {1, 0.1, 0.01, 0.001}, b = 1, u 0 (x) = x (1 x) und f = 1. Was faellt Ihnen auf? Verwenden Sie zentrale, rechts- und linksseitige Differenzen fuer die Approximation des Konvektionsterms. Wann ist welches Verfahren stabil? Probieren Sie auch b = 1. 4

5 5.4 Programmierung (2): Definieren Sie Funktionen um Finite-Differenzen Approximationen δ x und δ xx zu definieren. Die Definitionen sollten sich außerhalb der main-funktion befinden. Implementieren Sie sie die folgenden Approximationen: linksseitige Approximation der ersten Ableitung rechtsseitige Approximation der ersten Ableitung zentrale Approximation der ersten Ableitung zentrale Approximation der zweiten Ableitung Passen Sie Ihr Programm so an, dass dies genutzt wird. 5.5 Mit dem Problem arbeiten (3): Loesen Sie ein Problem mit a {0.01}, b = 1, u 0 (x) = x (1 x) und f = 1 und bestimmen Sie u max = max x [0,1] u(x, t = 1) fuer eine Referenzloesung, die Sie mit N = 500 ermitteln. Loesen Sie das gleiche Problem nun mit N = 20, 40, 80. Wie verhaelt sich der Fehler? method \ N left-sided (value) left-sided (error) central (value) central (error) right-sided (value) right-sided (error) 5.6 Programmierung (3): Schreiben Sie eine Klasse FD_stencil welche die Parameter h,a,b entgegen nimmt und eine Funktion evaluate(const double& left, const double& center,const double& right) zur Verfuegung stellt. Treffen Sie in Abhaengigkeit der Parameter eine sinnvolle Wahl zur Approximation des Konvektionsterms. Verwenden Sie diese in der Diskretisierung fuer ein Testproblem. Referenz fuer Funktionszeiger: html 5.7 Programmierung (4 (Bonus)): Schieben Sie die Implementierung von in eine separate Datei (.cc) und aendern Sie das Makefile entsprechend. Diese Problematik wird spaeter noch tiefer diskutiert. 6 Ausblick 6.1 Diskretisierung / Loeser: Finite Elemente Aufstellen und Loesen von Gleichungssystemen 5

6 6.2 Programmierung: Objektorientiertes Programmieren: Klassen Programme die aus mehr als einer Datei generiert werden (Richtung Projekte) 6

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Programmieren in C. Zeiger auf Funktionen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Zeiger auf Funktionen. Prof. Dr. Nikolaus Wulff Programmieren in C Zeiger auf Funktionen Prof. Dr. Nikolaus Wulff Zeiger auf Funktionen Zeiger verweisen auf beliebige Speicherstellen. Im Allgemeinen werden Zeiger ausgerichtet auf Variablen, wie z. B.

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente . Session 6: Theoretische Geodäsie Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente 1 Jessica Franken Institut für Geodäsie und Geoinformation Professur für Theoretische

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Aufgabe 3: Lösung der Poissongleichung

Aufgabe 3: Lösung der Poissongleichung Universität Hamburg Übungsblatt 3 zum Praktikum Fachbereich Informatik Paralleles Programmieren für Wissenschaftliches Rechnen Geowissenschaftler im SS 2014 Prof. T. Ludwig, H. Lenhart, N. Hübbe Abgabe:

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Java Kurs für Anfänger Einheit 5 Methoden

Java Kurs für Anfänger Einheit 5 Methoden Java Kurs für Anfänger Einheit 5 Methoden Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 22. Juni 2009 Inhaltsverzeichnis Methoden

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

Projektbericht Kondensation an einem Fenster

Projektbericht Kondensation an einem Fenster Projektbericht Kondensation an einem Fenster Florian Hanzer Ruth Kalthaus Sommersemester 2009 Einleitung Da Glas ein relativ guter Wärmeleiter ist, sind Fenster einer der größten Schwachpunkte in Bezug

Mehr

C++ für Ingenieure. Einführung in die objektorientierte Programmierung. Seite Programmverzeichnis VII HARALD NAHRSTEDT

C++ für Ingenieure. Einführung in die objektorientierte Programmierung. Seite Programmverzeichnis VII HARALD NAHRSTEDT VII HARALD NAHRSTEDT C++ für Ingenieure Einführung in die objektorientierte Programmierung Seite Erstellt am 15.01.2009 Beschreibung VIII 1 Grundlagen der Programmierung 1-1 Struktur einer Header-Datei

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I 1. Mengen und Abbildungen In der Mathematik beschäftigt man sich immer -direkt oder indirekt- mit Mengen. Wir benötigen den Mengenbegriff

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen www.dlr.de Folie 1 > STAB Workshop, 12.11.2013 > Marcel Wallraff, Tobias Leicht 12.11.2013 Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen Marcel Wallraff, Tobias

Mehr

Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden.

Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden. Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer.

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Probeklausur: Programmierung WS04/05

Probeklausur: Programmierung WS04/05 Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einführung in die Informatik 2 für Ingenieure (MSE) Alexander van Renen (renen@in.tum.de)

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1 D-MAVT NUMERISCHE MATHEMATIK FS 4 K. Nipp, A. Hiltebrand Lösung vom Test. Sei eps die Maschinengenauigkeit in Matlab. Dann gilt: eps/4 = Richtig / Falsch + eps/2 = Richtig / Falsch 8 + eps = 8 Richtig

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Prüfung Informatik D-MATH/D-PHYS :00 11:00

Prüfung Informatik D-MATH/D-PHYS :00 11:00 Prüfung Informatik D-MATH/D-PHYS 24. 1. 2014 09:00 11:00 Prof. Bernd Gartner Kandidat/in: Name:... Vorname:... Stud.-Nr.:... Ich bezeuge mit meiner Unterschrift dass ich die Prufung unter regularen Bedingungen

Mehr

Algorithmen und Programmierung II

Algorithmen und Programmierung II Algorithmen und Programmierung II Vererbung Prof. Dr. Margarita Esponda SS 2012 1 Imperative Grundbestandteile Parameterübergabe String-Klasse Array-Klasse Konzepte objektorientierter Programmierung Vererbung

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Was Mathematiker schon vor Jahrhunderten erfunden haben, gibt es jetzt endlich in ihrer Programmiersprache:

Was Mathematiker schon vor Jahrhunderten erfunden haben, gibt es jetzt endlich in ihrer Programmiersprache: Kapitel 8 Operatoren Was Mathematiker schon vor Jahrhunderten erfunden haben, gibt es jetzt endlich in ihrer Programmiersprache: Operatoren definieren Es ist in C++ möglich, Operatoren wie +, oder für

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen.

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen. Ziele sind das Arbeiten mit Funktionen und dem Aufzählungstyp (enum), sowie - einfache Verzweigung (if else) - Alternativen switch case - einfache Schleifen (while oder do while) Aufgabe 3: Diese Aufgabe

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 7 Gewöhnliche

Mehr

Mathematik - Antwortblatt Klausur

Mathematik - Antwortblatt Klausur Mathematik - Antwortblatt Klausur 30..09 Aufgabe: 0 Punkte a) Allgemein heißt eine Funktion f (x) stetig an der Stelle x 0, wenn die folgenden Bedingungen erfüllt sind (2 Punkte): f (x 0 )=lim h 0 f (x

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

Copyright by Hildegard Heilmann IAG 13.03.2004. Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung.

Copyright by Hildegard Heilmann IAG 13.03.2004. Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung. MTEquationSection;Flächenintegrale mit Derive Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung. Einige Anleitungen zum Arbeiten mit Derive: Befehle: VECTOR, ITERATES,

Mehr

Ziel, Inhalt. Programmieren in C++ Wir lernen wie man Funktionen oder Klassen einmal schreibt, so dass sie für verschiedene Datentypen verwendbar sind

Ziel, Inhalt. Programmieren in C++ Wir lernen wie man Funktionen oder Klassen einmal schreibt, so dass sie für verschiedene Datentypen verwendbar sind Templates und Containerklassen Ziel, Inhalt Wir lernen wie man Funktionen oder Klassen einmal schreibt, so dass sie für verschiedene Datentypen verwendbar sind Templates und Containerklassen 1 Ziel, Inhalt

Mehr

1 Abstrakte Klassen, finale Klassen und Interfaces

1 Abstrakte Klassen, finale Klassen und Interfaces 1 Abstrakte Klassen, finale Klassen und Interfaces Eine abstrakte Objekt-Methode ist eine Methode, für die keine Implementierung bereit gestellt wird. Eine Klasse, die abstrakte Objekt-Methoden enthält,

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

Kapitel 9. Programmierkurs. Attribute von Klassen, Methoden und Variablen. 9.1 Attribute von Klassen, Methoden und Variablen

Kapitel 9. Programmierkurs. Attribute von Klassen, Methoden und Variablen. 9.1 Attribute von Klassen, Methoden und Variablen Kapitel 9 Programmierkurs Birgit Engels Anna Schulze Zentrum für Angewandte Informatik Köln Objektorientierte Programmierung Attribute von Klassen, Methoden und Variablen Interfaces WS 07/08 1/ 18 2/ 18

Mehr

Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme

Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme Universität des Saarlandes Fachbereich Mathematik Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme Diplomarbeit zur Erlangung des akademischen Grades eines Diplom-Mathematikers

Mehr

Discontinuous-Galerkin-Verfahren

Discontinuous-Galerkin-Verfahren Discontinuous-Galerkin-Verfahren Dr. Gregor Gassner Institut für Aerodynamik und Gasdynamik der Universität Stuttgart. Stuttgart, 2013 Variationsformulierung 1 Ziel dieser Vorlesung ist es, das DG Verfahren

Mehr

Kurze Einführung in die Finite-Elemente-Methode

Kurze Einführung in die Finite-Elemente-Methode Kurze Einführung in die Finite-Elemente-Methode Stefan Girke Wissenschaftliches Rechnen 23 Die Finite-Elemente-Methode In diesem Skript soll eine kurze Einführung in die Finite-Elemente-Methode gegeben

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

1 Einführung und Begriffe

1 Einführung und Begriffe Numerik 4 1 Einführung und Begriffe 1.1 Mathematische Modellbildung und numerische Simulation am Beispiel eines Wasserkreislaufs 1.2 Linearisierung und Iterationsverfahren am Beispiel des Newton-Verfahrens

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Einführung in die C-Programmierung

Einführung in die C-Programmierung Einführung in die C-Programmierung Warum C? Sehr stark verbreitet (Praxisnähe) Höhere Programmiersprache Objektorientierte Erweiterung: C++ Aber auch hardwarenahe Programmierung möglich (z.b. Mikrokontroller).

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München WiSe 2015/16 Institut für Informatik Prof. Dr. Daniel Cremers Dr. Rudolph Triebel Nikola Tchipev Felix Dietrich Numerisches Programmieren 4. Programmieraufgabe: Freier Fall,

Mehr

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Privatdozent Dr. C. Diem diem@math.uni-leipzig.de http://www.math.uni-leipzig.de/ diem/wiwi MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Es folgt eine Musterlösung zusammen mit Anleitungen

Mehr

Ingenieurinformatik (FK 03) Übung 4

Ingenieurinformatik (FK 03) Übung 4 FG TECHNISCHE INFORMATIK I II U41 00 TA 03 Ingenieurinformatik (FK 03) Übung 4 VORBEREITUNG Erstellen Sie das Struktogramm der Funktion trapez für die Übung 4b mithilfe des Programms Structorizer. ÜBUNG

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

1. Übung zu "Numerik partieller Differentialgleichungen"

1. Übung zu Numerik partieller Differentialgleichungen 1. Übung zu "Numerik partieller Differentialgleichungen" Simon Gawlok, Eva Treiber Engineering Mathematics and Computing Lab 22. Oktober 2014 1 / 15 1 Organisatorisches 2 3 4 2 / 15 Organisatorisches Ort:

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 6. Vorlesung Stefan Hickel Finite - Volumen - Methode Finite - Volumen - Methode! Das Rechengebiet wird in nicht überlappende Bereiche (= finite Volumina) unterteilt.! Jedem

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

Übung 4 - SIMPLE-Verfahren

Übung 4 - SIMPLE-Verfahren Übung 4 - SIMPLE-Verfahren Musterlösung C. Baur, M. Schäfer Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau 27.11.2008 TU Darmstadt FNB 27.11.2008 1/26 Aufgabe 1 - Problembeschreibung Geometrie

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/43 Reapitulation Instationärer Transport Bac to reality Numeri und Simulation in der Geoöologie Sylvia Moenices VL 8 WS 2007/2008 2/43 Reapitulation Instationärer Transport Bac to reality Parcours Reapitulation

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Verschlüsseln eines Bildes. Visuelle Kryptographie. Verschlüsseln eines Bildes. Verschlüsseln eines Bildes

Verschlüsseln eines Bildes. Visuelle Kryptographie. Verschlüsseln eines Bildes. Verschlüsseln eines Bildes Verschlüsseln eines Bildes Visuelle Kryptographie Anwendung von Zufallszahlen Wir wollen ein Bild an Alice und Bob schicken, so dass Alice allein keine Information über das Bild bekommt Bob allein keine

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht ANALYSIS I FÜR TPH WS 206/7 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Untersuchung von Reihen mittels Konvergenzkriterien Aufgabe 2: Konvergenz und Berechnung von Reihen I Aufgabe 3: ( )

Mehr

Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen

Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen Giuseppe Bonfigli IFD, ETH-Zürich 3. Juni 21 Giuseppe Bonfigli (IFD, ETH-Zürich) Gewichtete Residuen 3. Juni 21 1

Mehr

Überblick. 6. Konstruktor und Destruktor - obligatorische Elementfunktionen einer Klasse

Überblick. 6. Konstruktor und Destruktor - obligatorische Elementfunktionen einer Klasse Überblick 1. Einführung C++ / Entwicklung/ Sprachfamilie 2. Nicht objektorientierte Erweiterungen von C 2.1 Das Ein-/Ausgabekonzept von C++ 2.2 Referenzen in C++ 2.3 Heap-Allokatoren in C++ 3. Grundlagen

Mehr

Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt

Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dipl.-inform. Oliver Kayser-Herold Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Wir

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

APEX Datenverwaltung Wo sind die Daten gerade? Dr. Gudrun Pabst

APEX Datenverwaltung Wo sind die Daten gerade? Dr. Gudrun Pabst APEX Datenverwaltung Wo sind die Daten gerade? Dr. Gudrun Pabst Basel Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg München Stuttgart Wien Voraussetzungen Alles hier gezeigte benötigt

Mehr

1 2 x x x x x x2 + 83

1 2 x x x x x x2 + 83 Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die

Mehr

Randwertbedingungen und Ghost Cells

Randwertbedingungen und Ghost Cells Randwertbedingungen und Ghost Cells Olaf Kern Universität Trier 16.Dezember 2010 Olaf Kern (Universität Trier) Seminar Numerik 1/23 16.Dezember 2010 1 / 23 Inhaltsverzeichnis 1 Einführung 2 Periodische

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn

Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Verfasst von Patrick Schneider E-Mail: Patrick.Schneider@uni-ulm.de Universität Ulm Institut für Numerische Mathematik Sommersemester

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM)

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 10

Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 10 Gudrun Fischer Sascha Kriewel programmierung@is.informatik.uni-duisburg.de Übungsblatt Nr. 10 Aufgabe 20: Code Verständnis Löse diese Aufgabe selbständig als Vorbereitung zur Übung auf dem Papier. a) Gib

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Funktionen in PHP 1/7

Funktionen in PHP 1/7 Funktionen in PHP 1/7 Vordefinierte Funktionen in PHP oder vom Entwickler geschriebene Funktionen bringen folgende Vorteile: gleiche Vorgänge müssen nur einmal beschrieben und können beliebig oft ausgeführt

Mehr

.NET Code schützen. Projekt.NET. Version 1.0

.NET Code schützen. Projekt.NET. Version 1.0 .NET Code schützen Projekt.NET Informationsmaterial zum Schützen des.net Codes Version 1.0 Autor: Status: Ablage: Empfänger: Seiten: D. Hoyer 1 / 6 Verteiler : Dokument1 Seite 1 von 1 Änderungsprotokoll

Mehr

C-Pointer (Zeiger, Adressen) vs. C++ Referenzen

C-Pointer (Zeiger, Adressen) vs. C++ Referenzen C-Pointer (Zeiger, Adressen) vs. C++ Referenzen Der Pointer (C/C++): In C/C++ ist der Pointer ein eigener Datentyp, der auf Variablen/Objekte zeigen kann. Indem man den Pointer dereferenziert, gewinnt

Mehr

Javadoc. Programmiermethodik. Eva Zangerle Universität Innsbruck

Javadoc. Programmiermethodik. Eva Zangerle Universität Innsbruck Javadoc Programmiermethodik Eva Zangerle Universität Innsbruck Überblick Einführung Java Ein erster Überblick Objektorientierung Vererbung und Polymorphismus Ausnahmebehandlung Pakete und Javadoc Spezielle

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Objektorientiertes Programmieren für Ingenieure

Objektorientiertes Programmieren für Ingenieure Uwe Probst Objektorientiertes Programmieren für Ingenieure Anwendungen und Beispiele in C++ 18 2 Von C zu C++ 2.2.2 Referenzen und Funktionen Referenzen als Funktionsparameter Liefert eine Funktion einen

Mehr

1 Batch Queuing (60 Punkte)

1 Batch Queuing (60 Punkte) Universität Hamburg Übungsblatt 3 zur Vorlesung Fachbereich Informatik Hochleistungsrechnen Wissenschaftliches Rechnen im WiSe 214/215 Prof. T. Ludwig, A. Fuchs, M. Kuhn, J. Lüttgau, E. Zickler Abgabe:

Mehr

4.5 Schranken an die Dichte von Kugelpackungen

4.5 Schranken an die Dichte von Kugelpackungen Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Höhere Mathematik I/II

Höhere Mathematik I/II Markus Stroppel Höhere Mathematik I/II Z. Zusätze. Z.. Skalarprodukte in Funktionenräumen. Wir wollen an einigen Beispielen zeigen, dass es nützlich sein kann, Skalarprodukte auch in ganz allgemeinen (reellen)

Mehr