Randwertbedingungen und Ghost Cells

Größe: px
Ab Seite anzeigen:

Download "Randwertbedingungen und Ghost Cells"

Transkript

1 Randwertbedingungen und Ghost Cells Olaf Kern Universität Trier 16.Dezember 2010 Olaf Kern (Universität Trier) Seminar Numerik 1/23 16.Dezember / 23

2 Inhaltsverzeichnis 1 Einführung 2 Periodische Randwert-Bedingungen 3 Advektion Outflow Inflow 4 Akustik Nicht-reflektierende Ränder Perfectly Matched Layer - Methode Eintretende Wellen Feste Wände Schwingende Wände 5 Zusammenfassung Olaf Kern (Universität Trier) Seminar Numerik 2/23 16.Dezember / 23

3 Einführung Möglicher Ansatz: Formeln für die Grenzen hängen vom Typ des Randes ab hängen vom Typ der Methode innerhalb ab u.u. werden Spezielle Fluss-Limiter benötigt. Olaf Kern (Universität Trier) Seminar Numerik 3/23 16.Dezember / 23

4 Einführung (2) Bisher: Randbehandlung im Lösungsalgorithmus: Vorteil: weniger abstrakte Programmierung der Randbedingung Nachteil: verschiedene Lösungsäste Olaf Kern (Universität Trier) Seminar Numerik 4/23 16.Dezember / 23

5 Einführung (3) Falls Gitter geordnet (z.b. kartesisch) können wir das 1D-Gitternetz um Ghost Cells erweitern: Diese haben folgende Eigenschaften: werden in jedem Zeitschritt aktualisiert möglichst gleiche Methode zur Berechnung wie im Inneren u.u. werden mehrere Schichten Ghost Cells benötigt Olaf Kern (Universität Trier) Seminar Numerik 5/23 16.Dezember / 23

6 Periodische Randwert-Bedingungen Im Intervall [a, b] gilt für periodische Randbedingungen q(a, t) = q(b, t) Eine sehr einfache und präzise Lösung ist: Q 0 := Q N Q N+1 := Q 1 für eine 3-Punkt-Schablone. Für größere Schablonen ist nur eine sukzessive Erweiterung nötig. Für eine 5-Punkte-Schablone ergibt dies: Q 1 := Q N 1 Q N+1 := Q 2 Olaf Kern (Universität Trier) Seminar Numerik 6/23 16.Dezember / 23

7 Advektion gegeben: eine Advektion im Intervall [a, b] mit Geschwindigkeit ū > 0 und der RWB q(a, t) = g 0 (t), wobei g 0 (t) gegeben ist q t + ūq x = 0 Das Ziel ist nun eine passende Randwertbedingung an x = b zu finden. Olaf Kern (Universität Trier) Seminar Numerik 7/23 16.Dezember / 23

8 Advektion - Outflow bei upwind oder Beam-Warming irrelevant bzw. beliebig bei Lax-Wendroff (3-Punkte-Methode) benötigt man auch rechte Zellennachbarn Ansatz: upwind am äußersten rechten Punkt kombiniert mit Lax-Wendroff im Innern Problem hierbei: Störungen am rechten Rand können Lösung konterminieren, und u.u. für Instabilität sorgen Olaf Kern (Universität Trier) Seminar Numerik 8/23 16.Dezember / 23

9 Advektion - Outflow (2) Lösungsansatz: Extrapolation 0. Ordnung der GC mit Hilfe der inneren Lösung: Setze einfach QN+i n := QN n, i = 1, 2 n Q n N+1 = 0 und F n N+ 1 2 = ūq n N (ū > 0) Da Q n 0 in Lax-Wendroff sein kann, haben wir in der letzten Zelle N 1 2 nicht immer eine upwind-methode 1. Ordnung. Eine weitere Möglichkeit wäre eine Extrapolation 1. Ordnung: Q n N+1 := Qn N + (Qn N Qn N 1 ) = 2Qn N Qn N 1 In diesem Fall haben wir eine upwind-methode 1. Ordnung mit φ(1) = 1. Trotzdem ist sie nicht zu empfehlen, da oft Stabilitätsprobleme aufkommen. Olaf Kern (Universität Trier) Seminar Numerik 9/23 16.Dezember / 23

10 Advektion - Inflow Betrachte Advektionsgleichung mit ū > 0 an x = a Ein möglicher Ansatz ist, Q n+1 1 mit Hilfe von F n 1/2 = 1 t = ū t tn+1 t n tn+1 t n ūq(a, t)dt g 0 (t)dt zu berechnen. Genauer, aber u.u. aufwendiger ist: F 1/2 = ūg 0 (t n + t 2 ) Olaf Kern (Universität Trier) Seminar Numerik 10/23 16.Dezember / 23

11 Advektion - Inflow (2) Auch für die GC links des Gitternetzes ist es das Ziel, diese mit der gleichen Methode zu berechnen. Wir möchten setzen. Mit Q n 0 = 1 x a a x q(x, t n )dx q(x, t n ) = q(a, t n + a x ū ) = g 0(t n + a x ū ) folgt Q0 n = 1 a g 0 (t n + a x x a x ū )dx = ū tn+ x/ū g 0 (τ)dτ x t n Mit der Mittelpunktsregel 2. Ordnung erhalten wir: Q n 0 = g 0 (t n + x 2ū ) und Q n 1 = g 0 (t n + 3 x 2ū ) Olaf Kern (Universität Trier) Seminar Numerik 11/23 16.Dezember / 23

12 Akustik Wiederholung p t + K 0 u x = 0 ϱ 0 u t + p x = 0 ω 1 (x, t) = 1 2Z 0 ( p + Z 0 u) ω 2 (x, t) = 1 2Z 0 (p + Z 0 u) Olaf Kern (Universität Trier) Seminar Numerik 12/23 16.Dezember / 23

13 Akustik - Nicht-reflektierende Ränder Wir haben ein AWP (Cauchy-Problem) mit u 0 (x) und p 0 (x) gegeben. Außerhalb von [a 1, b 1 ] seien diese konstant. { (p L, u L ), wenn x < a 1 (p, u) (p R, u R ), wenn x > b 1 Setze a, b so, dass a < a 1 < b 1 < b Eingehende Charakteristik: ω 2 (a 1, t) = 1 2Z 0 (p L + Z 0 u L ) Mittels Diagonalisierung erhält man: W 1 = ( Q 1 + Z 0 Q 2 )/2Z 0 W 2 = (Q 1 + Z 0 Q 2 )/2Z 0 Olaf Kern (Universität Trier) Seminar Numerik 13/23 16.Dezember / 23

14 Akustik - Nicht-reflektierende Ränder (2) Da am linken Rand ω 1 austritt, können wir bereits für diese extrapolieren. ω 2 wollen wir als eine Funktion g 0 (t) setzen. Dies erreichen wir durch: w 2 konst. an x=a ω 2 (a, t) = p L + Z 0 u L t 2Z 0 W 1 2 = W0 2 = 1 (p L + Z 0 u L ) 2Z 0 W1 2 und die Randwerte W 0 2 und W 1 2 können wir auch durch Extrapolation erhalten, um Q 0 und Q 1 zu berechnen. Dies führt zu den gleichen Werten wie eine simple Extrapolation 0. Ordnung von Q. Daher reicht es zu extrapolieren: Q n 0 = Q n 1, Q n 1 = Q n 1 t Olaf Kern (Universität Trier) Seminar Numerik 14/23 16.Dezember / 23

15 Akustik - Nicht-reflektierende Ränder (3) Das Problem der Extrapolation zeigt sich im Mehrdimensionalen: Solch offene Ränder können Störungen hervor rufen und sorgen zudem für großen Rechenaufwand Olaf Kern (Universität Trier) Seminar Numerik 15/23 16.Dezember / 23

16 Akustik - Nicht-reflektierende Ränder - PML Alternative: Perfectly Matched Layers - Methode winkel- und frequenzunabhängig Absorption Olaf Kern (Universität Trier) Seminar Numerik 16/23 16.Dezember / 23

17 Akustik - Nicht-reflektierende Ränder - PML (2) Etwas zur PML-Methode: basiert auf Maxwell-Gleichung u PML (x) := u(γ(x)) ū Amplitude 0 (exponentiell) innerhalb δ u.u. müssen weitere Unbekannte berechnet werden Unterscheidung in split, streched und uniaxiale PML: split: Aufteilung der Variablen streched: Variablen werden mit einem komplexen Faktor multipliziert uniaxiale: der PML-Bereich wird als anisotropes Material angenommen. Olaf Kern (Universität Trier) Seminar Numerik 17/23 16.Dezember / 23

18 Akustik - Eintretende Wellen Bisher haben wir eintretende Wellen ausgeschlossen. Diese werden nun betrachtet, desweiteren haben wir variierende Materialeigenschaften in [a 1, b 1 ], a < a 1 < b 1 < b Eintretende Wellen als: w 2 (a, t) = sin(ωt) Durch Dekomposition und Extrapolation Q 0 = W 1 1 r 1 + sin(ω(t n + x 2c 0 ))r 2 oder Q 0 = Q 1 + (sin(ω(t n + x 2c 0 )) W 2 1 )r 2 Olaf Kern (Universität Trier) Seminar Numerik 18/23 16.Dezember / 23

19 Akustik - Eintretende Wellen (2) Für ein größeres System von mehreren Gleichungen, wobei wir nur eine eingehende Charakteristik w j (a, t) = g 0 (t) haben wollen und die restlichen eingehendende und sämtiche ausgehenden Stärke 0 haben sollen: Q 0 = Q 1 + (g 0 (t n + x 2λ j ) W j 1 )r j wobei W j 1 = l j Q 1 der Eigenkoeffizient von r j in Q 1 und λ j der dazugehörige EW ist. Olaf Kern (Universität Trier) Seminar Numerik 19/23 16.Dezember / 23

20 Akustik - Feste Wände Wir betrachten eine feste Wand u(a, t) = 0 t sowie vorgegebenen Druck und Geschwindigkeit. Eine einfache Lösung für dieses Problem ist die Projektion der Daten aus x > a auf den Bereich x < a: Dies führt zu folgenden Formeln: p 0 (a ξ) = p 0 (a + ξ) u 0 (a ξ) = u 0 (a + ξ) u(a) = u(a) für Q 0 : p 0 = p 1, u 0 = u 1 für Q 1 : p 1 = p 2,u 1 = u 2 Olaf Kern (Universität Trier) Seminar Numerik 20/23 16.Dezember / 23

21 Akustik - Schwingende Wände gegeben: an x = a oszillierende Wand mit u(a, t) = εsin(ωt) Analoge Implementierung: wobei U(t) = u(a, t) für Q 0 :p 0 = p 1, u 0 = 2U(t n ) u 1 für Q 1 :p 1 = p 2, u 1 = 2U(t n ) u 2 Olaf Kern (Universität Trier) Seminar Numerik 21/23 16.Dezember / 23

22 Zusammenfassung Periodische BC Q n 1 = Qn N 1, Qn 0 = Qn N, Qn N+1 = Qn 1,.. Advektion Sowohl für Inflow als auch Outflow ist die Extrapolation 0. Ordnung am sinnvollsten und stabilsten. Akustik Bei ABC ist Extrapolation möglich. Im 1D sehr sinnvoll, schon ab 2D kommen Störungen ins Innere. Besser hier: PML-Methode Bei eintretenden Wellen setze Q 0 = Q 1 + (sin(ω(t n + x 2c 0 )) W1 2)r 2 An einer festen Wand Q spiegeln, wobei Geschwindigkeit negativiert wird (für Q 0 : p 0 = p 1, u 0 = u 1 ) Erweiterung bei einer schwingenden Wand um RWB: für Q 0 : p 0 = p 1, u 0 = 2U(t) u 1 Olaf Kern (Universität Trier) Seminar Numerik 22/23 16.Dezember / 23

23 Quellen Vielen Dank für die Aufmerksamkeit! Quellen: Randall J. Leveque - Finite-Volume Methods for Hyperoblic Problems Thorsten Tischler - Die Perfectly-Matched-Layer-Randbedingung M. Münch - Strömungsverfahren J.H. Ferziger, M. Peric - Computational Methods for Fluid Dynamics Olaf Kern (Universität Trier) Seminar Numerik 23/23 16.Dezember / 23

Hyperbolische Erhaltungsgleichungen und die Wellengleichung

Hyperbolische Erhaltungsgleichungen und die Wellengleichung Hyperbolische Erhaltungsgleichungen und die Wellengleichung Stefanie Günther Universität Trier 11.November 2010 Stefanie Günther (Universität Trier) Seminar Numerik 1/29 11.November 2010 1 / 29 Inhaltsverzeichnis

Mehr

Charakteristiken linearer hyperbolischer Differentialgleichungen

Charakteristiken linearer hyperbolischer Differentialgleichungen hyerbolischer Differentialgleichungen Referent: Universität Trier Fachbereich IV: Mathematik WS 21/211, 11.11.21 Seminar Numerik Erhaltungsgleichungen und Finite-Volumen-Verfahren Dozenten: Dr. Stehan

Mehr

METHODEN HÖHERER LÖSUNG Kapitel 6 Mareike Börsch Universität Trier

METHODEN HÖHERER LÖSUNG Kapitel 6 Mareike Börsch Universität Trier METHODEN HÖHERER LÖSUNG Kapitel 6 Mareike Börsch Universität Trier 02.12.2010 Überblick 1. Wiederholung 2. Lineare Methoden 3. Limiter und Slope Limiter Methoden 4. Fluss Limiter Funktionen 5. Harten Theorem

Mehr

Iterative Algorithmen für die FSI Probleme II

Iterative Algorithmen für die FSI Probleme II Iterative Algorithmen für die FSI Probleme II Rebecca Hammel 12. Juli 2011 1 / 22 Inhaltsverzeichnis 1 2 3 2 / 22 Zur Wiederholung: Wir definieren unser Fluid-Gebiet Ω(t) durch Ω(t) = {(x 1, x 2 ) R 2

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen Wellen Crashkurs PDG anhand von Beispielen Eine Welle ist ein erkennbares Signal, welches innerhalb eines Mediums von einer Seite zur anderen übertragen wird, mit einer erkennbaren Ausbreitungsgeschwindigkeit.

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 2 Aufgabe ) a) Berechne für alle natürlichen Zahlen n N das Integral e nx ln(x)dx. Mit Hilfe der partiellen Integration für f (x) = nx, somit f(x)

Mehr

Numerik von Anfangswertaufgaben Teil II

Numerik von Anfangswertaufgaben Teil II Institut für Numerische Mathematik und Optimierung Numerik von Anfangswertaufgaben Teil II Numerik partieller Differentialgleichungen Oliver Ernst Hörerkreis: 6. Mm, 8. Mm Sommersemester 2012 Inhalt 1.

Mehr

Erhaltungssätze & Finite Volumen. Einführung

Erhaltungssätze & Finite Volumen. Einführung Erhaltungssätze & Finite Volumen Einführung Übersicht 1. Allgemein 2. Verschiedene Formen und Funk@onen 5. Erhaltungssätze 6. Finite Volumen Methoden 7. Zusammenfassung 1. Allgemein Hyperbolische Differen@algleichungen

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 11 WS 2007/2008 2/25 Rekapitulation Simulation des Wärmetransportes

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

3D-Simulationen magneto-hydrodynamischer Instabilitäten in Akkretionsscheiben

3D-Simulationen magneto-hydrodynamischer Instabilitäten in Akkretionsscheiben 3D-Simulationen magneto-hydrodynamischer Instabilitäten in Akkretionsscheiben Wilhelm Kley, Jochen Peitz Daniel Marik Institut für Astronomie & Astrophysik Universität Tübingen Andreas Dedner, Dietmar

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben

Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Patrick Knapp Berichtseminar zur Bachelorarbeit Universität Konstanz 14.12.2010 Einleitung Aufgabenstellung min J(y,

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Flachwassergleichungen

Flachwassergleichungen Flachwassergleichungen Stefan Henrichs Universität Trier 16.Dezember 2010 Stefan Henrichs (Universität Trier) Seminar Numerik 1/28 16.Dezember 2010 1 / 28 Inhaltsverzeichnis 1 Motivation 2 Herleitung der

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

Übungen zu Numerische Mathematik (V2E2) Sommersemester 2008

Übungen zu Numerische Mathematik (V2E2) Sommersemester 2008 Übungen zu Numerische Mathemati (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Übungsblatt 1 Abgabe: 24. April 2008 Aufgabe 1 Zur Berechnung der Quadratwurzel

Mehr

Maximumprinzip und Minimumprinzip

Maximumprinzip und Minimumprinzip Maximumprinzip und Minimumprinzip Daniela Rottenkolber LMU München Zillertal / 13.12.2012 16.12.2012 Daniela Rottenkolber Maximumprinzip und Minimumprinzip 1/14 Übersicht Motivation mit Beispielen Schwaches

Mehr

Einige grundlegende partielle Differentialgleichungen

Einige grundlegende partielle Differentialgleichungen Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober 2010 1 / 14 Transportgleichung Eine der einfachsten Differentialgleichungen

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

t + f(u) x = 0 (5.1) 2 f

t + f(u) x = 0 (5.1) 2 f Kapitel 5 Nicht-lineare Gleichungen 5.1 Erhaltungsform Betrachte Gleichung wobei f(u hier eine nichtlineare Funktion (Fluss von u mit t + f(u x = 0 (5.1 2 f 2 0 ist, d.h. f(u ist konvex. Bisher (vgl. Gl.

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 8 Partielle

Mehr

Numerische Integration

Numerische Integration Numerische Integration home/lehre/vl-mhs-1/folien/uebung/num_integration/cover_sheet_5a.tex Seite 1 von 12. p.1/12 Inhaltsverzeichnis 1. Einführung 2. Newton-Cotes Formeln Rechteckformel Trapezformel Simpsonsche

Mehr

Geschwindigkeiten, Steigungen und Tangenten

Geschwindigkeiten, Steigungen und Tangenten Geschwindigkeiten, Steigungen und Tangenten 1-E Die Geschwindigkeit cc Wir beginnen mit dem Problem der Geschwindigkeit: Wie können wir die Geschwindigkeit eines bewegten Objektes in einem bestimmten Augenblick

Mehr

Interpolation und Integration mit Polynomen

Interpolation und Integration mit Polynomen Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Parallelisierung durch Gebietszerlegung

Parallelisierung durch Gebietszerlegung Parallelisierung durch Gebietszerlegung Jahn Müller jahn.mueller@uni-muenster.de Westfälische Wilhelms-Universität Münster 25.01.2008 1 Einleitung 2 Gebietszerlegung nicht überlappende Zerlegung überlappende

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Eine Welt aus Zahlen. Wie funktionieren Computersimulationen?

Eine Welt aus Zahlen. Wie funktionieren Computersimulationen? Eine Welt aus Zahlen. Wie funktionieren Computersimulationen? Steffen Börm Christian-Albrechts-Universität zu Kiel Night of the Profs 2016 S. Börm (CAU Kiel) Computersimulationen 18. November 2016 1 /

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

II. Elliptische Probleme

II. Elliptische Probleme II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1 Dirichlet Randwerte mit finiten Differenzen Einfachster

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

Einführung und Beispiele

Einführung und Beispiele Kapitel 7 Gewöhnliche Differentialgleichungen Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 7/2 Einführung und Beispiele Prof. R. Leithner, E. Zander Einführung in numerische

Mehr

Lineare DGL-Systeme 1. Ordnung

Lineare DGL-Systeme 1. Ordnung Lineare DGL-Systeme 1. Ordnung Eine Reihe von naturwissenschaftlichen Problemstellungen, wie z. B. Feder- Dämpfer-Systeme der Mechanik oder Kirchhoffsche Netzwerke der Elektrotechnik, lassen sich durch

Mehr

MODELLBILDUNG. Modellierung und Simulation von Strömen

MODELLBILDUNG. Modellierung und Simulation von Strömen MODELLBILDUNG Modellierung und Simulation von Strömen Prof. Dr. Hans Babovsky Technische Universität Ilmenau, SS 2008 1 1 Konzept Wir wollen für ein Teilchensystem (Gasteilchen in der Luft, Rußteilchen

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 7 Gewöhnliche

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Dynamische Analyse und infinite Elemente in Abaqus

Dynamische Analyse und infinite Elemente in Abaqus Dynamische Analyse und infinite Elemente in Abaqus nach Abaqus-Dokumentation C. Grandas, A. Niemunis, S. Chrisopoulos IBF-Karlsruhe Karlsruhe, 2012 Infinite Elemente (1) Infinite Elemente simulieren das

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Finite-Differenzen-Verfahren hoher Genauigkeit

Finite-Differenzen-Verfahren hoher Genauigkeit Universität Stuttgart, Fakultät Luft- und Raumfahrttechnik und Geodäsie - Vorlesung Finite-Differenzen-Verfahren Master-Studium, Spezialisierung 2 Semesterwochenstunden im SS, 3 LPs/ECTS Dr. Markus J.

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

Intervallaustauschtransformationen, Flüsse und das Lemma von Masur

Intervallaustauschtransformationen, Flüsse und das Lemma von Masur Intervallaustauschtransformationen, Flüsse und das Lemma von Masur Gregor Bethlen 1 Intervallaustauschtransformationen Stets sei in diesem Abschnitt I := [a, b] ein Intervall und a = a 0 < a 1

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung

1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Fakultät Informatik > Angewandte Informatik > Technische Informationssysteme Studentischer Vortrag 1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Mai, Tuan Linh Dresden, 17.Jan.2011 Inhalt 1. Motivation

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente . Session 6: Theoretische Geodäsie Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente 1 Jessica Franken Institut für Geodäsie und Geoinformation Professur für Theoretische

Mehr

Stationäre Newtonsche Strömung

Stationäre Newtonsche Strömung Stationäre Newtonsche Strömung Bettina Suhr Inhaltsverzeichnis 1 Einleitung 2 2 Die Navier-Stokes-Gleichungen 2 3 Die schwache Formulierung 2 4 Die Ortsdiskretisierung 5 4.1 Taylor-Hood Elemente........................

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

1 Die Problemstellung

1 Die Problemstellung Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph.D. ScientifiComputing Wir wollen als erstes das in diesem Praktikum zu behandelnde Problem aus

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Logarithmische Skalen

Logarithmische Skalen Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5 Contents 1 Ziele dieser Uebung 1 2 Finite-Differenzen-Methode 1 3 Das Programm 3 4 Dateien 4 5 Aufgaben 4 6 Ausblick 5 1 Ziele dieser Uebung 1.1 Einleitung Wir erweitern das Problem aus der letzten Uebung

Mehr

2.10 Lokale Funktionsanalyse

2.10 Lokale Funktionsanalyse 2.1 Lokale Funktionsanalyse Aufgabe Gegeben sei die Abbildung g : R 2 R 2 mit g(x, y) : (x 3 yx, y). Man bestimme alle Mengen M k : {(ξ, η) R 2 g 1 (ξ, η) hat genau k Elemente}. Wie verhält g sich in der

Mehr

Entwicklung einer hp-fast-multipole-

Entwicklung einer hp-fast-multipole- Entwicklung einer hp-fast-multipole- Boundary-Elemente-Methode Übersicht: 1. Motivation 2. Theoretische Grundlagen a) Boundary-Elemente-Methode b) Fast-Multipole-Methode 3. Erweiterungen a) Elementordnung

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Prüfungsfragen und Prüfungsaufgaben

Prüfungsfragen und Prüfungsaufgaben Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Burgersgleichung in 1D und 2D

Burgersgleichung in 1D und 2D Burgersgleichung in 1D und 2D Johannes Lülff Universität Münster 5.12.2008 Inhaltsverzeichnis 1 Einführung 2 Numerik 3 Phänomenologie 4 Analytische Ergebnisse 5 Zusammenfassung Herkunft der Burgersgleichung

Mehr

Numerik partieller Differentialgleichungen für Ingenieure

Numerik partieller Differentialgleichungen für Ingenieure Numerik partieller Differentialgleichungen für Ingenieure Von ir. J. J.I.M. van Kan und ir. A. Segal Technische Universität Delft Aus dem Niederländischen übersetzt von Burkhard Lau, Technische Universität

Mehr

FEM - Zusammenfassung

FEM - Zusammenfassung FEM - Zusammenfassung home/lehre/vl-mhs-1-e/deckblatt.tex. p.1/12 Inhaltsverzeichnis 1. Bedingungen an die Ansatzfunktion 2. Randbedingungen (Allgemeines) 3. FEM - Randbedingungen home/lehre/vl-mhs-1-e/deckblatt.tex.

Mehr