Vorlesung Physik für Pharmazeuten und Biologen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Physik für Pharmazeuten und Biologen"

Transkript

1 Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik

2 Freier harmonischer Oszillator

3 Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung für kleine ϕ : g l s( t) = d s( t) dt sinϕ ϕ = s l ω = g l Die Eigenfrequenz des Pendels ist unabhängig von der Masse! Versuch: 1:4 Pendel

4 Die Bewegungsgleichung des Federpendels Differentialgleichung d x m dt = Dx F D = Dx Rücktreibende Kraft Ansatz für die Lösung x( t) = A sin ( ω t +ϕ0) d x F = m dt Trägheitskraft mit fester Eigenfrequenz ω und frei wählbaren Konstanten A, ϕ ω = D m Bei der harmonischen Schwingung hängen Frequenz und Schwingungsdauer nicht von der Amplitude ab. [Versuch: Federpendel]

5 Harmonische Schwingung des Federpendels Auslenkung x(t) ϕ A 0 π A π 3π π 5π 3π ϕ Phase x( t) = A sin ( ω t +ϕ0) A : Amplitude ω : Kreisfrequenz ϕ 0 : Phase f = ω π : Frequenz

6 Energiebilanz bei harmonischen Schwingungen E + E = kin pot E ges 1 m ( ω x ) cos ( ω t) + Dx ( ω t) sin verwende D ω = und cos ϑ + sin ϑ = 1 m 1 Dx 0 = E ges Die Gesamtenergie einer harmonischen Schwingung ist dem Quadrat der Amplitude proportional

7 Gedämpfter harmonischer Oszillator

8 Gedämpfte Schwingungen m d x( t) dt = D x( t) γ dx( t) dt BGL gedämpfter Oszillator Einhüllende Ansatz für Lösung : x δ = ( ) δ t ( ) t γ m = A e sin 0 ω ' t Abklingkoeffizient Zeit τ A = 1/ δ = m γ Abklingzeit der Amplitude

9 Gedämpfte Schwingungen Weitere Eigenschaften des gedämpften Oszillators 1.) Die Kreisfrequenz ist etwas kleiner als die Kreisfrequenz im ungedämpften Fall ω = ω 0 1 γ mω0.) Die Energie nimmt exponentiell ab mit der Abklingzeit. τ E = m γ E ( ) t τ E t E e = 0 3.) Die Dämpfung wird durch den Gütefaktor (Q-Faktor) gekennzeichnet, welcher umgekehrt zum relativen Energieverlust pro Periode ist. Q = π E E

10 Getriebener gedämpfter Oszillator

11 Erzwungene Schwingungen m d x dt = γ dx dt D x + F 0 cos( ω t) Stationäre Lösung Bewegungsgleichung x( t) = A cos( ωt + ϕ) mit Amplitude A = F 0 m ( ω 0 ω ) + 4δ ω und relative Phase Versuche: Resonanz tan ϕ = ω δω 0 ω

12 Resonanz Amplitude Phase Α Resonanzkurve π π/ ω 0 ω 0 ω 0 ω ω R = ω 0 δ ω 0 ="Eigenfrequenz des Systems" ω R = Resonanzfrequenz des Systems" Versuche: Resonanzkatastrophe

13 Tacoma Bridge ähnlich: kein Gleichschritt auf Brücken

14 Das gekoppelte Pendel hat Frequenzen Kugel 1 Kugel Die Normalschwingungen (Fundamentalmoden) des Doppelpendels Ω1 = ω0 = g l Ω ω == 0 + D 1 m Versuch: Doppelpendel

15 Molekülschwingungen Normalmoden von CO Normalmoden von H O Absorptio on Infrarotspektrum von CO Wellenzahl : π/λ

16 Absorption und Transmission von infrarotem Licht bei Einstrahlung einer el.-magn. Welle werden die positiven Na + und negativen Cl - ausgelenkt und schwingen im Takt des elektr. Feldes kubische Struktur eines Kochsalz-Kristalls

17 Wellenausbreitung

18 Wellen : Ausbreitung von Störungen A( x = 0, t) = A0 sin(π f t) Am Ort x=0 führt das Seil eine harmonische Schwingung aus. Wenn die Schwingung am Ort x=0 einmal durchlaufen ist, hat sich die Störung gerade um eine Wellenlänge λ fortbewegt. Man erhält eine Ausbreitung der Schwingungsphase mit der Geschwindigkeit, c : λ / T = λ f = c Wellenlänge λ Versuch

19 Die harmonische Welle Eine eindimensionale, ungedämpfte harmonische Welle wird durch folgende Wellenfunktion beschrieben : A A ( x, t) = = = A A A π sin t τ sin sin π λ ( ω t k x ) [ ω ( t x c) ] x τ: Schwingungsdauer; f=1/τ: Frequenz; ω=π/τ: Kreisfrequenz λ: Wellenlänge; k=π/λ: Wellenzahl c= λ f=ω/k : Phasengeschwindigkeit A : Amplitude

20 Wellen - Eine Schwingung, die sich räumlich ausbreitet ist eine Welle. - Eine klassische Welle transportiert Energie aber keine Masse. Jedes Teilchen schwingt an seinem Ort aber bleibt dort gebunden. Transversale Wellen: Longitudinale Wellen:

21 Die Phasengeschwindigkeit : Beispiele c = λ f Schall (Gas) Schall (FK) Radio (UKW) IR Flachwasserwelle (h=cm) λ f c cm-0cm 3m 1µm-mm Hz 100MHz 331 m/s 3000m/s m/sm 4cm 10Hz 40cm/s c Festk =. E ρ c Wasser = g h c 1 Licht = = konst. ε µ 0 0

22 Wellen in und 3 Dimensionen - Ebene Wellen A(x,t) = A 0 sin(ω t kx) Welle breitet sich nach rechts aus A(x,t) = A 0 sin(ω t + kx) Welle breitet sich nach links aus A(x,t) = A 0 sin(ω t π λ x) Wellenfront : Linien gleicher Phase k: Wellenzahl k: Wellenvektor (Wellenstrahl), steht senkrecht auf den Wellenfronten und Zeigt in die Ausbreitungsrichtung. Sein Betrag ist die Wellenzahl. r v (, ) 0 sin( k x r A x t = A ω t ) k Versuch Wellenwanne v k

23 Überlagerung von Wellen : Superpositionsprinzip Die resultierende Amplitude ist die Summe der Einzelamplituden A(x,t) = A 1 (x,t) + A (x,t) Wellen überlagern sich ungestört! Linearer Bereich Verstärkung (Konstruktive Interferenz ): A ( x, t ) = A sin( ω t kx ) + A sin( ω t kx ) = A sin( ωt kx) Versuch Interferenz Auslöschung (destruktive Interferenz): A(x,t) = A sin(ωt kx) + A sin(ωt kx + π) = A sin(ωt kx) A sin(ωt kx) = 0

24 Huygens-Fresnel'sches Prinzip Jeder von einer Welle erregte Punkt wird selbst zum Ausgangspunkt einer neuen Kreis-/Kugelwelle. Viele Anwendungen! Gitter, Doppelspalt, Beugung an Kristallen,... Versuch Wellenwanne

25 Dopplereffekt Die wahrgenommene Frequenz einer Schallwelle hängt von der Relativgeschwindigkeit, v der Quelle und des Empfängers ab. Man unterscheidet: 1. Bewegter Sender Die Wellenlänge ändert sich und damit die Frequenz λ ' ' λ = λ 1m v c f ' = f 0 1m v c 1. Bewegter Empfänger Die Schallgeschwindigkeit ändert sich c = c m v ' f = f 1m v 0 c Versuch Dopplereffekt

26 Stehende Wellen

27 Stehende Wellen mit festen Randbedingungen Randbedingung A(0,t)=0, A(L,t)=0 Lösung : A( x, t) = A cos( ωt)sin( kx) Resonanzbedingung : L = n λ λ: Wellenlänge n : ganze Zahl Grundschwingungen einer fest eingespannten Saite Stehende Wellen entstehen durch Reflektion und Superposition!

28 Erzeugung von Tönen Versuch Kundtsches Rohr Holzpfeife Orgelpfeife

29 Obertöne einer Orgelpfeife geschlossene Pfeife (gedackte Pfeife) offene Pfeife

30 Überlagerung harmonischer Schwingungen, Frequenzspektrum

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k 2 H d xt ( ) Bewegungsgleichung: m k x t 2

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Begriff mechanische Welle Mechanische Schwingungen und Wellen Teil II - Wellen Definition: Eine mech. Welle ist die Ausbreitung einer mech. Schwingung im Raum, bei der Energie übertragen jedoch kein Stoff

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. Physik Schwingungen 3 Physik 2. Schwingungen. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Fluide 5 Themen Parameter einer Schwingung Harmonischer Oszillator Gedämpfter harmonischer Oszillator Resonanz

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II Wellenlehre und Optik: Wellen und Wellengleichung, Welle-Teilchen-Dualismus, Licht als Welle (Huygenssches Prinzip, Reflexion, Brechung und Beugung), Optik 3.1. Wellen und Wellengleichung

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Ergänzungen zur Physik I: Wellen (Zusammenfassung)

Ergänzungen zur Physik I: Wellen (Zusammenfassung) Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Ruhelage. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen ist.

Ruhelage. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen ist. WELLENLEHRE 1) Harmonische Schwingung 1.1) Fadenpendel Umkehrpunkt ŷ Umkehrpunkt y Ruhelage D: Ein Oszillator ist ein schwingfähiger Körper. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP 13. Vorlesung EP I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge Versuche: Stimmgabel mit u ohne Resonanzboden Pfeife Echolot und Schallgeschwindigkeit in Luft Heliumstimme Bereich hörbarer

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 6 - Physik B3 5.3 Energietransport 5.3. Phänomenologie Da schwingungsfähige Systeme Energie enthalten und sie zwischen den gekoppelten Systemen ausgetauscht wird, findet in Wellen ein Transport

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Übung 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1. Ein U-förmiger Schlauch ist etwa zur Hälfte mit Wasser gefüllt. Wenn man

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Schwingungen. Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist.

Schwingungen. Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist. Schwingungen Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist. Mit Kraft = Masse Beschleunigung, also F = m a, oder F = m ẍ erhalten wir

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

Physik. Zusammenfassung. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik HTI Burgdorf

Physik. Zusammenfassung. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik HTI Burgdorf Berner Fachhochschule Hochschule für Technik und Informatik HTI Burgdorf Zusammenfassung Physik Autor: Niklaus Burren Datum: 7. September 004 Inhalt. Teilchensysteme und Impulserhaltung... 4.. Massenmittelpunkt

Mehr

4. Schwingungen und Wellen

4. Schwingungen und Wellen Bei manchen Systemen (z.b. Fadenpendel) führt die Krafteinwirkung zu sich wiederholenden Vorgängen. Sind diese periodisch, so spricht man von Schwingungsvorgängen (um ortsfeste Ruhelage). Breiten sich

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

Schwingungen & Wellen (Akustik) Physik für Medizin- und Zahnmedizinstudenten

Schwingungen & Wellen (Akustik) Physik für Medizin- und Zahnmedizinstudenten Schwingungen & Wellen (Akustik) Physik für Medizin- und Zahnmedizinstudenten 23. Februar und 1. März 2012 Dr. rer. nat. Thorsten Schweizer, Dipl.-Phys., MHM schweizer.thorsten@mh-hannover.de Hinweis: Version

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.2 Wellen Physik für Mediziner 1 Wellenphänomene Wasserwellen Schallwellen Lichtwellen Physik für Mediziner 2 Definition einer Welle Eine Welle ist ein Vorgang, der sich

Mehr

TO Stuttgart OII 310 (Physik) Inhaltsverzeichnis

TO Stuttgart OII 310 (Physik) Inhaltsverzeichnis Inhaltsverzeichnis 0 Vorwort... 2 1 Eindimensionale mechanische Wellen... 3 1.1 Definition einer mechanischen Welle... 3 1.2 Arten von Wellen... 4 1.3 Beschreibung mechanischer Wellen... 5 1.4 Die Wellengleichung

Mehr

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

DER SCHALL ALS MECHANISCHE WELLE

DER SCHALL ALS MECHANISCHE WELLE DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Versuch e - Lineares Pendel

Versuch e - Lineares Pendel UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Grundlagenpraktikum A für Bachelor of Nanoscience Versuch e - Lineares Pendel 23. überarbeitete Auflage 2011 Dr. Stephan

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

Physik für Erdwissenschaften

Physik für Erdwissenschaften Physik für Erdwissenschaften 6. 12. 2005 (VO 18++) Emmerich Kneringer Schwingungen und Wellen Schwebungen, Wellenphänomene, Erdbebenwellen, Wasserwellen Was versteht man unter Physik Naturvorgänge erklären?

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

Einführung in die Akustik

Einführung in die Akustik Einführung in die Akustik von HANS BORUCKI 3., erweiterte Auflage Wissenschaftsverlag Mannheim/Wien/Zürich Inhalt 1. Allgemeine Schwingungslehre 13 1.1. Begriff der Schwingung 13 1.1.1. Die mechanische

Mehr

Versuch 3: Schwingungen und Wellen. Anleitung zum Anfängerpraktikum A1. Naturwissenschaftliche Fakultät II - Physik

Versuch 3: Schwingungen und Wellen. Anleitung zum Anfängerpraktikum A1. Naturwissenschaftliche Fakultät II - Physik U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 3: Schwingungen und Wellen 3. Auflage vom 9. Oktober 2013 Dr. Stephan Giglberger

Mehr

Einführung in die Akustik

Einführung in die Akustik Einführung in die Akustik von Hans Borucki 2, durchgesehene A uflage 1980 Fcc: : ::: r;:r:h 5 Technische noc^c^u:? Darmstadt HoaftcchuSü/tTüSe 4 x 0=64288 Dara Bibliographisches Institut Mannheim/Wien/Zürich

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

3 Akustik. 3.1 Schallwellen (Versuch 23) 12 3 AKUSTIK. Physikalische Grundlagen

3 Akustik. 3.1 Schallwellen (Versuch 23) 12 3 AKUSTIK. Physikalische Grundlagen 12 3 AKUSTIK 3 Akustik 3.1 Schallwellen (Versuch 23) (Fassung 11/2011) Physikalische Grundlagen Fortschreitende (laufende) Wellen Eine in einem elastischen Medium hervorgerufene Deformation breitet sich

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Handout zum Workshop. Schwerewellen. M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa

Handout zum Workshop. Schwerewellen. M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa Handout zum Workshop Schwerewellen M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa 2010 Institut für Atmosphäre und Umwelt Theorie der atmosphärischen Dynamik und des Klimas http://user.uni-frankfurt.de/~fruman/stumeta/

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Schallgeschwindigkeit in Gasen Seite 1

Schallgeschwindigkeit in Gasen Seite 1 1. Aufgabenstellung Schallgeschwindigkeit in Gasen Seite 1 1.1. Die Schallgeschwindigkeit und der Adiabatenexponent von Luft und Kohlendioxid sind mithilfe eines Kundtschen Rohres zu bestimmen. 1.2. Für

Mehr

Schwingungen und Wellen

Schwingungen und Wellen IV, 1 117 (2015) c 2015 Schwingungen und Wellen Dr. Jürgen Bolik Technische Hochschule Nürnberg ω 0 2 x 0, a A 10 4 10 3 10 2 δ ω 0 =10 4 10 2 0,1 10 0,2 0,4 0,6 1 1 0 0,5 1,0 ω 0 TH Nürnberg 2 Inhaltsverzeichnis

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

PN 1 Klausur Physik für Chemiker

PN 1 Klausur Physik für Chemiker PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.

Mehr

PS1. Schwingungen I Version vom 12. April 2016

PS1. Schwingungen I Version vom 12. April 2016 Schwingungen I Version vom 1. April 016 Inhaltsverzeichnis 1 Allgemeine Grundlagen 1.1 Begrie..................................... 1. Schwingungen.................................. 1.3 Freie gedämpfte

Mehr

Mechanischen Wellen. 1. Wellenerscheinungen im Alltag - Charakteristische Eigenschaften

Mechanischen Wellen. 1. Wellenerscheinungen im Alltag - Charakteristische Eigenschaften Mechanischen Wellen Literatur Dorn-Bader Physik 12/13 S. 126 ff 1. Wellenerscheinungen im Alltag - Charakteristische Eigenschaften 1.1. Schülerarbeit S. 126/127 Wellen im Alltag Elektromagnetische Wellen

Mehr

der Periodendauer ist die Frequenz der Schwingung = ω 1 (Masse mal Beschleunigung). Die Lösung dieser Differentialgleichung führt auf die

der Periodendauer ist die Frequenz der Schwingung = ω 1 (Masse mal Beschleunigung). Die Lösung dieser Differentialgleichung führt auf die Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Werkstoffwissenschaften 6 / AlN Martensstr. 7, 9158 Erlangen orlesung Grundlagen der WET I Dr.-Ing. Matthias Bickermann, Prof. Dr. A. Winnacker

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Inhalt Physik III Teil A: Teil B: Teil C: Teil D:

Inhalt Physik III Teil A: Teil B: Teil C: Teil D: Vorlesung Physik III WS 1/13 Inhalt Physik III Teil A: Wiederholung Mechanik, Analytische Mechanik, d Alembert sches Prinzip, Lagrange-Funktion und -Gleichungen, Kreiselphysik, Lagrange- Hamilton-Formalismus,

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische Schwingungen und Wellen Schwingungen sind zeitlich veränderliche, periodische Veränderung einer phys. Größe Wellen sind zeitlich und räumlich veränderliche periodische Veränd. einer phys. Größe

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2008/09 Klausur ( )

Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2008/09 Klausur ( ) Nur vom Korrektor auszufüllen 1 2 3 4 5 6 7 8 9 1 Note Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 28/9 Klausur (6.2.29 Name: Studiengang: In die Wertung der Klausur

Mehr

Physik auf grundlegendem Niveau. Kurs Ph

Physik auf grundlegendem Niveau. Kurs Ph Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden

Mehr

Anfänge in der Antike

Anfänge in der Antike Akustik Eine wesentliche Grundlage der Musik ist der Schall. Seine Eigenschaften erforscht die Akustik (griechisch: ακουειν = hören). Physikalisch ist Schall definiert als mechanische Schwingungen und

Mehr