PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch

Größe: px
Ab Seite anzeigen:

Download "PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch"

Transkript

1 PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität München Harmonische Schwingung Erinnerung x t) = x ( 0 ω = ω = D m π T cos( ωt ϕ) Gedämpfte Schwingung Getriebene Schwingung 0 Excursion / a.u. 0 Amplitude Nicht jede Schwingung ist harmonisch! Time / a.u. 0 0 ω/ω 0

2 Wellen und Akustik Beispiele für Wellen Wasserwellen Schallwellen P klein Phononen EM-Wellen P gross QM-Wellen Gravitationswellen H ˆψ = Eψ 600 m R. Kienberger et al. Nature 47 (004) 817 Gravitationswellendetektor GEO600 in Ruthe

3 Bisher: 1 Masse an 1 Feder Von der Schwingung zur Welle Jetzt: Viele (gleiche) Massen und Federn Experiment Magnetrollen Abstoßende Kraft zwischen Magnetrollen sorgt für ~ harmonisches Kraftgesetz. Typen von Wellen Longitudinal Richtungen von Auslenkung und Ausbreitung sind parallel einzig mögliche Wellenform in Gasen und Flüssigkeiten Wasserwellen (Oberfläche)? Aus P.A. Tipler, Physik Experiment Seilwelle Transversal Richtungen von Auslenkung und Ausbreitung sind senkrecht Polarisation möglich Beispiele: optische Phononen in Festkörpern, elektromagnetische Wellen

4 Beschreibung von Wellen: Allgemeine Wellenfunktion C Ein Wellenberg wird erzeugt und pflanzt sich mit der Geschwindigkeit c fort. Ein mitbewegter Beobachter photographiert die Welle und zeichnet einen Graph in seinem Koordinatensystem S. Idealerweise (ohne Dispersion) zeichnet er zu allen Zeiten t den gleichen Graphen! y y = y (x ) y = y(x) =?? x Wellengleichung Wellenphänome gehorchen allgemein folgender (partiellen) Differentialgleichung. (Hier 1-D Fall, allgemein natürlich 3D): y x = const y t Wie groß ist const? - allgemein

5 Die Phasengeschwindigkeit c Die Geschwindigkeit c, mit der sich ein bestimmter Zustand (z.b. maximale positive Auslenkung) fortpflanzt, nennt man Phasengeschwindigkeit. Excursion [a.u.] Position [a.u.] Phasengeschwindigkeit hängt natürlich von Art der Welle ab und von Eigenheiten des Trägers. z. B. Seilwelle: Dichte ρ A F Seilspannung σ = F/A Größenordnungen: Wichtiger Spezialfall: Harmonische Wellen Ein gespanntes Seil werde an einem Ende sinusförmig (bzgl. der Zeit) y = sin (ωt ) ausgelenkt. Verhalten des Seiles (ohne Dämpfung): y( x, t) = a sin( kx ωt φ) k = 1 ω = Auslenkung y 0.0 Auslenkung y Weg x Zeit t Harmonische Verhalten bezüglich x und t!

6 Bei nicht harmonischen Wellen hilft Herr Fourier Im allgemeinen werden Wellen nicht harmonisch sein, sondern einen sehr komplexen zeitlichen und räumlichen Verlauf haben. z.b.: Excursion [a.u.] 0 Jede periodische Funktion läßt sich als unendliche Summe von Sinus- und Kosinus- Funktionen schreiben Time / Position [a.u.] Akustik: Was schwingt da eigentlich? Experiment Klingel unter Käseglocke Klingel (oder andere Schallquelle) erzeugt in Luft periodische Druckschwankungen. Dadurch wird Energie aber keine Materie transportiert!

7 Intensität einer (Schall-)welle: Intensität, Dezibel und Phon Punktförmige Schallquelle: (Kugelwellen) Intensität und Druckamplitude p 0 : Das Ohr logarithmiert! Lautstärke in db log Atmen 10 db Rockkonzert 10 db Phon ist db bei 1 khz Stehende Wellen Wenn sich Wellen nicht beliebig im Raum ausbreiten können, kann es zu stehenden Wellen kommen. Experiment Stehende Seilwelle Experiment Stehende Schallwelle, Kundtsches Rohr Für feste Enden gilt: Jeweils wird die Frequenz ν des Erregers durchgestimmt. Bei bestimmten Frequenzen ν i ergeben sich stehende Wellen. Messung der Phasengeschwindigkeit!

8 Superposition und Interferenz Wellen überlagern sich ungestört (Superpositionsprinzip), d.h. die Wellenfunktionen zweier Wellen werden einfach addiert. Da die Auslenkung y ein Vorzeichen hat, kann diese Addition zu einer Verstärkung (konstruktive Interferenz) oder Abschwächung (destruktive Interferenz) führen Experiment: Wellen im -Dimensionalen (Wasserwelle) Zwei räumlich getrennte Erreger mit gleicher Frequenz und Phase (d.h. im Takt) Wenn der Gangunterschied von den Erregern zu einem Punkt P gleich λ (λ/) kommt es zu maximal konstruktiver (destruktiver) Interferenz. Experiment: Destruktive Interferenz von Schallwellen Wellenlänge Wegunterschied Allgemein Konstruktiv: Destruktiv:

9 Das Huygens-Prinzip Bei der Behandlung von Wellen-Phänomen darf jeder Punkt einer Wellenfront (D oder 3D) als Ausgangspunkt einer Elementarwelle gesehen werden. λ Beispiel: Ebene Wellen Wie sieht die nächste Front aus? Brechung und Huygens Brechung: Eine Welle pflanzt sich in einem Medium mit c 1 fort. Sie trifft auf eine Grenze zu einem zweiten Medium; dort pflanzt sie sich mit c < c 1 fort. Experiment: Brechung einer Wasserwelle θ 1 c 1 An der Grenzfläche wird der Strahl gebrochen. Es gilt das Snelliussche Brechungsgesetz: C θ sinθ 1 sinθ = c c 1 Herleitung aus dem Huygens-Prinzip

10 c 1 θ 1 θ c Weitere Wellenphänomene (Stichworte) Reflektion Schwebung Beugung Doppler-Effekt Dispersion Polarisation Mehr Wellen gibt es nächstes Semester in der Optik!

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 22.12.2006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Physik 1 für Chemiker und Biologen 11. Vorlesung

Physik 1 für Chemiker und Biologen 11. Vorlesung Physik 1 für Chemiker und Biologen 11. Vorlesung 22.01.2018 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, #282978 http://xkcd.com/1161/ Heute: - Wiederholung: Schwingungen - Resonanz - Wellen

Mehr

Physik 1 für Chemiker und Biologen 11. Vorlesung

Physik 1 für Chemiker und Biologen 11. Vorlesung Physik 1 für Chemiker und Biologen 11. Vorlesung 16.01.2017 Heute: - Wiederholung: Schwingungen - Resonanz - Wellen Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de http://xkcd.com/273/ Bitte genau ausfüllen!

Mehr

Physik 1 für Chemiker und Biologen 11. Vorlesung

Physik 1 für Chemiker und Biologen 11. Vorlesung Physik 1 für Chemiker und Biologen 11. Vorlesung 16.01.2017 Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Schwingungen - Resonanz - Wellen http://xkcd.com/273/ Klausur Bitte genau ausfüllen!

Mehr

Physik 1 für Chemiker und Biologen 11. Vorlesung

Physik 1 für Chemiker und Biologen 11. Vorlesung Physik 1 für Chemiker und Biologen 11. Vorlesung 22.01.2018 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, #282978 http://xkcd.com/1161/ Heute: - Wiederholung: Schwingungen - Resonanz - Wellen

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch PN 1 Einführung in die alphysik für Chemiker und Biologen 15.1.006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

EPI WS 2007/08 Dünnweber/Faessler

EPI WS 2007/08 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen Wiederholung: Resonanz 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Glas zersingen

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Schwingungen und Wellen Dr. Daniel Bick 08. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 08. Dezember 2017 1 / 34 Übersicht 1 Schwingungen

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger -

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger - Anhang C: Wellen Computersimulation der von zwei sich umkreisenden Schwarzen Löchern ausgelösten Gravitationswellen in der Raum-Zeit (Illu.) Albert Einstein 1879-19 Physik-II vorhergesagt 1916 (Albert

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen 9.2 Wellen Inhalt 9.2 Wellen 9.2.1 Harmonische Welle 9.2.2 Interferenz von Wellen 9.2.3 Wellenpakete 9.2.3 Stehende Wellen 9.2 Wellen 9.2 Wellen 9.2 Wellen Störung y breitet sich in Raum x und Zeit t aus.

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur.

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur. Dieter Suter - 90 - Physik B 5.1. Allgemeines 5. Wellen 5.1.1. Beispiele und Definition Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

Wellenlehre. Theorieschub

Wellenlehre. Theorieschub Wellenlehre Theorieschub Gliederung 1. Lehrbuchanalyse 2. Schulbuchanalyse 3. Kinematik vs. Dynamik 4. Zusammenfassend Theorie von Wellen 5. Offene ungeklärte Fragen 6.??? Lehrbuchanalyse Pohl: Einführung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Schwingungen und Wellen Dr. Daniel Bick 08. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 08. Dezember 2017 1 / 34 Übersicht 1 Schwingungen

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche

Mehr

Wellen. Experimentalphysik. B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5

Wellen. Experimentalphysik. B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5 Experimentalphysik Wellen B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5 Pendelkette www.berndbaumann.de info@berndbaumann.de page 2 Elongation Amplitude Wellenzahl Nullphase Kreisfrequenz

Mehr

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen 7. Periodische Bewegungen 7.2 Wellen 7.2.1 Harmonische Welle 7.2.2 Interferenz von Wellen 7.2.3 Wellenpakete 723 7.2.3 Stehende Wellen 7.2 Wellen Störung y breitet sich in Raum x und Zeit t aus. y = f(t)

Mehr

11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit

11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit Inhalt Wellenphänomene. Wellenausbreitung. Wellengleichung.3 Interferenzen und Gruppengeschwindigkeit Wellenphänomene Wellen sind ein weiteres wichtiges physikalisches Phänomen Anwendungen: Radiowellen

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

Alle Schwingungen, die sich nicht durch eine einfache Sinus-(Cosinus- )Funktion darstellen lassen, nennt man anharmonische Schwingungen.

Alle Schwingungen, die sich nicht durch eine einfache Sinus-(Cosinus- )Funktion darstellen lassen, nennt man anharmonische Schwingungen. 1..8 Phase/π.6.4.2. 1 2 3 4 ω/ω Bei der Resonanzfrequenz ist also bei maximaler Kraft jeweils der Nulldurchgang der Auslenkung, das heisst, die maximale Geschwindigkeit! Mit wachsender Frequenz ist die

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:

Mehr

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Roter Faden: Vorlesung 12+13+14: Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Versuche: Huygens sche Prinzip, Schwebungen zweier Schwinggabel,

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Wellen Dr. Daniel Bick 07. Dezember 2016 Daniel Bick Physik für Biologen und Zahnmediziner 07. Dezember 2016 1 / 27 Übersicht 1 Wellen Daniel Bick Physik

Mehr

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur.

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur. Prof. Dieter Suter Physik B3 SS 03 5.1 Grundlagen 5.1.1 Beispiele und Definition 5. Wellen Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

u(z, t 0 ) u(z, t 0 + t) z = c t Harmonische Welle

u(z, t 0 ) u(z, t 0 + t) z = c t Harmonische Welle u(z, t) l u(z, t + t) z Welle: Form der Auslenkung (Wellenlänge l) läuft fort; Teilchen schwingen um Ruhelage (Frequenz f = 1/T) Einheit der Frequenz : Hertz (Hz) : 1 Hz = 1/s Geschwindigkeit Wellenlänge

Mehr

Teil IV Diernstag, Wellen. Transversale und longitudinale Wellen Transversal nur im Festkörper möglich!

Teil IV Diernstag, Wellen. Transversale und longitudinale Wellen Transversal nur im Festkörper möglich! Teil IV Diernstag, 1.3.005 Wellen Was sind Wellen? Hier werden nur eindimensionale Wellen betrachtet. - Eine Bewegungsrichtung Wichtige Klassifikation der Wellen : Transversale und longitudinale Wellen

Mehr

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Photoeffekt) Licht besteht aus Teilchen (Quanten) Exakt: Quantenfeldtheorie Wellenoptik Annäherungsmöglichkeiten (Modelle):

Mehr

Das Hook sche Gesetz. Wenn man eine Messung durchführt und die beiden Größen gegeneinander aufträgt erhält man. eine Ursprungsgerade.

Das Hook sche Gesetz. Wenn man eine Messung durchführt und die beiden Größen gegeneinander aufträgt erhält man. eine Ursprungsgerade. Das Hook sche Gesetz 04-09.2016 Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional F s Wenn man eine Messung durchführt und die beiden Größen

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Wellen als Naturerscheinung

Wellen als Naturerscheinung Wellen als Naturerscheinung Mechanische Wellen Definition: Eine (mechanische) Welle ist die Ausbreitung einer (mechanischen) Schwingung im Raum, wobei Energie und Impuls transportiert wird, aber kein Stoff.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

8. Akustik, Schallwellen

8. Akustik, Schallwellen Beispiel 2: Stimmgabel, ein Ende offen 8. Akustik, Schallwellen λ l = n, n = 1,3,5,.. 4 f n = n f1, n = 1,3,5,.. 8.Akustik, Schallwellen Wie gross ist die Geschwindigkeit der (transversalen) Welle in der

Mehr

0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip

0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip 1 05.04.2006 0.1 76. Hausaufgabe 0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip Trifft eine Welle auf Barriere, die idealisiert nur in einem einzigen Punkt durchlässig ist, bildet sich im Öffnungspunkt

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II Wellenlehre und Optik: Wellen und Wellengleichung, Welle-Teilchen-Dualismus, Licht als Welle (Huygenssches Prinzip, Reflexion, Brechung und Beugung), Optik 3.1. Wellen und Wellengleichung

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

Kapitel 5: Mechanische Wellen

Kapitel 5: Mechanische Wellen Kapitel 5: Mechanische Wellen 5.1 Was sind Wellen? 5.2 Beschreibung der eindimensionalen Wellenausbreitung 5.3 Harmonische Wellen 5.4 Berechnung der Ausbreitungsgeschwindigkeit 5.5 Wellen im Festkörper

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Interferenz & Wellenfelder - Prof. Dr. Ulrich Hahn WS 2016/17 Interferenz von Wellen mehrere Anregungszentren speisen Wellen ins Medium ein: Wellen breiten sich

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Begriff mechanische Welle Mechanische Schwingungen und Wellen Teil II - Wellen Definition: Eine mech. Welle ist die Ausbreitung einer mech. Schwingung im Raum, bei der Energie übertragen jedoch kein Stoff

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional 18.04.2013 Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen

Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen Station A Fortschreitende Wellen a) Skizziere ein Wellental. Stelle darin die Schnelle und die Ausbreitungsgeschwindigkeit c dar. b) Die gemessene Ausbreitungsgeschwindigkeit: c = c) Warum kann nicht ein

Mehr

Physik für Erdwissenschaften

Physik für Erdwissenschaften Physik für Erdwissenschaften 9. 12. 2004 (VO 16) Emmerich Kneringer Schwingungen und Wellen Erdbeben Was versteht man unter Physik Naturvorgänge erklären? Die Naturvorgänge mit Formeln beschreiben? Gleichungen

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Ergänzungen zur Physik I: Wellen (Zusammenfassung)

Ergänzungen zur Physik I: Wellen (Zusammenfassung) Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen 1) Wellengleichung Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 014/15 Übungsblatt 6 (09.01.015) mit Lösungen Eine Welle, die sich in positiver x-richtung mit der Geschwindigkeit

Mehr

2 Mehrdimensionale mechanische Wellen

2 Mehrdimensionale mechanische Wellen TO Stuttgart OII 30 (Physik) Mehrdimensionale mechanische Wellen. Darstellung mehrdimensionaler Wellen Um die Beschreibung von mehrdimensionalen Wellen zu vereinfachen werden in Diagrammen nur die Wellenfronten

Mehr

13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13.

13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13. 13. Mechanische Wellen 13.1 Darstellung harmonischer Wellen 13.2 Überlagerung von Wellen, Interferenz und Beugung 13.33 Stehende Wellen 13.4 Schallwellen 13.5 Wellen bei bewegten Quellen Schematische Darstellung

Mehr

Aufgaben Mechanische Wellen

Aufgaben Mechanische Wellen I.2 Unterscheidung von Wellen 1. Beschreibe, in welche zwei Arten man Wellenvorgänge einteilen kann. 2. Welche Arten von mechanischen Wellen gibt es in folgenden Medien: a) Luft, b) Wasser, c) Stahl? I.3

Mehr

DER SCHALL ALS MECHANISCHE WELLE

DER SCHALL ALS MECHANISCHE WELLE DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 15. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 011/1 Übungsblatt 6 (7.01.01) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr 1:15-13:45

Mehr

Nach der Zusammenfassung des Stoffs aus dem ersten Teil der Vorlesung vor Weihnachten folgt nun der zweite Teil.

Nach der Zusammenfassung des Stoffs aus dem ersten Teil der Vorlesung vor Weihnachten folgt nun der zweite Teil. Übung zur Vorlesung PNI Physik für Chemiker Wintersemester 2007/08 Nadja Regner und Thomas Schmierer, Department für Physik, LMU München Zusammenfassung der 2ten Halbzeit, mit Kommentaren zum Spiel! Nach

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Rubens - Flammenrohr ******

Rubens - Flammenrohr ****** V050630 5.6.30 ****** Motivation Dieser wunderschöne Versuch führt auf eindrückliche Weise stehende Wellen in Gasen vor. Eperiment Abbildung : Eperimenteller Aufbau zum. Der Lautsprecher befindet sich

Mehr

Schallgeschwindigkeit in Gasen ******

Schallgeschwindigkeit in Gasen ****** V050510 5.5.10 ****** 1 Motivation Mittels Oszilloskop wird die Zeit gemessen, die ein Schallwellenimpuls nach seiner Erzeugung m Lautsprecher bis zum Empfänger (Mikrofon) braucht. 2 Experiment Abbildung

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Rubens - Flammenrohr ******

Rubens - Flammenrohr ****** V050630 5.6.30 ****** Motivation Dieser wunderschöne Versuch führt auf eindrückliche Weise stehende Wellen in Gasen vor. Eperiment Physik II, Prof. W. Fetscher, FS 008 Abbildung : In ein kreisrundes ohr

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP 13. Vorlesung EP I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge Versuche: Stimmgabel mit u ohne Resonanzboden Pfeife Echolot und Schallgeschwindigkeit in Luft Heliumstimme Bereich hörbarer

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 23.02.09 Inhaltsverzeichnis 1 Wellen 1 1.1 Allgemeines zu Wellen.................................... 1 1.1.1 Wellengleichung für

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment

5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment 5.9.4 ****** 1 Motivation Ein mit Kohlendioxid gefüllter Luftballon wirkt für Schallwellen als Sammellinse, während ein mit Wasserstoff gefüllter Ballon eine Zerstreuungslinse ergibt. Experiment Abbildung

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 12.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Schallwellen. Klassizifierung. Audioschall. hörbar für das menschliche Ohr. Frequenzen geringer als 16 Hz. Frequenzen höher als 20 khz

Schallwellen. Klassizifierung. Audioschall. hörbar für das menschliche Ohr. Frequenzen geringer als 16 Hz. Frequenzen höher als 20 khz 7a Akustik Schallwellen Klassizifierung nfraschall Frequenzen geringer als 6 Hz Audioschall hörbar für das menschliche Ohr Ultraschall Frequenzen höher als 0 khz Geschwindigkeit von Schallwellen beweglicher

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Prüfungsvorbereitung Physik: Optik, Schwingungen, Wellen

Prüfungsvorbereitung Physik: Optik, Schwingungen, Wellen Prüfungsvorbereitung Physik: Optik, Schwingungen, Wellen Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. ) Wie sehen wir Dinge? 2) Streuung 3) Brechung 4) Totalreflexion

Mehr

Kapitel 6. Schwingungen und Wellen 6.1 Schwingungen 6.2 Wellen 6.3 Schallwellen und Akustik. Straße von Gibraltar

Kapitel 6. Schwingungen und Wellen 6.1 Schwingungen 6.2 Wellen 6.3 Schallwellen und Akustik. Straße von Gibraltar 6 Schwingungen und Wellen 6.1 Schwingungen 6.2 Wellen 6.3 Schallwellen und Akustik Straße von Gibraltar 6.1 Federpendel: graphische Darstellung x( t ), x& ( t ), x&& ( t ) Phasendifferenz p/2 && x(t) x(t)

Mehr

Physikalisches Praktikum O 4 Debye-Sears Effekt

Physikalisches Praktikum O 4 Debye-Sears Effekt Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum O 4 Debye-Sears Effekt Versuchsziel Messung der Ultraschallwellenlänge. Literatur

Mehr

EINLEITUNG PHYSIKALISCHE CHARAKTERISTIKA

EINLEITUNG PHYSIKALISCHE CHARAKTERISTIKA EINLEITUNG Schall, Schwingungen oder Wellen, die bei Mensch oder Tier über den Gehörsinn Geräuschempfindungen auslösen können. Das menschliche Ohr ist in der Lage, Schall mit Frequenzen zwischen ungefähr

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.2 Wellen Physik für Mediziner 1 Wellenphänomene Wasserwellen Schallwellen Lichtwellen Physik für Mediziner 2 Definition einer Welle Eine Welle ist ein Vorgang, der sich

Mehr

Zusammenfassung. f m v. Interfernzφ. Chladnische Klangfiguren. oberes Vorzeichen: Objekte bewegen sich aufeinander zu

Zusammenfassung. f m v. Interfernzφ. Chladnische Klangfiguren. oberes Vorzeichen: Objekte bewegen sich aufeinander zu 7c Akustik Zusammenfassung f Dopplereffekt vmedium ± v ' = vmedium m v D Q f oberes Vorzeichen: Objekte bewegen sich aufeinander zu unteres Vorzeichen: Objekte entfernen sich voneinander ΔL Interfernzφ

Mehr

Experimentalphysik 1

Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Winter 2015/16 Vorlesung 4 Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 9 Mechanische Wellen 3 9.1 Harmonische Wellen...............................

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Reflexion, Brechung, Schallleistung, -intensität, -pegel, Lautstärke

Reflexion, Brechung, Schallleistung, -intensität, -pegel, Lautstärke Aufgaben 8 Wellen Reflexion, Brechung, Schallleistung, -intensität, -pegel, Lautstärke Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - das Reflexionsgesetz

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 9. Vorlesung 13.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Inhalt Physik III Teil A: Teil B: Teil C: Teil D:

Inhalt Physik III Teil A: Teil B: Teil C: Teil D: Vorlesung Physik III WS 1/13 Inhalt Physik III Teil A: Wiederholung Mechanik, Analytische Mechanik, d Alembert sches Prinzip, Lagrange-Funktion und -Gleichungen, Kreiselphysik, Lagrange- Hamilton-Formalismus,

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Wellen - Prof. Dr. Ulrich Hahn WS 06/7 Eigenschaften von Wellen Kette gekoppelter Oszillatoren: Auslenkung eines Oszillators Nachbarn folgen mit zeitlicher Verzögerung

Mehr

5.5.2 Seilwelle ******

5.5.2 Seilwelle ****** 5.5.2 ****** Motivation Die Fortpflanzungsgeschwindigkeit einer solitären wird als Funktion der Seilzugspannung gemessen. 2 Eperiment A Abbildung : Linkes Bild: Versuchsaufbau. Rechtes Bild: Lichtschranke

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 07 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Kontrollfragen Zeichnen Sie den typischen Verlauf einer Verformungskurve

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

4. Schwingungen und Wellen

4. Schwingungen und Wellen Bei manchen Systemen (z.b. Fadenpendel) führt die Krafteinwirkung zu sich wiederholenden Vorgängen. Sind diese periodisch, so spricht man von Schwingungsvorgängen (um ortsfeste Ruhelage). Breiten sich

Mehr

Zusammenfassung. f m v. Überschall. Interfernzφ. Stehende Welle. Chladnische Klangfiguren. Quelle

Zusammenfassung. f m v. Überschall. Interfernzφ. Stehende Welle. Chladnische Klangfiguren. Quelle 7c Akustik Zusammenfassung f allgemeine Formel Dopplereffekt vmedium ± v ' = vmedium m v D Q f oberes Vorzeichen: Objekte bewegen sich aufeinander zu unteres Vorzeichen: Objekte entfernen sich voneinander

Mehr