3. Übungsblatt Aufgaben mit Lösungen

Größe: px
Ab Seite anzeigen:

Download "3. Übungsblatt Aufgaben mit Lösungen"

Transkript

1 . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen in Parameterform dar. (b) Bestimmen Sie die Schnittmenge G = E F. (c) Welche der Mengen G, E, F ist ein Unterraum von R? Begründen Sie ihre Antwort. Lösung : (a) Parameterdarstellung von E Die Ebene E wird durch eine einzige Gleichung x = x beschrieben. Da wir drei Unbekannte haben, dürfen wir hier x beliebig wählen: x = t, t R. eine der Variablen x, x beliebig wählen. Sei x = s, s R. Dann ist x = s. Wir erhalten also drei Gleichungen mit zwei Parametern s und t. Dies führt auf die Parameterform E : x(s, t) = s + t, s, t R. Beachte, dass der Stützvektor von E der Nullvektor ist. Parameterdarstellung von F Seien a, b und c die Ortsvektoren der Punkte A, B und C. Dann ist eine Parameterdarstellung von F : F : x(α, β) = c + α(a c) + β(b c) = + α + β, α, β R. Beachte, dass die Parameterdarstellung von F nicht eindeutig ist. (b) Bestimmen der Schnittmenge G mit Hilfe der Parameterform von E und F Wir suchen also nach s, t bzw. α, β, sodass folgende Vektorgleichung erfüllt ist: s + t = Das zugehörige lineare Gleichungssystem lauetet s t α β s t α β + α + β. Aus der ersten Gleichung erhält man α =. In der zweiten Gleichung sind t oder β unabhängige Variablen. Sei β = r, r R. Dann ist t = r. Die dritte Gleichung liefert s = r. Nun setzen wir entweder s und t in E, oder α und β in F ein und erhalten die Lösungsmenge. Diese stellt eine Gerade dar: G : x(r) = r +, r R. (c) Nach Lemma. sind Geraden und Ebenen dann Unterräume, wenn sie das Nullelement enthalten. Die Ebene E ist also ein Unterraum, da der Stützvektor der Nullvektor ist. Das Nullelement liegt außerhalb von F. Somit kann diese Ebene kein Unterraum von R sein. Die Gerade G verläuft ebenfalls nicht durch das Nullelement, also ist G kein Unterraum. Aufgabe : Gegeben sind die Gerade G und die Menge E in R durch G : x = (,,, ) + λ (,,, ), λ R, E : x + x =. (a) Bestimmen Sie die Schnittmenge von G und E. (b) Geben Sie die Menge F der Form a x +a x +a x +a x = c an, die den Punkt ( ) enthält und senkrecht zu G ist. (c) Bestimmen Sie alle Punkte auf G, die von der Menge E den gleichen Abstand wie von der Menge F aus Aufgabenteil (b) haben. Lösung :

2 (a) Einsetzen der Parametrisierung von G in die Gleichung von E liefert: ( + λ) + ( + λ) = λ 8! = Also ist λ =, damit ist x = (,,, ) + (,,, ) = (,,, ) und G E = {(,,, ) }. (b) Die Menge F ist also senkrecht zu n = (,,, ), damit lautet F in Normalform: x + x + x = d. Nun ist noch d zu bestimmen. Einsetzen des Punkts (,,, ) liefert d = + =. Die Menge F ist also gegeben durch x + x + x =. (c) Wir bestimmen die Abstände von Punkten auf G mit Hilfe der Hesse Normalformen: d E (x) = x + x (λ) + ( ) λ = = 9 + d F (x) = x + x + x λ + λ + + λ = = λ + + Da die Hessesche Normalform den orientierten Abstand berechnet, bedeutet gleicher Abstand zu E und F einer der folgenden Fälle: d E (λ) = d F (λ): Also λ = λ, oder λ =, damit ist x = ( 8,,, ). G P P Die Punkte P und P haben jeweils den gleichen Abstand zu E und F. F E d E (λ) = d F (λ): Also ist λ = λ, und somit λ = 7. Damit lautet der zweite Punkt x = ( 8 7, 7, 7, ). Aufgabe : Betrachten Sie die Ebene E : x(s, t) = (,, ) + s(,, ) + t(,, ) und die beiden Geraden G : x(u) = (,, ) + u(,, ) und H : x(v) = (,, ) + v(,, ). (a) Berechnen Sie Schnittmengen der beiden Gerade mit E sowie die Abstände der beiden Geraden zu E. (b) Bestimmen Sie die Orthogonalprojektionen von G und H auf E. Lösung : Als erstes finden wir die Normalform x n = d von E, da die Normalform für die Bestimmung der Schnittmengen und Projektionen, sowie für Berechnung des Abstandes besser geeignet ist. Wir bestimmen erst einen Normalenvektor n = (a, b, c) zu E, d.h. den Vektor, der die Bedingungen a a b c = a b + c = und b c = c = erfüllt. Man hat: c = und a = b. Wir können z.b. n = (,, ) wählen. Ferner bestimmen wir den Koeffizienten d aus der Gleichung d = Die Normalform der Ebene E ist damit n = = + =. x + x =. () (a) Um die Schnittmenge E G zu bestimmen, setzen wir x = (,, ) + u(,, ) in (). Das ergibt + + u =, also u =. Die Schnittmenge besteht also aus einem Punkt S: E G = {S} mit OS = =. Da die Schnittmenge nicht leer ist, ist der Abstand zwischen E und G gleich null. Analog verfahren wir bei E H : zu lösen ist + v + v =.

3 Das ergibt =, d.h. die Schnittmenge ist leer: E H =. Die Gerade H ist zu der Ebene E parallel. Der Abstand von H zu E ist gegeben durch dist(q, E), wobei Q H ein beliebiger Punkt ist. Mit Q = ( ) H hat man OP n d dist (P, E) = = =. n (b) Wir beginnen mit der Geraden G, die die Ebene schneidet. Für die orthogonale Projektion Ĝ benötigen wir einen weiteren vom Schnittpunkt S verschiedenen Punkt Y der Geraden G, dessen Projektionspunkt Ŷ wir berechnen. Ĝ ist dann diejenige Gerade, die durch den Punkt S und den Projektionspunkt Ŷ verläuft, also Ĝ : x(u) = OS + u( OS O Ŷ ). Wir wählen den Punkt Y = ( ) auf G, stellen die Hilfsgerade G h : x(u) = OY + u(,, ) auf, die senkrecht zur Ebene steht und durch den Punkt Y verläuft. G h : x(u) = + u Jetzt schneiden wir E mit G h, um den Projektionspunkt Ŷ zu erhalten: G h E : + u + + u =. Also u = und damit Ŷ = ( ). Wir stellen die Gerade auf, die durch die Punkte S und Ŷ verläuft: Ĝ : x(u) = + u = + u Nun kommen wir zur Geraden H: Im Teil (a) der Aufagbe haben wir gesehen, dass E und H parallel sind. Als Richtungsvektor der orthogonalen Projektion Ĥ können wir also den Richtungsvektor von H nehmen. Für den Stützvektor projezieren wir den Stützvektor von H auf die Ebene E. Wir stellen wieder eine Hilfsgerade auf: H h : x(u) = + u und schneiden diese mit E : + u + + u =, also u = und der Stützvektor von gegeben. Die orthogonale Projektion von H auf E ist gegeben durch: Ĥ : x(u) = + u Ĥ ist durch (,, ) Aufgabe : Gegeben sind die Gerade G : x(s) = (,, ) + s(,, ), s R, sowie die Punkte P = ( ) und Q = ( ). (a) Bestimmen Sie eine Parameterdarstellung der Geraden H, die durch P und Q verläuft. (b) Bestimmen Sie den Punkt R auf G so, dass die Ebene E durch P, Q und R parallel ist zur Ebene E, die durch x + x x = beschrieben ist. Welchen Abstand haben die Ebenen von einander? (c) Unter welchem Winkel schneidet G die beiden Ebenen? Lösung : (a) Der Richtungsvektor von h ist r = QP = OP OQ = (,, ) (,, ) = (,, ), dann ist die Parameterdarstellung h : x (t) = + t, t R. (b) Wir überprüfen erst, dass P Q parallel zu E ist. Der Normalenvektor zu E ist n = (,, ). Es ist tatsächlich QP = =. Der Ansatz für R ist OR = Es soll gelten P R n =. Das ergibt die Gleichung = + s + s = ( + s) + + ( + s) = 7 + 7s.. = + s s

4 Daraus finden wir s =, also ist OR = (,, ) (,, ) = (,, ). Die Normalform von E ist durch x + x x = d gegeben, da der Normalenvektor n ist. Soll der Punkt P = ( ) dieser Ebene angehören, muss die Gleichung d = + = gelten. Jetzt können wir den Abstand zwischen E und E bestimmen dist (E, E ) = d = n (, ) = / = / 7. (c) Wir bestimmen erst den Winkel ϕ zwischen dem Richtungsvektor (,, ) von g und dem Normalenvektor n von E, : cos ϕ = (,, ) (,, ) (,, ) (,, ) = = Also ist ϕ = arccos ( 7/ ). Der gesuchte Winkel ist π/ ϕ = π/ arccos ( 7/ ). Aufgabe : Gegeben ist die Gerade G = x = + t R : t R. Bestimmen Sie alle Ebenen E R in Normalform, die G enthalten und den Abstand vom Ursprung haben. Lösung : Da nach dem Abstand zum Ursprung gefragt ist, beschreiben wir eine solche Ebene durch Ihre Hessesche Normalform, d.h. E = {x R : n x = } mit Normaleneinheitsvektor n. Die Bedingung G E impliziert n + tn = ± für alle t R. Insbesondere folgt n (,, ) = bzw. n = n. Die Normalenvektoren haben alle die Form ñ = (λ, µ, λ) mit λ, µ R. Zusammen mit der Norm ñ = λ + µ ergibt sich die weitere Bedingung bzw. Damit erhalten wir Es ergeben sich vier Fälle: Entweder ist µ =. Wir erhalten die Ebenen E, = x R : oder es ist (mit µ =, λ = ) mit ñ ñ (,, λ + µ λ ) = λ + µ = ± (µ λ) λ + µ =. (µ λ)µ =. x = ±, E, = {x R : n x = ± } n = Nun müssen wir noch überprüfen, in welcher Ebene die Gerade auch tatsächlich enthalten ist. Wir nehmen dazu einen Punkt aus der Gerade x = + t und setzen diesen in die Ebenengleichungen ein. Beginnen wir mit E, : x =. = ( ) =. Nun setzen wir x noch in E, ein: x = =.

5 Als Lösung bekommen wir die beiden Ebenen E = x R : x =, und (mit µ =, λ = ) E = {x R : x = }.

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Aufgaben zur Vektorrechnung

Aufgaben zur Vektorrechnung ) Liegt der Punkt P(; -; 2) auf der Geraden 4 g: x = 5+t 2? 6 2 Aufgaben zur Vektorrechnung 2) a) Wie groß ist der Abstand der Punkte A(4; 2; -4) und B(;-2;-4) zueinander? b) Gesucht wir der Mittelpunkt

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Gegeben seien die Ebene E : 4x + x + 8 =, der Punkt P = ( und die Gerade H : x(λ = (4,, + λ(,,, λ R. (a Bestimmen Sie eine Gerade durch den Punkt P, die senkrecht

Mehr

Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen

Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen ) Ein Flugzeug fliegt auf geradem Weg von A(; 4; ) nach B(5; ; ) und benötigt dafür eine Minute. Die Koordinaten wurden in km angegeben. Es fliegt

Mehr

Diplomvorprüfung LA H 06 VD : 1

Diplomvorprüfung LA H 06 VD : 1 Diplomvorprüfung LA H 6 VD : Aufgabe : (3 + + = 6 Punkte) Gegeben sei die Matrix A = a) Bestimmen Sie die Eigenwerte von A b) Bestimmen Sie alle Eigenvektoren der Matrix A c) Ist die Matrix A invertierbar?

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1 Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

Lagebeziehung von Ebenen

Lagebeziehung von Ebenen M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt Lösungsskizzen Klassische Aufgaben Lösung zu Abi - PTV Punktprobe: = + t aus allen Zeilen folgt t =, also liegt A auf g. Richtungsvektor von g: u = ; Normalenvektor von E: n = Da die n und u Vielfache

Mehr

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I FOS 994, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B(3 ) und C( ) gegeben, sowie die Punkte D a (a a a + ) mit a R..

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Lernzettel 2 für die Mathematikarbeit. 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten:

Lernzettel 2 für die Mathematikarbeit. 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten: Die Ebenenformen 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten: P (4/7/3); Q(1/1/1); R(2/-2/) Ein Punkt dient als Stützvektor, die anderen beiden werden von diesem abgezogen und dienen

Mehr

Klausur DI/LA F 2006 LA : 1

Klausur DI/LA F 2006 LA : 1 Klausur DI/LA F 26 LA : Aufgabe (4+2=6 Punkte): Gegeben seien die Matrix A und der Vektor b mit λ A = λ und b = λ a) Bestimmen Sie die Werte λ R, für welche das Gleichungssystem Ax = b genau eine, keine

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Ebenengleichungen und Umformungen

Ebenengleichungen und Umformungen Ebenengleichungen und Umformungen. Januar 7 Ebenendarstellungen. Parameterdarstellung Die Parameterdarstellung einer Ebene ist gegeben durch einen Stützvektor r, der einen Punkt auf der Ebene angibt und

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am. September 5 (mit Lösungen) Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 5 7 Summe Note Punkte Die Klausur

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand Abituraufgaben bis 8 Baden-Württemberg Geraden, Ebenen, Abstand allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 8 Aufgabe : (Abiturprüfung 8) Gegeben sind die Ebenen E: xx x

Mehr

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Abitur Mathematik Bayern Prüfungsteil B; Aufgabengruppe : Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern Aufgabe a) SCHRITT: BERECHNUNG DER VEKTOREN AB UND AC Den Flächeninhalt eines Dreiecks

Mehr

Teil II. Geometrie 19

Teil II. Geometrie 19 Teil II. Geometrie 9 5. Dreidimensionales Koordinatensystem Im dreidimensionalen Koordinatensystem gibt es acht Oktanten, oben I bis VI und unten VI bis VIII. Die Koordinatenachsen,x 2 und stehen jeweils

Mehr

Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen)

Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) 1) a) Ein Flugzeug fliegt von A(4; 2; 5) nach B(12; 6; 10). In S(10; 10; 4,75) befindet sich die Spitze eines Berges. Wie weit fliegt das Flugzeug

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

6.6. Abstandsbestimmungen

6.6. Abstandsbestimmungen 6.6. Abstandsbestimmungen 6. Geraden und Ebenen im Raum In diesem Kapitel werden folgende Fälle vorgestellt:. Abstand zweier Punkte. Abstand zweier paralleler Geraden 3. Abstand einer Ebene zu einer zur

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: N. Borg, S. Hagh Shenas Noshari, 5. Gruppenübung zur Vorlesung S. Nitsche, C. Rösinger, Höhere Mathematik 1 A. Thumm, D. Zimmermann Wintersemester 218/19 M. Stroppel Lösungshinweise zu den Hausaufgaben:

Mehr

Aufgabe 4: Analytische Geometrie (WTR)

Aufgabe 4: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 4 a) (1) SEITENLÄNGEN BERECHNEN Die Seitenlängen sind die Abstände der Eckpunkte voneinander:, 31 30 1 12 10 2 14 16 2 1 4 4 9 3, 31 32 1 12 11 1 14

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

Mathematik 12. Jahrgangsstufe - Hausaufgaben

Mathematik 12. Jahrgangsstufe - Hausaufgaben Mathematik. Jahrgangsstufe - Hausaufgaben Inhaltsverzeichnis Raumgeometrie. Punkte einer Geraden............................... Punkte und Geraden................................ Geraden und Punkte................................5

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Prüfungsteil B, Aufgabengruppe 2: Geometrie

Prüfungsteil B, Aufgabengruppe 2: Geometrie Bundesabitur Mathematik: Bayern 01 Aufgabe 1 a) 1. SCHRITT: VEKTOR CH BESTIMMEN CH = ( 8 108 ) ( 10) = ( 0 ). 3. SCHRITT: LÄNGE DES VEKTORS BERECHNEN CH = ( ) + 3 =. 3. SCHRITT: BERECHNUNG DES FLÄCHENINHALTS

Mehr

Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE]

Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE] Abitur Mathematik: Bayern 2 Aufgabe a). SCHRITT: KOORDINATEN DES PUNKTS B ANGEBEN 2 2 OB = OA + AB = OA + DC = ( ) + ( 2) = ( 2) B(2 2 ) 2. SCHRITT: VOLUMEN BERECHNEN V = G h, wobei G die Fläche des quadratischen

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade (R 3 )

Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade (R 3 ) Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade R 3 ) Gerade - Gerade in R 3 ) Der Fall sich schneidender Geraden ist uninteressant. Es existiert dann ein beliebiger Abstand je nach der

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Übungsaufgaben zu Kapitel 1 und 2

Übungsaufgaben zu Kapitel 1 und 2 Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel und Aufgabe : Vereinfachen Sie die folgenden komplexen Ausdrücke

Mehr

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x G3 KLAUSUR PFLICHTTEIL Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () (2 VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = e 2x+. x (2) (2 VP) Gegeben ist die Funktion f mit f(x)

Mehr

Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

und spannen die folgende Ebene auf: E = a + Ru + Rv.

und spannen die folgende Ebene auf: E = a + Ru + Rv. .5. Geraden und Ebenen Parameterdarstellungen von Geraden und Ebenen gewinnt man, indem man einen Ortsvektor (mit Spitze auf der Geraden oder Ebene und einen bzw. zwei Richtungsvektoren wählt, welche die

Mehr

Inhaltsverzeichnis Bausteine Analytische Geometrie

Inhaltsverzeichnis Bausteine Analytische Geometrie Graf-Zeppelin-Gmnasium Bausteine Analtische Geometrie Inhaltsvereichnis Bausteine Analtische Geometrie Umgang mit Vektoren1 Länge von Vektoren1 Winkel φ wischen wei Vektoren1 Normale u wei (linear unabhängigen)

Mehr

1 Grundlagen der analytischen Geometrie

1 Grundlagen der analytischen Geometrie M. Pester 3 Grundlagen der analtischen Geometrie. Punkte, Vektoren, Geraden, Ebenen Einsat rechnerischer Methoden für die Behandlung geometrischer Beiehungen. Punkten werden Zahlentupel (Koordinaten) ugeordnet.

Mehr

Ebenen in Normalenform

Ebenen in Normalenform Ebenen in Normalenform Normalenvektoren und Einheitsvektoren Definition Normalenvektor Ein Normalenvektor einer Ebene ist ein Vektor, der senkrecht auf einer Ebene steht (siehe Seite 12). Berechnung eines

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 )

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 ) Geraden und Ebenen Thérèse Tomiska 2. Oktober 2008 1 Geraden 1.1 Parameterdarstellung (R 2 und R 3 ) a... Richtungsvektor der Geraden g t... Parameter X = P + t P Q P Q... Richtungsvektor der Geraden g

Mehr

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Merkhilfe Vektorrechnung

Merkhilfe Vektorrechnung Merkhilfe Vektorrechnung 1. Was ist ein Vektor? 2. Verbindungsvektor AB =? 3. Punkte A und B, Gerade g Punkte A, B und C, Ebene E 4. Mitte M der Strecke AB OM =? a 1 a = a 2, b 1 b = b 2 a 3 b 3 5. Betrag

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 2: Der Euklidische Raum Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 30. Oktober 2007) Vektoren in R n Definition

Mehr

Geometrie. Ingo Blechschmidt. 4. März 2007

Geometrie. Ingo Blechschmidt. 4. März 2007 Geometrie Ingo Blechschmidt 4. März 2007 Inhaltsverzeichnis 1 Geometrie 2 1.1 Geraden.......................... 2 1.1.1 Ursprungsgeraden in der x 1 x 2 -Ebene.... 2 1.1.2 Ursprungsgeraden im Raum..........

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II

FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B( 3) und C( 3) gegeben.. Die Punkte A und B bestimmen die Gerade g. Die Ebene E enthält den Punkt C und steht senkrecht auf

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Teil

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und " Untersuchen

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und  Untersuchen Aufgabe A6/08 Gegeben sind die zwei parallelen Gerade und durch 2 3 1 6 : 9 4, : 2 8;, 4 1 5 2 Bestimmen Sie den Abstand der beiden Geraden. (Quelle Abitur BW 2008 Aufgabe 6) Aufgabe A7/08 Die Ebene geht

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0 Übung (5). Lösen Sie folgendes lineare Gleichungssystem - sagen Sie zuvor, wie die Lösungsmenge aussehen sollte bzw. geometrisch zu interpretieren wäre: 4x y +u 3v = 3x u + v =0 x +3y u +v =0. Sagen Sie

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Michael Buhlmann Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Einleitung: Elemente der Vektorrechnung im dreidimensionalen reellen kartesischen x -x -x 3-Koordinatensystem sind Punkte P(p

Mehr

Kursstufe K

Kursstufe K Kursstufe K 6..6 Schreiben Sie die Ergebnisse bitte kurz unter die jeweiligen Aufgaben, lösen Sie die Aufgaben auf einem separaten Blatt. Aufgabe : Berechnen Sie das Integral Lösungsvorschlag : exp(3x

Mehr

Algebra 4.

Algebra 4. Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr