Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7"

Transkript

1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U V einen Untervektorraum von V? b) Man nennt eine Teilmenge A V einen (nichtleeren) affinen Unterraum von V, falls ein Untervektorraum U von V und ein p V existiert mit A = p + U := {p + u u U}. Zeigen Sie, dass in dieser Situation auch A = x + U für jeden Punkt x A gilt. c) Seien A und B affine Unterräume von V, so dass A B gilt. Zeigen Sie, dass dann auch A B wieder ein affiner Unterraum von V ist. 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben. a) Geben Sie eine Parameterdarstellung für die Schnittgerade der beiden Ebenen an. b) Zeigen Sie, dass der Punkt P = in der Ebene E liegt. Geben Sie eine Parameterdarstellung für die Gerade g an, welche im Punkt P senkrecht auf der Ebene E steht. c) In welchem Punkt durchstößt die Gerade g die Ebene E?

2 7. (Herbst, Thema, Aufgabe ) Im euklidischen Raum R sei E die Ebene, auf der die drei Punkte P = (,, ), Q = (,, ), R = (,, ) liegen. Sei g die Gerade, die den Ursprung enthält und die auf E orthogonal ist. Man bestimme g, sowie den Schnittpunkt von g mit E und den Spiegelpunkt des Ursprungs in Bezug auf E. 7.4 (Herbst, Thema, Aufgabe ) Für α R \ {} seien durch α α E α = + R + R α und F α = α + R α α + R Ebenen in R 4 definiert. Bestimmen Sie alle α R, für die sich E α und F α schneiden. 7.5 (Frühjahr, Thema, Aufgabe 4) Betrachten Sie die Ebene E := { (x, y, z) R x + y = } R und zu gegebenem λ R die Teilmenge G λ := { (x, y, z) R x + y λz = und x y + λz = + λ } R im euklidischen Vektorraum R. a) Zeigen Sie, dass G λ für jede Wahl von λ R eine Gerade ist und geben Sie eine Gleichung dieser Geraden in Parameterform an. b) Bestimmen Sie alle λ R, so dass E und G λ einen nicht-leeren Schnitt haben und berechnen Sie diesen jeweils. 7.6 (Frühjahr 8, Thema, Aufgabe 5) Gegeben seien die Punkte A :=, B :=, C :=, D := 4 R. 5 a) Bestimmen Sie die Hessesche Normalform für die Gleichung der durch A, B, C verlaufenden Ebene. Welchen Abstand hat D von dieser Ebene? b) Geben Sie eine Parameterdarstellung für jede Gerade durch D an, welche auf der Ebene aus a) senkrecht steht. Bestimmen Sie den Schnittpunkt dieser Geraden mit der Ebene.

3 7.7 (Frühjahr 4, Thema, Aufgabe ) Gegeben seien die folgenden drei Geraden L, L, L R : x x L : y R x + y z = y R x y z = z z L : t R t R t L : Verbindungsgerade durch und. a) Zeigen Sie, dass sich die Geraden paarweise schneiden und bestimmen Sie die Schnittpunkte p, p, p. b) Sei R das Dreieck mit den Ecken p, p, p. Bestimmen Sie alle drei Innenwinkel sowie den Flächeninhalt von. 7.8 (Frühjahr 4, Thema, Aufgabe 4) Im euklidischen Raum (R, ), versehen mit dem Standardskalarprodukt, seien die Punkte 5 A =, B = und C = 5 5 gegeben. a) Man zeige, dass das Dreieck ABC gleichschenklig und rechtwinklig ist, und bestimme den Punkt D, so dass ABCD ein Quadrat ist. b) Man bestimme eine Gleichung für die Ebene E, in der das Quadrat ABCD liegt, sowie eine Parameterdarstellung für die Lotgerade l zu E durch den Mittelpunkt von ABCD. c) Man bestimme alle Punkte S auf der Geraden l, für welche die Pyramide mit der Grundfläche ABCD und der Spitze S das Volumen 6 besitzt. 7.9 (Frühjahr, Thema, Aufgabe ) Sei A = M(, R) und v = R. 4 a) Sei U das Bild von A. Bestimmen Sie eine Basis von U. b) Bestimmen Sie den Punkt u U, der v am nächsten liegt. Legen Sie dabei die euklidische Norm des R zugrunde. c) Bestimmen Sie den Abstand zwischen v und U bezüglich der euklidischen Norm des R.

4 7. (Herbst 4, Thema, Aufgabe ) Sei f die lineare Abbildung f : R R, x Ax, mit A := und sei G die durch die Gleichungen x + y z = x z = bestimmte Gerade. Berechnen Sie den Abstand des Punktes p = (5,, ) zu G und zu Bild(f). 7. (Herbst, Thema, Aufgabe 4) a) Die Ebenen E und E sind im R gegeben als die Menge aller Vektoren (x, y, z) t, die E : x + y + z = und E : x y + z = genügen. Berechnen Sie eine Parameterform von E E. b) Es sei P die Menge aller Punkte p R, die von E und E denselben Abstand haben. Zeigen Sie, dass P die Vereinigung zweier Ebenen ist und bestimmen Sie eine Parameterform dieser beiden Ebenen. 7. (Herbst 7, Thema, Aufgabe 4) Im euklidischen R seien die Ebene E und die Gerade G gegeben durch x E := y x + y + z =, G := + r : r R. z a) Zeigen Sie, dass E und G parallel sind. b) Bestimmen Sie den euklidischen Abstand der Gerade G von der Ebene E. 7. (Frühjahr, Thema, Aufgabe 5) Gegeben seien im euklidischen R die Gerade g durch ihre Punkte A = (,, ) t und B = (,, ) t, sowie die Gerade g durch ihren Punkt C = (,, 7) t und ihren Richtungsvektor v = (,, 4) t. a) Bestimmen Sie die Gleichung der Ebene E, welche die Gerade g enthält und zur Geraden g parallel ist. b) Welchen Abstand hat die Gerade g von der Ebene E? Liegt g auf der gleichen Seite von E wie der Ursprung?

5 7.4 (Frühjahr 5, Thema, Aufgabe 4) a) Zeigen Sie, dass es genau eine Ebene F R gibt, welche die drei Punkte, 4, enthält und bestimmen Sie eine Gleichung von F in Normalenform. b) Gegeben sei die Ebene E : x + y + z = in R. Bestimmen Sie E F in Parameterform und den kürzesten Abstand von E F von der y Achse. 7.5 (Frühjahr, Thema, Aufgabe ) Im R seien die Geraden g := + R und h := R 5 gegeben. Finden Sie zwei verschiedene Punkte p g und q h so, dass die Gerade durch p und q auf beiden Geraden g und h senkrecht steht. 7.6 (Frühjahr 9, Thema, Aufgabe ) Im R seien die beiden Geraden 5 g = + R, g = + R gegeben. Bestimmen Sie die Fußpunkte des gemeinsamen Lotes und den Abstand beider Geraden. 7.7 (Frühjahr 7, Thema, Aufgabe 4) Im euklidischen R seien die Vektoren t = 4, u =, t = 4, u = 6 6 und damit die Geraden g = t + R u sowie g = t + R u gegeben. a) Zeigen Sie, dass g und g windschief sind. b) Bestimmen Sie die gemeinsame Lotgerade l von g und g. c) Berechnen Sie den Abstand zwischen g und g.

6 7.8 (Herbst, Thema, Aufgabe ) Im euklidischen R mit den Koordinaten x, y, z seien zwei Geraden gegeben, und zwar die Gerade L, welche die beiden Punkte P = und P = enthält, sowie der Durchschnitt M der Ebenen E : x z =, E : x + y =. Bestimmen Sie den Abstand zwischen L und M. 7.9 (Herbst 7, Thema, Aufgabe ) Im R seien die beiden folgenden Geraden gegeben: g := + R, g = + R. a) Geben Sie ein lineares Gleichungssystem an, dessen Lösungsmenge die Gerade g ist. b) Bestimmen Sie für das gemeinsame Lot der beiden Geraden die Fußpunkte auf g und g. 7. (Frühjahr 7, Thema, Aufgabe ) a) Geben Sie im R zwei nicht parallele Geraden g durch (,, ) und h durch (,, ) an, welche sich nicht schneiden. b) Bestimmen Sie den Abstand zwischen g und h. 7. (Herbst, Thema, Aufgabe 4) Gegeben seien in R die Geraden g = + λ λ R g = + λ λ R g = 7 + λ λ R a) Zeigen Sie, dass g und g ein eindeutiges gemeinsames Lot l haben. Zeigen Sie, dass l auch das eindeutige gemeinsame Lot von g und g sind. b) Folgern Sie, dass l ein gemeinsames Lot von g und g ist. Ist l das einzige gemeinsame Lot von g und g?

7 7. (Herbst 9, Thema, Aufgabe 4) Im euklidischen R seien die windschiefen Geraden g : R und g : + R gegeben. a) Finden Sie Punkte A g und B g so, dass die Strecke AB parallel zur x, y Ebene ist und die Länge hat. b) Wie groß ist die minimale Länge l einer Strecke, die einen Punkt auf g mit einem Punkt auf g verbindet und zur x, y Ebene parallel ist? 7. (Herbst, Thema, Aufgabe 4) Im euklidischen R seien die beiden folgenden Geraden gegeben: 7 g = + R und h = + R. 7 a) Zeigen Sie, dass l = + R die gemeinsame Lotgerade von g und h ist. Bestimmen Sie die beiden Lotfußpunkte und damit den Abstand von g und h. b) Berechnen Sie den Mittelpunkt einer Kugel mit kleinstem Radius, welche g und h berührt, und begründen Sie diese Rechnung. 7.4 (Frühjahr 8, Thema, Aufgabe 4) Der euklidische R sei mit dem Standardskalarprodukt versehen. Zeigen Sie, dass der Punkt P := R Mittelpunkt einer Kugel K R ist, die sowohl die Gerade 5 g := 7 + R 8 als auch die Ebene x E := y R x + y 6 z = 8 z berührt. Geben Sie den Radius r dieser Kugel K sowie ihre Berührpunkte mit der Geraden g und der Ebene E an.

8 7.5 (Frühjahr, Thema, Aufgabe 5) Sei e, e, e, e 4 die Standardbasis in R 4. Bestimmen Sie mit Hilfe des Standardskalarproduktes den Abstand des Punktes e von der Ebene U R 4, welche von den Vektoren e + e und e + e 4 aufgespannt wird. 7.6 (Herbst, Thema, Aufgabe ) In R 4 betrachten wir die Geraden g = {(4,,, 5) + λ(,,, ) λ R} und h = {(,,, ) + λ(,,, ) λ R}. Bestimmen Sie einen Punkt P g auf g und einen Punkt P h auf h, deren Verbindungsvektor P g P h sowohl auf g als auch auf h senkrecht steht. Berechnen Sie den Abstand zwischen g und h. 7.7 (Herbst, Thema, Aufgabe ) Im euklidischen R 4 mit Standardskalarprodukt und Standardnorm seien u =, u =, u = 4, v =, v = u R 4 6 U = u + R u + R u, V = v + R v, a) Berechnen Sie eine Basis von W. W = R u + R u + R v R 4. b) Berechnen Sie den Abstand von U und V. 7.8 (Frühjahr, Thema, Aufgabe ) Es sei a R ein Parameter. ( ) x a) Geben Sie eine Gleichung an für die Menge M a aller Punkte P = R y, ( ) ( ) a welche vom Punkt Q = und von der Geraden G = R den a gleichen Abstand haben. b) Bestimmen Sie v a, w a R so, dass c) Zeigen Sie: Nur für a = ist M a eine Gerade. 7.9 (Herbst, Thema, Aufgabe ) Gegeben sei das Dreieck im R mit den Ecken ( ) ( ) va M a und M w a. a A = (, ), B = (4, ), C = (, ). a) Bestimmen Sie für dieses Dreieck den Schwerpunkt S, den Umkreismittelpunkt U und den Höhenschnittpunkt H. b) Zeigen Sie, dass S, U und H zusammen auf einer Geraden liegen.

9 7. (Frühjahr, Thema, Aufgabe 5) In der euklidischen Ebene R werde das Dreieck mit den Ecken betrachtet. A = (, ), B = (, ), C = (, ) a) Bestimmen Sie für dieses Dreieck den Mittelpunkt und den Radius des Umkreises. b) Bestimmen Sie Gleichungen für die Tangenten T A, T B und T C an den Umkreis in den Punkten A, B und C. c) Berechnen Sie die Schnittpunkte A von T A und BC, B von T B und CA, C von T C und AB dieser Tangenten mit den Verlängerungen der ihnen gegenüberliegenden Dreiecksseiten. 7. (Herbst 8, Thema, Aufgabe 5) In der euklidischen Ebene R werde das Dreieck mit den Ecken betrachtet. A = (, ), B = (4, ), C = (, ) a) Es sei t R und P = (t, t) R. Bestimmen Sie die Hessesche Normalform der Geradengleichung für die Gerade BC und damit den Abstand d des Punktes P von der Geraden BC als Funktion von t. b) Berechnen Sie den Inkreismittelpunkt I des Dreiecks ABC. c) Berechnen Sie die Berührpunkte A BC, B CA und C AB des Inkreises mit den Dreiecksseiten. d) Zeigen Sie: Die drei Geraden AA, BB und CC treffen sich in einem Punkt. 7. (Herbst 5, Thema, Aufgabe 4) In der euklidischen Ebene R mit den Koordinaten x, y sei ein Dreieck P QR gegeben durch seine Ecken P = (, ), Q = (, ), R = (, ). a) Zeigen Sie: Der Kreis K mit Mittelpunkt (, ) und Radius geht durch P und berührt die durch die Dreieckseite QR definierte Gerade in R. b) Finden Sie eine Gleichung für den Kreis K, der durch Q geht und die durch die Seite RP definierte Gerade in P berührt, sowie eine Gleichung für den Kreis K, der durch R geht und die durch die Seite P Q definierte Gerade in Q berührt. c) Bestimmen Sie die Schnittpunkte der Kreise K und K. Zeigen Sie: Es gibt einen Punkt B R, in dem sich alle drei Kreise K, K, K schneiden.

10 7. (Herbst 9, Thema, Aufgabe ) Es sei V ein euklidischer Vektorraum mit Skalarprodukt,. Weiter seien a b V Punkte in V. Es bezeichne E V die Menge aller Punkte x V, welche von a und b den gleichen Abstand haben. a) Rechnen Sie nach, dass (a + b) E. b) Zeigen Sie, dass E die affine Hyperebene mit der Gleichung ist. a b, x = a, a b, b c) Bestimmen Sie im Fall, dass V der euklidische R ist, sowie 5 a = 6 und b = für E eine Parameterdarstellung 7.4 (Herbst 4, Thema, Aufgabe 4) E = p + Rv + Rv := {p + λ v + λ v λ, λ R}. Im euklidischen Raum R, versehen mit dem Standardskalarprodukt, seien die vier Punkte A =, 5 B =, 4 C = 5 und D = gegeben. a) Man zeige, dass die Menge g aller Punkte X von R, die von A, B und C denselben Abstand besitzen, eine Gerade ist, und gebe eine Parameterdarstellung von g an. b) Man bestimme den Mittelpunkt M und den Radius r der Umkugel des Tetraeders mit den Ecken A, B, C, D. Man entscheide mit Begründung, ob M im Inneren des Tetraeders liegt. 7.5 (Herbst 8, Thema, Aufgabe 4) In der Ebene R sei die Gerade g mit der Gleichung x + y = gegeben. Die Spiegelung an dieser Geraden sei S : R R. ( ) x a) Berechnen Sie für einen Punkt P = die Koordinaten des gespiegelten y Punktes S(P ). b) Berechnen Sie für die Gerade g mit der Gleichung x y = die Gleichung der gespiegelten Geraden g = S(g ).

11 7.6 (Herbst 6, Thema, Aufgabe 4) Im euklidischen Raum R sei die Ebene E gegeben durch die Gleichung x + x + x = 5. Weiter sei f : R R die Orthogonalprojektion auf die Ebene E. Bestimmen Sie die Matrix A und den Vektor t R so, dass für alle x R gilt: 7.7 (Frühjahr 7, Thema, Aufgabe 5) Im R seien die Ebenen f(x) = A x + t. H : x + y + z = und E : z = gegeben. Weiter sei π : E H die Orthogonalprojektion von E auf H, d.h. die Parallelprojektion längs der Normalenrichtung von H. Finden Sie eine Matrix A und einen Vektor v R so, dass x π y = A 7.8 (Herbst 4, Thema, Aufgabe 4) ( ) x + v für alle y Betrachten Sie die inhomogene lineare Gleichung x y + z =. a) Geben Sie die Lösungsmenge U in Parameterform an. x y E. b) Sei U der zu U parallele Untervektorraum. Bestimmen Sie die Matrix M der Spiegelung an U. c) Bestimmen Sie die Spiegelung S an der affinen Ebene U als eine affine Abbildung S : R R, x Ax + t mit A R und t R. 7.9 (Frühjahr 5, Thema, Aufgabe 5) Sei das Dreieck im R mit den Eckpunkten A = (, ), B = (, ) und C = (4, ). Sei das Dreieck im R mit den Eckpunkten à = (, 9), B = (, ) und C = (, 7). a) Skizzieren Sie die beiden Dreiecke und in einem rechtwinkligen Koordinatensystem b) Geben Sie explizit die affine Abbildung f : R R mit f(a) = Ã, f(b) = B und f(c) = C an, welche auf abbildet.

12 7.4 (Herbst 7, Thema, Aufgabe ) a) Zeigen Sie, dass die Punkte P := (,, ) t, P := (,, ) t, P := (,, ) t und P := (,, ) t R nicht in einer Ebene liegen. b) Es sei ψ : R R die bijektive affine Abbildung mit ψ(p ) = (,, ) t, ψ(p ) = (,, ) t, ψ(p ) = (,, ) t, ψ(p ) = (,, ) t. Finden Sie eine Matrix A und einen Vektor b R so, dass für alle x R gilt ψ(x) = A x + b. 7.4 (Herbst, Thema, Aufgabe ) a) Zeien Sie, dass es genau eine bijektive affine Abbildung f : R R mit (( )) ( ) (( )) ( ) (( )) ( ) f =, f = und f = gibt. b) Zeigen Sie, dass f sogar eine Bewegung (d.h. abstandserhaltend) ist und bestimmen Sie den Typ dieser Bewegung. 7.4 (Herbst, Thema, Aufgabe 4) a) Bestimmen Sie alle affinen Abbildungen f : R R mit f((, )) = (, ) und f((, )) = (, ). Gibt es unter all diesen affinen Abbildungen eine Bewegung (d.h. eine Isometrie)? ( ) ( ) x y + 5 b) Zeigen Sie, dass g : eine Bewegung (d.h. eine Isometrie) y x + des R ist. Zeigen Sie, dass g eine Gleitspiegelung ist und berechnen Sie die zugehörige Spiegelungsgerade und den zugehörigen Translationsvektor. 7.4 (Herbst 5, Thema, Aufgabe 5) Es seien A R und t R. Die affine Abbildung f : R R mit f(x) = A x + t sei eine Drehung der euklidischen Ebene R mit Drehzentrum z. a) Begründen Sie, dass für alle p R gilt: p z = f(p) z. b) In R seien die folgenden vier Punkte gegeben: ( ) ( ) ( 7 5,5 p =, q =, p = ), q = ( ),5. Zeigen Sie, dass es genau eine Drehung f um ein Drehzentrum z R gibt mit f(p) = p und f(q) = q. Berechnen Sie z, sowie die Matrix A und den Vektor t von f.

13 7.44 (Herbst, Thema, Aufgabe 4) Es seien A = ( ) 4, B = ( ) 4, C = ( ), A = ( ), B = ( ), C = ( ) Ortsvektoren von Punkten in R. Gegeben seien die Dreiecke mit den Ecken A, B und C sowie mit den Ecken A, B und C. a) Bestimmen Sie die Seitenlängen der beiden Dreiecke. b) Zeigen Sie, dass eine Bewegung f des R, die das Dreieck auf das Dreieck abbildet, notwendig f(a) = A, f(b) = C und f(c) = B erfüllt. c) Zeigen Sie, dass es genau eine Bewegung f des R gibt, die das Dreieck auf das Dreieck überführt, indem Sie f konkret angeben (Frühjahr, Thema, Aufgabe 4) In der euklidischen Ebene R seien das Dreieck mit den Ecken ( ) ( ) ( ) 7 a =, b = und c =, 5 5 sowie das Dreieck mit den Ecken ( ) ( ) 8 a =, b = gegeben. und c = ( ) 5 a) Skizzieren Sie die beiden Dreiecke und im kartesischen Koordinatensystem der Ebene und berechnen Sie ihre Seitenlängen. b) Zeigen Sie, dass es genau eine Drehung d : R R, d(x) = D x + t, mit einer Drehmatrix D und einem Vektor t R gibt, welche das Dreieck auf das Dreieck abbildet. Geben Sie D und t explizit an (Frühjahr 5, Thema, Aufgabe ) a) Zeigen Sie, dass es genau eine Bewegung (= abstandserhaltende affine Transformation) g im R gibt, welche die Menge {( ) ( ) ( )} 8 4,, auf die Menge {( ), abbildet. ( ), b) Berechnen Sie das Bild des Dreiecks {( ) ( ), unter g., ( )} 8 ( )}

14 7.47 (Herbst, Thema, Aufgabe ) Sei ϕ s : R R definiert durch ( ) ( ) s 4 ϕ s (x) := A s x + b := x +, s = s 4 a) Bestimmen Sie alle Vektoren s R, so dass A s das Vielfache einer orthogonalen Matrix ist. ( ) b) Betrachten Sie nun ϕ s mit s =. Bestimmen Sie den Fixpunkt von ϕ s. ( ) c) Es sei weiterhin ϕ s mit s =. Weiter sei m der Fixpunkt von ϕ s. Bestimmen Sie ein α >, so dass ϕ s den Kreis K := { x R : x m = } auf den Kreis K := { x R : x m = α } abbildet. (Es bezeichne die euklidische Norm.) 7.48 (Herbst, Thema, Aufgabe 4) Es sei A die Menge der affinen Abbildungen f : R R. Beweisen oder widerlegen Sie: a) Ist b, b eine Basis von R und sind f, g A mit f(b ) = g(b ) und f(b ) = g(b ), dann folgt f = g. b) Ist f A und gilt f(λ x) = λ f(x) für jedes x R und jedes λ R, so ist f eine lineare Abbildung (Frühjahr 4, Thema, Aufgabe 5) ( s s ). a) Im reellen Vektorraum R seien ( ) ( ) p =, p =, p = ( ) 4 und p 4 = ( ) gegeben. Man zeige, dass es genau eine bijektive affine Abbildung f : R R, f(x) = M x + t, mit f(p ) = p, f(p ) = p, f(p ) = p 4 und f(p 4 ) = p gibt, und bestimme ihre Matrix M R sowie ihren Vektor t R. b) Die Affinität f : R R von Teilaufgabe a) bildet den Einheitskreis {( ) } x K = R x + x = x auf eine Ellipse E R ab. Man bestimme eine Gleichung für E.

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Algebra 3.

Algebra 3. Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge. 1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 7 7. a) s = ; s = 5, 5, 5 Über den Satz des Pythagoras ist die Länge der Vektoren bestimmbar. Die Länge von = ist = + +. s 6,9 m und s 6,97

Mehr

Lektionen zur Vektorrechnung

Lektionen zur Vektorrechnung Die Homepage von Joachim Mohr Start Mathematik Lektionen zur Vektorrechnung in Aufgaben Diese Datei kann auch als PDF-Datei heruntergeladen werden. Download... Es handelt sich um " Basisaufgaben " der

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 0 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 446 455 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

Beispiel mit Hinweisen 1 1/3 Dreieck

Beispiel mit Hinweisen 1 1/3 Dreieck Beispiel mit Hinweisen 1 1/3 Dreieck Zeige für das Dreieck ABC [ A(5/5), B(29/15), C(5/15) ] die Richtigkeit von folgender Behauptung: Die drei Verbindungsstrecken der Eckpunkte mit den Berührungspunkten

Mehr

Grundkursabitur 2006 Analytische Geometrie Aufgabe VI. In einem kartesischen Koordinatensystem sind die Punkte A 3 2 3,,

Grundkursabitur 2006 Analytische Geometrie Aufgabe VI. In einem kartesischen Koordinatensystem sind die Punkte A 3 2 3,, Grundkursabitur 6 Analytische Geometrie Aufgabe VI In einem kartesischen Koordinatensystem sind die Punkte A,, B C6 und D6 sowie die Gerade g: X gegeben. 5 9 + λ mit λ R. a) Bestimmen Sie die Normalenform

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

Vektorrechnung Raumgeometrie

Vektorrechnung Raumgeometrie Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Analytische Geometrie

Analytische Geometrie Kapitel 2 Analytische Geometrie 21 Vektoren Die Elemente des kartesischen Produktes R n, d h die n Tupel oder Zeilenvektoren (a 1,, a n ) mit a k R für k n, interpretiert man als Punkte eines n dimensionalen

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Studiengänge) Beispiele

Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. DETERMINANTEN Determinanten

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Mögliche Lösung. Ebenen im Haus

Mögliche Lösung. Ebenen im Haus Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG Abitur Mathematik: Musterlösung Bayern 212 Aufgabe 1 a) ZEICHNUNG LAGE DER GRUNDFLÄCHE ABC Man kann anhand der gleichen x 1 -Koordinate 1 bei allen drei Punkten erkennen, dass die Grundfläche ABC parallel

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a Aufgabe Die drei linear unabhängigen Vektoren a = OA, b = OB,c = OC spannen ein dreiseitiges Prisma auf. Dabei ist S der Schwerpunkt des Dreiecks OAB, M der Schnittpunkt der Diagonalen in der Seitenfläche

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung

Mehr

Schulmathematik Geometrie und Vektorrechnung Blatt 1

Schulmathematik Geometrie und Vektorrechnung Blatt 1 Hans HUMENBERGER WS 05/6 Blatt Aufg.. a) Finden Sie eine Aufgabe aus einem Schulbuch der 5. Klasse, in der es um das Aufstellen, Interpretieren, Berechnen von Vektortermen (Addition, Subtraktion, Multiplikation

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1 Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Projektionskurve Abiturprüfung LK Bayern 2003

Projektionskurve Abiturprüfung LK Bayern 2003 Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

2.5. Geraden und Ebenen

2.5. Geraden und Ebenen .5. Geraden und Ebenen Parameterdarstellungen von Geraden und Ebenen gewinnt man, indem man einen Ortsvektor (mit Spitze auf der Geraden oder Ebene und einen bzw. zwei Richtungsvektoren wählt, welche die

Mehr

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)? Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade

Mehr

Analytische Geometrie Aufgaben und Lösungen

Analytische Geometrie Aufgaben und Lösungen Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen. und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche

Mehr

Geraden in R 2 Lösungsblatt Aufgabe 17.16

Geraden in R 2 Lösungsblatt Aufgabe 17.16 Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie Abitur Mathematik Nordrhein-Westfalen 1GK Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 GK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1. SCHRITT:

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr