2.2C. Das allgemeine Dreieck

Größe: px
Ab Seite anzeigen:

Download "2.2C. Das allgemeine Dreieck"

Transkript

1 .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die Wahl dieser Koordinaten hat den Vorteil, daß eine Seite waagerecht liegt, und die darauf senkrecht stehende Höhe den Fußpunkt Hc = (0,0) hat. Ein solches (fast) allgemeines Dreieck wollen wir jetzt zeichnen. Wir tragen die Höhe auf der Grundlinie ein: Oder stumpfwinklig: Die Seitenvektoren des Dreiecks sind a = (y,-z), b = (x,z) und c = (x+y,0), mit a+b = c.

2 Für die Seitenlängen ergibt sich somit: a = B C = y + z, b = C A = x + z, c = B A = x + y. Für den Spezialfall x = 5, y = 9, z = 1 liefert das die Seitenlängen a = 15, b = 13 und c = 14. Dass diese Seitenlängen alle ganzzahlig sind, ist ein glücklicher Zufall! Für den Spezialfall x = 1, y = 4, z = 5 bekommen wir a = 41, b = 13 und c = 16. Wir zeichnen jetzt sämtliche Höhen ein:

3 Aus der Ähnlichkeit des grünen und gelben Dreiecks liest man ab: x z = h y, also h = x y z. Mit Hilfe des Skalarproduktes geht es noch schneller: Da die bei A startende Höhe senkrecht auf der gegenüberliegenden Seite steht, haben wir ( x, h)( y, z) = x y h z =0, x y = h z. Der Höhenschnittpunkt H wird daher in Koordinaten beschrieben durch H = (0, h) = (0, x y z ). Der stumpfwinklige Fall ist vielleicht etwas gewöhnungsbedürftig, weil man sich zwei Seiten und alle drei Höhen verlängert denken muß: Um die beiden Fußpunkte Ha und Hb der Höhen auf den Seiten a und b zu berechnen, betrachten wir die Höhenvektoren f = Ha A, g = Hb B, h = Hc C und machen den vektoriellen Ansatz f + sa = c = a+b, d.h. Ha = f + A = c - sa + A = ( y s y, s z).

4 Da f senkrecht auf a steht, ergibt sich nach Multiplikation der Gleichung mit a: 0 + saa =(a+b)a, also s ( y + z ) = ( x + y ) y, d.h. ( x + y) y s =, und Einsetzen von s führt auf y + z y z x y ( x + y) y z Ha = (, ). y + z y + z Analog erhält man für den anderen Höhenvektor y x x z ( x + y) x z Hb = (, ). x + z x + z Spiegelt man den Höhenschnittpunkt an der waagerechten Seite nach unten, so muß aufgrund der Gleichung x y = h z und des Sehnensatzes der Spiegelpunkt auf dem Umkreis des Dreiecks liegen. Aus Analogiegründen liegen auch die Spiegelpunkte an den anderen beiden Seiten auf dem Umkreis! Dessen Mittelpunkt hat die Koordinaten y x z h (, ), und sein Radius ist ( x + y ) + ( z h). Jetzt können wir den Umkreis und die drei Spiegelpunkte konstruieren:

5 Eine besonders schöne Konsequenz der Kommutativität des Skalarproduktes ist der "schiefwinklige Kathetensatz".

6 In diesem Bild entsprechen nun die blauen Rechteckflächen (oben) den Skalarprodukten ab und ba die grünen Rechteckflächen (rechts) den Skalarprodukten ac und ca die roten Rechteckflächen (links) den Skalarprodukten bc und cb. Daß die beiden zugehörigen Flächeninhalte jeweils gleich sind, besagt schlicht die Kommutativität des Skalarprodukts! Statt des Satzes von Pythagoras gilt im schiefwinkligen Dreieck mit den Seitenlängen a = a, b = b, c = b-a der Cosinussatz für den zwischen a und b liegenden Winkel γ : c = a a b cos( γ) + b. Denn es ist ja aufgrund des Distributiv- und Kommutativgesetzes ( a b) = (a-b)(a-b) = aa - ab + bb = a a b cos( γ) + b. Auch diesen Satz kann man aus der obigen Figur ablesen: Je eines der blauen Rechtecke hat den Flächeninhalt ab = a b cos( γ ). Zieht man diese Flächen von der Summe der beiden Quadrate ab, so bleibt je ein rotes und ein grünes Rechteck, und deren Flächen entsprechen in ihrer Summe dem unteren Quadrat. Aufgrund des Cosinussatzes kann man z.b. bei gegebenen Seitenlängen a,b,c den Cosinus eines Eckwinkels mit der folgenden Formel berechnen: cos( γ) = a + b c a b. Eine geniale Entdeckung des antiken Mathematikers HERON von Alexandria (ca. 100 n.chr.) war eine Formel, mit der man den Flächeninhalt eines Dreiecks aus den Seitenlängen a,b,c berechnen kann. Bezeichnet s den halben Umfang des Dreiecks, d.h. a + b + c s =, so ist der Flächeninhalt des Dreiecks F = s ( s a ) ( s b ) ( s c ). Zum Beispiel erhält man für ein Dreieck mit den Seitenlängen 13, 14 und 15: F = ( )( )( ) ( ) = 84, im Einklang mit der Formel "Fläche = Höhe mal halbe Grundlinie" (siehe oben): F = ( ) 1 = 84. Ein eleganter algebraischer Beweis für Herons Formel benutzt den Cosinussatz, die Gleichung x y = ( x + y ) ( x y ),

7 und die Dreiecks-Flächenformel a b sin( γ) a h a =, wobei h a = b sin( γ ) die Länge der Höhe auf der Seite der Länge a ist. ( 4 F) = ( a b sin( γ) ) = ( a b ) ( 1 cos( γ) ) = ( a b ) ( a + b c ) = ( a b + a + b c ) ( a b a b + c ) = (( a + b) c )( c ( a b ) ) = ( a + b + c ) ( a + b c ) ( a b + c ) ( a + b + c ) = s ( s c ) ( s b ) ( s a ). Division durch 16 und Wurzelziehen ergibt die Behauptung! Beenden wir unsere Untersuchungen des allgemeinen Dreiecks mit einem der schönsten Sätze der ebenen Geometrie, der von LEONHARD EULER (1763) stammt: Der Höhenschnittpunkt H, der Umkreismittelpunkt M und der Schwerpunkt S eines Dreiecks liegen auf einer Geraden, der sogenannten Eulerschen Geraden. Der Schwerpunkt teilt die Verbindungsstrecke der beiden anderen Punkte im Verhältnis :1. Für den Höhenschnittpunkt H haben wir in der oben gewählten Position die Koordinaten x y 0 und h = z, für den Umkreismittelpunkt M y x z h und, und der Schwerpunktvektor S ist natürlich das arithmetische Mittel (A+B+C)/3 der Eckvektoren, hat also die Koordinaten y x und z 3 3 = ( h + ( z h) )/3. Somit wird die Strecke zwischen Höhenschnittpunkt und Umkreismittelpunkt tatsächlich vom Schwerpunkt im Verhältnis :1 geteilt. Wir betrachten wieder ein allgemeines Dreieck mit den Ecken A, B, C. Im Beispiel wählen wir A = (-x,0), B = (0,y) und C = (0,z).

8 Zuerst die Seitenhalbierenden und ihr Schnittpunkt (der Schwerpunkt des Dreiecks): Als nächstes die Mittelsenkrechten der drei Seiten und ihren Schnittpunkt. Das ist der Mittelpunkt des Umkreises. Nun die drei Höhen und ihr Schnittpunkt.

9 Jetzt die Strecke zwischen Umkreismittelpunkt und Höhenschnittpunkt: Und alles zusammen: Legt man nicht einen Höhenfußpunkt, sondern den Umkreismittelpunkt in den Ursprung, so erhält man einen besonders kurzen Beweis für den Eulerschen Satz, der auch in beliebiger Lage klappt: Es ist dann M = 0 und A = B = C. Wegen ( 3 S C ) ( A B ) = ( A + B ) ( A B ) = A A B B = A B = 0 efüllt 3 S die Gleichung der Höhe auf der Seite AB, und ebenso die der Höhen auf AC und auf BC. Damit ist 3S der Höhenschnittpunkt H, d.h. 3 S = H + M (wegen M = 0).

10

2.2A. Das allgemeine Dreieck

2.2A. Das allgemeine Dreieck .A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (

Mehr

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve.

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve. .. Skalarprodukt Kraftvektoren treten bei vielen physikalisch-technischen Problemen auf; sie greifen an einem Punkt in verschiedenen Richtungen an. Die bekannte Formel Arbeit = Kraft mal Weg muß man dann

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse. Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Fit in Mathe. März Klassenstufe 9 n-ecke. = 3,also x=6

Fit in Mathe. März Klassenstufe 9 n-ecke. = 3,also x=6 Thema Musterlösung 1 n-ecke Wie groß ist der Flächeninhalt des nebenstehenden n-ecks? Die Figur lässt sich z.b. aus den folgenden Teilfiguren zusammensetzen: 1. Dreieck (ECD): F 1 = 3 =3. Dreieck (AEF):

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

III. Geometrie 1 /

III. Geometrie  1 / III. Geometrie www.udo-rehle.de 1/ 20 2014 1. D R E I E C K E Was haben wir in der Schule über Dreiecke gelernt? Auf diese Frage folgt nach einiger Überlegung meist: Den Satz des Pythagoras: a²+b²=c² Das

Mehr

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich:

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich: Elementargeometrie Der. Strahlensatz Geschichte: In den Elementen des Euklid wird im 5.Buch die Proportionenlehre behandelt, d.h. die geometrische Theorie aller algebraischen Umformungen der Proportion.

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

. Wo liegt das Zentrum S? d) E ist das Bild von I mit

. Wo liegt das Zentrum S? d) E ist das Bild von I mit Zentrische Streckung, Ähnlichkeit 1. Eine gegebene Strecke ist durch Konstruktion im Verhältnis 5 3 harmonisch zu teilen. 1 U und V teilen die Strecke mit der Länge 24 cm harmonisch im Verhältnis 5 3.

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Geometrie: I. Vorkenntnisse Übungenn

Geometrie: I. Vorkenntnisse Übungenn Geometrie: I. Vorkenntnisse Übungenn Übung 1: Konstruiere ein Dreieck mit Hilfe folgender Angaben: Grundseite c = 10 cm, Höhe h = 4 cm, Winkel γ = 60. 6 Ist die Konstruktion eindeutig? Kann man das Dreieck

Mehr

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013 Trigonometrische Funktionen: Sinus und Cosinus Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 0 4 5 4 4 Grad- und Bogenmaß Wir betrachten den Einheitskreis (Radius r = ) und einen beliebigen Winkel

Mehr

Der Satz von Ceva & Satz von Menelaus

Der Satz von Ceva & Satz von Menelaus Der Satz von Ceva & Satz von Menelaus Fast Viktor 21. November 2007 Inhaltsverzeichnis Sätze und ihre Beweise Satz von Menelaus Satz von Ceva Winkelhalbierendenschnittpunkt Höhneschnittpunkt Winkelhalbierendenschnittpunkt

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Erweiterte Beispiele 1 1/1

Erweiterte Beispiele 1 1/1 Erweiterte Beispiele 1 1/1 Gegeben ist das Dreieck ABC [A(-20/-9), B(30/-9), C(12/15)]. Die Seitenmittelpunkte D, E, F bilden ein Dreieck. Zeige, dass der Umkreis dieses Dreiecks den Inkreis des Dreiecks

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

III. BUCH PYRAMIDEN. 2. Der PYTHAGORAS

III. BUCH PYRAMIDEN. 2. Der PYTHAGORAS III. BUCH PYRAMIDEN 2. Der PYTHAGORAS Eulers Analogon zum rechtwinkligen Dreieck: Der dreidimensionale Satz des Pythagoras Nun hat ja ein Viereck i. a. weder einen Inkreis noch einen Umkreis, während jede

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Komplexe Zahlen und Geometrie

Komplexe Zahlen und Geometrie Komplexe Zahlen und Geometrie Dr. Axel Schüler, Univ. Leipzig März 1998 Zusammenfassung Ziel dieses Beitrages ist es, die komplexen Zahlen bei einfachen geometrischen Aufgaben einzusetzen. Besonderes Augenmerk

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

Flächeninhalt und Umfangslänge Wer findet den Zusammenhang?

Flächeninhalt und Umfangslänge Wer findet den Zusammenhang? Aufgabe 1: Zeichne in dein Heft einen Kreis mit beliebigem Radius r (aber bitte nicht zu klein), und konstruiere ein umbeschriebenes Dreieck. Deine Zeichnung könnte etwa so aussehen wie die nebenstehende

Mehr

Das Skalarprodukt und seine Anwendungen

Das Skalarprodukt und seine Anwendungen Das Skalarprodukt und seine Anwendungen Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.de Schmalzgrube, März 999 Das Skalarprodukt Das Skalarprodukt von Vektoren

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2.

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2. 3.6 m 1.69 m 6 m 1.69 m Seiten 9 / 10 / 11 1 Vorbemerkung: Alle abgebildeten Dreiecke sind ähnlich (weil sie lauter gleiche Winkel haben). Also gilt jeweils: 2 kurze Seite Dreieck 1 kurze Seite Dreieck

Mehr

Beweisen mithilfe von Vektoren

Beweisen mithilfe von Vektoren 330 9 Abstände und Winkel zwischen Geraden und Ebenen Beweisen mithilfe von Vektoren In den vorherigen Abschnitten sind Vektoren dazu benutzt worden, Geraden und Ebenen im Raum zu beschreiben und ihre

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Schulmathematik Geometrie und Vektorrechnung Blatt 1

Schulmathematik Geometrie und Vektorrechnung Blatt 1 Hans HUMENBERGER WS 05/6 Blatt Aufg.. a) Finden Sie eine Aufgabe aus einem Schulbuch der 5. Klasse, in der es um das Aufstellen, Interpretieren, Berechnen von Vektortermen (Addition, Subtraktion, Multiplikation

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/12 15:30:18 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/12 15:30:18 hk Exp hk $ $Id: dreieck.tex,v 1.3 2013/04/12 15:30:18 hk Exp hk $ 1 Dreiecke 1.2 Der Strahlensatz Nachdem wir in der letzten Sitzung rechtwinklige Dreiecke betrachtet haben, kommen wir nun zur Einführung der trigonometrischen

Mehr

H,S,U und I im positiven Koordinatensystem

H,S,U und I im positiven Koordinatensystem 1 athe Leuchtturm-Übungen-2.Klasse-Nr.022-Besondere Punkte HSUI C by Joh Zerbs athe Leuchtturm Übungsleuchtturm 022 =Übungskapitel H,S,U und I im positiven Koordinatensystem Konstruktion Erforderlicher

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1)

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Name: Geometrie-Dossier 7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Inhalt: Fläche und Umfang von Rechteck und Quadrat Dreiecke (Benennung, Konstruktion) Winkelberechnung im Dreieck und

Mehr

Dreiecke Kurzfragen. 30. Juni 2012

Dreiecke Kurzfragen. 30. Juni 2012 Dreiecke Kurzfragen 30. Juni 2012 Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks angeschrieben? Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks

Mehr

Geometrie Satz des Pythagoras

Geometrie Satz des Pythagoras TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe:

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettbewerb Mathematik Wissenschaftszentrum Postfach 0 14 48 53144 Bonn Fon: 08-9 59 15-0 Fax: 08-9 59 15-9 e-mail: info@bundeswettbewerb-mathematik.de www.bundeswettbewerb-mathematik.de Korrekturkommission

Mehr

Vektorrechnung Raumgeometrie

Vektorrechnung Raumgeometrie Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen

Mehr

45. Österreichische Mathematik-Olympiade

45. Österreichische Mathematik-Olympiade 45. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfängerinnen und Anfänger 1. Juni 014 Aufgabe 1. Man bestimme alle Lösungen der Gleichung a = b (b + 7) mit ganzen Zahlen a 0 und b 0. W.

Mehr

2.3. Das Vektorprodukt

2.3. Das Vektorprodukt 2.3. Das Vektorprodukt In sehr vielen mathematischen und physikalisch-technischen Problemstellungen geht es darum, zu einer gegebenen Fläche deren Inhalt und auf ihr senkrecht stehende Vektoren zu bestimmen.

Mehr

Geraden in R 2 Lösungsblatt Aufgabe 17.16

Geraden in R 2 Lösungsblatt Aufgabe 17.16 Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

Sphärische Zwei - und Dreiecke

Sphärische Zwei - und Dreiecke TECHNISCHE UNIVERSITÄT DORTMUND Sphärische Zwei - und Dreiecke Proseminar innerhalb des Lehramtsstudiums im Fach Mathematik Meryem Öcal Matrikelnummer 168833 Studiengang LABG 2009 Prüfer: Prof. Dr. Lorenz

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

2.3. Vektorprodukt und Spatprodukt

2.3. Vektorprodukt und Spatprodukt .3. Vektorprodukt und Spatprodukt Das Vektorprodukt In sehr vielen mathematischen und physikalisch-technischen Problemstellungen geht es darum, zu einer gegebenen Fläche deren Inhalt und auf ihr senkrecht

Mehr

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade ÖMO Österreichische MathematikOlympiade Grundlagen der Geometrie 14. 11. 2008 Birgit Vera Schmidt 1 Wiederholung 1.1 Grundlagen 1.1.1 Strecken und Verbindungen Eine Strecke ist eine Verbindung zwischen

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Flächenverwandlung von Rechtecken

Flächenverwandlung von Rechtecken Durch die Hintereinanderausführung zweier Scherungen, zuerst an der Scherungsachse a 1, danach an der Scherungsachse a 2, wird ein Rechteck ~ABCD in ein neues Rechteck ~A''B''C''D'' übergeführt. Gib Näherungswerte

Mehr

Lemniskaten und eine Strophoide des Dreiecks

Lemniskaten und eine Strophoide des Dreiecks Lemniskaten und eine Strophoide des Dreiecks Eckart Schmidt Spiegelt man Umkegelschnitte eines Dreiecks am Umkreis, so erhält man im allgemeinen Kurven vierter Ordnung. Hier werden nur gleichseitige Umhyperbeln

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Der Flächeninhalt eines Sehnenvierecks auf den Spuren des indischen Mathematikers Brahmagupta ( )

Der Flächeninhalt eines Sehnenvierecks auf den Spuren des indischen Mathematikers Brahmagupta ( ) Den Flächeninhalt eines allgemeinen Vierecks bestimmt man meistens durch Zerlegung in Dreiecke. Geht es auch anders? Für den Fall, dass das Viereck ein Sehnenviereck ist, hat der indische Mathematiker

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15

Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15 Dreieckssätze Pythagoras und Co 1 Pythagoras 300 v.chr.: Elemente des Euklid, Stoicheia unterteilt in 15 Bücher (Kapitel) I bis XV wobei die beiden letzten erst später dazu kamen, deshalb redet man oft

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

. Da Symmetrieebene ist, ist auch die Ebene durch, und Symmetrieebene. Der Mittelpunkt liegt in der -Ebene auf einer Geraden durch den Ursprung und.

. Da Symmetrieebene ist, ist auch die Ebene durch, und Symmetrieebene. Der Mittelpunkt liegt in der -Ebene auf einer Geraden durch den Ursprung und. Abitur BW 2 Aufgabe Lösungslogik a) Gleichschenkliges Dreieck : Zwei Dreiecksseiten müssen gleich lang sein. Koordinaten des Punktes : Berechnung der Koordinaten von über Vektoraddition. Innenwinkel der

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr