Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Größe: px
Ab Seite anzeigen:

Download "Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie"

Transkript

1 Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes Tunnelwahrscheinlichkeit Energien gebundener Zustände Beispiel: Der halbierte harmonische Oszillator Stationäre Störungstheorie 5. Ansatz und Resultate Beispiel

2 Die WKB-Näherung Die WKB-Näherung ist eine Näherungsmethode für die eindimensionale Schrödingergleichung. Sinnvolle Anwendungsgebiete sind die Berechnung von: Tunnelwahrscheinlichkeiten Energien gebundener Zustände. Grundlegendes Befindet sich ein Teilchen mit Energie E in einem konstanten Potential V < E, so gilt für die Eigenfunktion des Hamiltonoperators: x = A exp±ikx me V k = Für ein allgemeines Potential V x geht das natürlich nicht mehr so einfach. Falls aber die Längenskala, auf der V x sich nennenswert ändert, groß gegenüber der Wellenlänge λ = π k ist, bleibt die Wellenfunktion näherungsweise von der Form A exp±ikx, jetzt allerdings mit ortsabhängiger Amplitude Ax und me V x Wellenzahl kx =. Analoge Überlegungen gelten für den klassisch verbotenen Bereich V > E mit exponentiell abfallenden Lösungen A exp±κx Wichtige Formeln Verwendet man obige Idee und setzt sie in die SG ein, ergibt sich für die Wellenfunktion im klassischen Bereich E > V x: W KB x c + expiφx + c exp iφx kx kx x x me V φx = kx dx x = dx x x Die untere Integrationsgrenze x ist dabei zunächst beliebig. Im klassisch verbotenen Bereich E < V x ergeben sich exponentiell abfallende Lösungen: c x W KB x exp± κx dx κx x mv x E κx = Welches Vorzeichen hier zu wählen ist, hängt davon ab, ob der verbotene Bereich links oder rechts des klassisch erlaubten Bereichs liegt. Hinweis: Die Vorraussetzungen der WKB-Näherung treffen in der Nähe klassischer Umkehrpunkte, d.h. bei E V x nicht mehr zu. Um die Lösungen der klassisch erlaubten und klassisch verboten Regionen zusammenzukleben, ist einiger Aufwand nötig Stichwort Airy-Funktion, siehe z.b. Griffiths S. 35ff.

3 . Tunnelwahrscheinlichkeit Als erste Anwendung betrachten wir eine Teilchen mit Energie E, welches wie in der Abbildung gezeigt von links auf eine Potentialbarriere treffe. a und b seien die klassischen Umkehrpunkte, d.h. E = V a = V b. Wie groß ist die Wahrscheinlichkeit T, das Teilchen rechts von der Barriere wiederzufinden Tunneln? Es sei x = Ae ikx + Be ikx x < a x = De ikx x > b Es gilt dann T = D A. Gemäß obiger Formel für die WKB-Wellenfunktion im klassisch verbotenen Bereich nimmt die Amplitude im Bereich der Potentialbarierre um folgenden Faktor ab: D A = exp b a κxdx Beachte dabei, dass κa = κb gilt. Für die Tunnelwahrscheinlichkeit ergibt sich somit b b mv x E T exp κxdx = exp dx a.3 Energien gebundener Zustände Die WKB-Näherung kann zur approximativen Berechnung der erlaubten Energieniveaus eines beliebigen Potentials verwendet werden. Es werden drei allgemeine Fälle unterschieden: Zwei harte Wände Betrachte ein Potential der Form { beliebige Funktion, falls < x < a V x = sonst a 3

4 Wir nehmen an, dass im Bereich von bis a stets E > V x gilt. Die Anwendung der WKB-Näherung ohne Herleitung liefert folgende Quantisierungsbedingung: a können damit die erlaubten Ener- Im Zusammenhang mit kx = gieniveaus E n berechnet werden. Eine harte Wand kxdx = nπ me V x mit n N Betrachte nun ein Potential der Form { beliebige Funktion falls x > V x = falls x < In diesem Fall lautet die Quantisierungsbedingung für die Energien E: x kxdx = n π mit n N wobei x der klassische Umkehrpunkt ist, der durch die Bedingung E = V x definiert ist. Keine Wand Wir betrachten nun ein beliebiges Potential V x und untersuchen wieder einen gebundenen Zustand mit der Energie E. Die Bedingung lautet x kxdx = n π mit n N x wobei hier x und x die beiden klassischen Umkehrpunkte sind E = V x = V x.. Beispiel: Der halbierte harmonische Oszillator Gegeben sei ein halbierter harmonischer Oszillator : { V x = mω x falls x > falls x < Gesucht: Die erlaubten Energieniveaus der gebundenen Zustände. Wir sind offenbar im Fall Eine harte Wand. Für den klassischen Umkehrpunkt x gilt E = mω x x = E ω m Somit folgt: kx = me mω x = n x π = kxdx = mω m mω x x = mω x x x x x dx = y= x x

5 = mω x y dy = ω E π Daraus folgt für die erlaubten Energien: E = n 3 ω =, 7,,... ω Bemerkung: In diesem speziellen Fall liefert die WKB-Näherung sogar die exakten Energien! Dies lässt sich folgendermaßen verstehen: Bei der Lösung des normalen harmonischen Oszillators ergeben sich die Energiewerte E = n + ω. Dabei gehören die Lösungen zu ungeradem n zu Wellenfunktionen mit = siehe entsprechende Vorlesung. Diese Wellenfunktionen lösen genau unseren halbierten Oszillator, da sie die entsprechende Randbedingung bei x = erfüllen. Mit n = k, k N ergibt sich E = k + ω = k ω Stationäre Störungstheorie Insbesondere bei Anwendungen in der Experimentalphysik können zu einem gegebenen Hamiltonoperator H nur sehr selten die exakten Wellenfunktionen und Energieniveaus berechnet werden. Eine der wichtigsten Methoden, um zumindest näherungsweise sinnvolle Ergebnisse zu bekommen, stellt die stationäre Störungstheorie dar. Stationär bezieht sich dabei darauf, dass diese Methode nur für nicht-zeitabhängige Potentiale anwendbar ist.. Ansatz und Resultate Wir gehen von einem Hamiltonoperator H aus, für den die Eigenfunktionen und Energieniveaus bekannt seien: H n = En n mit n m = δnm Der neue Hamiltonoperator H gehe nun aus H durch eine kleine Störung hervor: H = H + λh mit λ Der Paramter λ wird dabei nur zur Bequemlichkeit bei der folgenden Rechnung eingeführt, man kann auch λ = setzen und H H im Sinne von Matrixelementen fordern. Später werden wir tatsächlich λ = setzen und den Term λh = H als die Störung interpretieren. Die unbekannten Wellenfunktionen des gesamten Hamiltonoperators seien H n = E n mit n m = δ nm Wenn die Störung λh klein ist, kann man annehmen, dass sich die Wellenfunktion n und die Energien E n nur wenig von den Eigenfunktionen bzw. Energieniveaus von H unterscheiden, so dass ein Ansatz in Potenzen von λ sinnvoll ist: 5

6 n = n + λ n + λ n +... E n = E n + λe n + λ E n +... Dabei sind n und n die noch unbekannten Korrekturen erster bzw. zweiter Ordnung. Dies setzen wir nun in die Eigenwertgleichung von H = H + λh ein und ordnen nach Potenzen von λ: H +λh [ n+λ n+λ n+...] = E n+λe n+λ E n+...[ n+λ n+λ n+...] = H n + λh n + H n + λ H n + H n +... = = E n n + λe n n + E n n + λ E n n + E n n + E n n +... Der Vergleich der Terme mit Ordnung ergibt keine neuen Informationen H n = E n n. Ein Vergleich der Terme mit Ordnung λ ergibt: H n + H n = E n n + E n n Gleichung I Der Vergleich der Terme mit λ ergibt H n + H n = E n n + E n n + E n n Gleichung II Korrekturen erster Ordnung Ab sofort setzen wir wie oben erwähnt λ =. Multipliziert man Gleichung I von links mit n und integriert, ergibt sich: n H n + n H n = E n + E n Da H ein hermitescher Operator ist, gilt ferner: n H n = H n n = E n Somit fällt dieser Term in der obigen Gleichung heraus und es verbleibt wegen n = : En = n H n Dies ist das wichtigste Resultat der Störungstheorie! In Worten besagt es: Die Energiekorrektur erster Ordnung ist der Erwartungswert der Störung H bzgl. der ungestörten Wellenfunktionen. Um die Korrektur der Wellenfunktion erster Ordnung zu erhalten stellt man zunächst Gleichung I etwas um: H E n n = H E n n Die rechte Seite ist bekannt, um eine Lösung dieser Differentialgleichung für n zu erhalten entwickelt man diese Wellenfunktion nach den ungestörten Wellenfunktionen: n = c m n m m n 6

7 Dabei wurde einerseits verwendet, dass die ungestörten Wellenfunktionen einen vollständigen Satz bilden und andererseits angenommen, dass n keine Komponente mit n enthält genaue Begründung siehe Griffiths S.53. Setzt man dies in obige Gleichung ein, erhält man: hier ohne Herleitung m H n n = m n E n E m m Diese Formel ist nur gülitg, falls das Energiespektrum von H nicht entartet ist, d.h. falls für m n auch E n E m gilt. Es ist anzumerken, dass die Energiekorrektur erster Ordnung meistens ein erstaunlich exaktes Resultat liefert, während die Wellenfunktionen oft stark von den exakten Lösungen abweichen. Korrekturen zweiter Ordnung Wir geben hier noch das Ergebnis für die Energiekorrektur zweiter Ordnung an, die aus Gleichung II durch Multiplikation mit n und Integration folgt. m H n E n = m n E n E m Auch diese Formel ist nur für nicht-entartete Energiespektren gültig. Die Energiekorrektur zweiter Ordnung zum Grundzustand ist immer negativ Übungsaufgabe.. Beispiel Als einfaches Beispiel betrachten wir den unendlich hohen Potentialtopf der Breite a und eine Störung der folgenden Form: H = αδx a/ mit α > Die Wellenfunktionen des ungestörten Systems lauten siehe erste Vorlesung: nπ nx = a sin a x Wir berechnen die Energiekorrektur erster Ordnung: En = n H n = a α a = α a sin nπ sin nπ a x δ x a dx = α nπ a a sin = a = n α a 7

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik PHYSIKDEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN Felix Rucker, Matthias Herzog Übungsklausur 9.9. Kurze Fragen (6 Punkte) Ferienkurs Quantenmechanik Übungsklausur a) Wie ist ein quantenmechanischer Drehimpuls

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

Beispiele: Harmonischer Oszillator und Kastenpotential

Beispiele: Harmonischer Oszillator und Kastenpotential Beispiele: Harmonischer Oszillator und Kastenpotential Ramona Wohlleb Mathematische Strukturen der Quantenmechanik Sommersemester 011 1 Der harmonische Oszillator In Analogie zum klassischen harmonischen

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 13 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 4. Vorlesung Pawel Romanczuk WS 2016/17 Zusammenfassung letzte VL Orts- und Impulsdarstellung Gaussches Wellenpacket Unendl. Potentialtopf

Mehr

von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik bei Prof. Dr. Wolschin im Wintersemester 2013/14

von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik bei Prof. Dr. Wolschin im Wintersemester 2013/14 Die WKB-Näherung von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik ei Prof. Dr. Wolschin im Wintersemester 203/4 Kurzzusammenfassung: Im Rahmen dieses Seminarvortrags wird die WKB-Näherung

Mehr

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

Ferienkurs Theoretische Quantenmechanik 2010

Ferienkurs Theoretische Quantenmechanik 2010 Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Quantenmechanik 010 1 dimensionale Probleme Inhaltsverzeichnis 1 Die Schrödingergleichung 1.1 Wiederholung

Mehr

Probeklausur zu Physikalische Chemie II für Lehramt

Probeklausur zu Physikalische Chemie II für Lehramt Department Chemie Dr. Don C. Lamb http://www.cup.uni-muenchen.de/pc/lamb Probeklausur zu Physikalische Chemie II für Lehramt Zur Bearbeitung der Klausur ist nur der freie Platz dieser vor Ihnen liegenden

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 4 Eindimensionale Potentialprobleme Wir werden nun die Schrödingergleichung in der Ortsdarstellung für einige einfache Potentialprobleme lösen. Wir betrachten ein spinloses Teilchen der Masse m,

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

Kapitel 2. Zeitunabhängige Störungstheorie. 2.1 Ohne Entartung der ungestörten Energie Niveaus

Kapitel 2. Zeitunabhängige Störungstheorie. 2.1 Ohne Entartung der ungestörten Energie Niveaus Kapitel Zeitunabhängige Störungstheorie.1 Ohne Entartung der ungestörten Energie Niveaus Näherungs-Verfahren In den meisten Fällen läßt sich die Schrödinger Gleichung nicht streng lösen. Aus diesem Grund

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf

4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf 4-1 4 Anwendungen 4.6 Übungen 4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf Wir werden jetzt die Übergangswahrscheinlichkeit für ein Teilchen der Masse m und der Ladung e in

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Quantentheorie für Nanoingenieure Klausur Lösung

Quantentheorie für Nanoingenieure Klausur Lösung 07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht

Mehr

MUSTERLÖSUNG ZUR NACHHOLKLAUSUR PHYSIKALISCHE CHEMIE II (3.Sem)

MUSTERLÖSUNG ZUR NACHHOLKLAUSUR PHYSIKALISCHE CHEMIE II (3.Sem) Universität Regensburg Institut für Physikalische und Theoretische Chemie IPTC) Prof. Dr. B. Dick Dr. S. A. Baeurle R. J. Kutta WS/ 6/7 MUSTERLÖSUNG ZUR NACHHOLKLAUSUR PHYSIKALISCHE CHEMIE II 3.Sem) Aufgabe

Mehr

1 Innere Rotation von Alkanen

1 Innere Rotation von Alkanen Physikalische Chemie II Lösung 1 25. November 216 1 Innere Rotation von Alkanen a Unter Verwendung der Energieniveaus des harmonischen Oszillators schreibt sich die Zustandssumme Q = g n e εn/kbt = = e

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung):

Mehr

PC III Aufbau der Materie

PC III Aufbau der Materie PC III Aufbau der Materie Kapitel 3 Einfache Anwendungen Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen Die Schrödingergleichung zeitunabhängige

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

7 Diracs Bracket-Notation

7 Diracs Bracket-Notation 7 Diracs Bracket-Notation 71 Entwicklungen nach Eigenfunktionen 711 Oszillator-Eigenfunktionen Die Oszillator-Eigenfunktionen Φ n (x), Φ n (x) = N n H ( x) n e x 2 /2a 2, N n = a 1 2 n n! πa (n = 0, 1,

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Seminar zur Theorie der Teilchen und Felder Supersymmetrie

Seminar zur Theorie der Teilchen und Felder Supersymmetrie Alexander Hock a-hock@gmx.net Seminar zur Theorie der Teilchen und Felder Supersymmetrie Datum des Vortrags: 28.05.2014 Betreuer: Prof. Dr. J. Heitger Westfälische Wilhelms-Universität Münster, Deutschland

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 1 Prof Dr Alexander Shnirman Blatt 7 Dr Boris Narozhny, Dr Holger Schmi 25521 1 Die

Mehr

2 Einführung in die Prinzipien der Quantenmechanik

2 Einführung in die Prinzipien der Quantenmechanik Einführung in die Prinzipien der Quantenmechanik.1 Bedeutung von Axiomen (Postulaten) Axiome (Axiom griechisch für Grundsatz) sind Postulate, die nicht beweisbar sind, mit denen aber durch logische Folgerungen

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Ferienkurs Quantenmechanik - Lösungen Sommersemester 2013

Ferienkurs Quantenmechanik - Lösungen Sommersemester 2013 Theoretische Physik III) 1. September 013 Seite 1 Ferienkurs Quantenmechanik - Lösungen Sommersemester 013 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München 1. September

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 3 Eindimensionale Potentialprobleme 3.1 Problemstellung Fragestellung. Es soll die quantenmechanische Beschreibung eines Teilchens in einer Dimension, das ein Potential V sieht (Abbildung 3.1),

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Exakte Lösungen der stationären Schrödingergleichung

Exakte Lösungen der stationären Schrödingergleichung Teil III Exakte Lösungen der stationären Schrödingergleichung Inhaltsangabe 6 Eindimensionale Probleme 43 6.1 Das Teilchen im unendlich tiefen Kasten.......... 44 6.1.1 Modell und Lösung der Schrödingergleichung...

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

Der quantenmechanische harmonische Oszillator

Der quantenmechanische harmonische Oszillator 88 Kapitel 0 Der quantenmechanische harmonische Oszillator In diesem Kapitel befassen wir uns mit den quantenmechanischen Eigenschaften eines der grundlegenden Modelle der Physik, dem harmonischen Oszillator.

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Wiederholung: Spaltung und Fusion

Wiederholung: Spaltung und Fusion Wiederholung: Spaltung und Fusion Tröpfchenmodell: Stabilste Kerne liegen im Bereich A~60 Große Energiemenge kann bei der Spaltung eines schweren Kernes in zwei mittelschwere Kerne und bei der Fusion von

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

Literatur zum Quantenchaos:

Literatur zum Quantenchaos: von Interesse für Untersuchungen zum Quantenchaos sind: Zeit Energie (Fourier-Transformation) Dynamik Eigenschaften von Energiespektren Eigenschaften der Eigenzustände gibt es chaotische Eigenfunktionen?

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

1 Innere Rotation von Alkanen

1 Innere Rotation von Alkanen 1 Innere Rotation von Alkanen a Unter Verwendung der Energieniveaus des harmonischen Oszillators schreibt sich die Zustandssumme Q = g n e εn/kbt = = e hω/2k BT = a 0 x n e hωn+ 1 2 /k BT e hωn/kbt = e

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Die Lösungen der S.-Glg. für das freie Teilchen

Die Lösungen der S.-Glg. für das freie Teilchen Die Lösungen der S.-Glg. für das freie Teilchen Zeitabhängige S- G l g., ħ ħ x (, (, m i = + Vrt rt Analogie zu den eletromagnetischen Wellen, Materiewellen, intuitives Raten etc. Ansatz f ü r W e l l

Mehr

Ferienkurs Experimentalphysik

Ferienkurs Experimentalphysik Ferienkurs Experimentlphysik 4 009 Übung 1 Heisenberg sche Unschärfereltion Zeigen Sie, dss eine Messprtur beim Doppelspltexperiment, die den Durchgng eines Teilchens durch ein Loch detektieren knn, ds

Mehr

Kapitel 5. Aufspaltung der Energiebänder; Grenzfall fast freier Elektronen. 5.1 Allgemeines

Kapitel 5. Aufspaltung der Energiebänder; Grenzfall fast freier Elektronen. 5.1 Allgemeines Kapitel 5 Aufspaltung der Energiebänder; Grenzfall fast freier Eletronen 51 Allgemeines In diesem Abschnitt sollen fast freie Eletronen untersucht werden; es wird dabei angenommen, daß die Eletronen einem

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 4

Ferienkurs Experimentalphysik Lösung zur Übung 4 Ferienkurs Experimentalphysik 4 22 Lösung zur Übung 4. Atomare Übergänge I N Atome befinden sich zum Zeitpunkt t = in einem angeregten Zustand k mit Energie E k. Die Abregung in den Grundzustand erfolgt

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Quasi-exakt lösbare quantenmechanische Potentiale

Quasi-exakt lösbare quantenmechanische Potentiale Quasi-exakt lösbare quantenmechanische Potentiale Ausarbeitung zum Seminar zur Theorie der Atome, Kerne und kondensierten Materie vom.10.014 Philipp Marauhn p_mara01@uni-muenster.de Inhaltsverzeichnis

Mehr

Festkörperelektronik 2008 Übungsblatt 2

Festkörperelektronik 2008 Übungsblatt 2 Lichttechnisches Institut Universität Karlsruhe TH Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik. Übungsblatt 30. April 008 10. Beugung

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

Übungsblatt 04. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Hans-Dieter Vollmer,

Übungsblatt 04. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Hans-Dieter Vollmer, Übungsblatt 04 PHYS400 Grunkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Hans-Dieter Vollmer, (hans-ieter.vollmer@physik.uni-ulm.e) 2. 5. 2005 bzw. 3. 5. 2005 Aufgaben. Der Operator A sei proportional

Mehr

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Elke Scheer (Experimentalphysik) Raum P 1007, Tel. 4712 E-mail: elke.scheer@uni-konstanz.de Prof. Dr. Guido Burkard (Theoretische Physik) Raum P 807, Tel.

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Übungen zur Quantenmechanik

Übungen zur Quantenmechanik Übungen zur Quantenmechanik SS11, Peter Lenz, 1. Blatt 13. April 011 Abgabe (Aufgabe ) bis 18.4.07, 1:00 Uhr, Übungskästen RH 6 Aufgabe 1: Gegeben sei ein Wellenpaket der Form Ψ( x, t) = 1 8π 3 Ψ( [ (

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

16. EINIGE LÖSUNGSMETHODEN

16. EINIGE LÖSUNGSMETHODEN 134 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr