von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik bei Prof. Dr. Wolschin im Wintersemester 2013/14

Größe: px
Ab Seite anzeigen:

Download "von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik bei Prof. Dr. Wolschin im Wintersemester 2013/14"

Transkript

1 Die WKB-Näherung von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik ei Prof. Dr. Wolschin im Wintersemester 203/4 Kurzzusammenfassung: Im Rahmen dieses Seminarvortrags wird die WKB-Näherung zunächst hergeleitet. Im Folgenden werden die physikalischen Anwendungsgrenzen estimmt und die Näherung wird auf den harmonischen Oszillator sowie den Tunneleffekt angewandt. Schließlich erfolgt noch ein kurzer Auslick auf moderne Anwendungen. Einleitung: Die semiklassische WKB-Näherung von den Physikern Gregor Wentzel, Hendrik Anthony Kramers und Leon Brillouin aus dem Jahr 926 liefert eine Näherungslösung für die eindimensionale, stationäre Schrödingergleichung. Die Methode esteht in der Einführung einer Entwicklung der zugrundeliegenden Differentialgleichung nach Potenzen von und der Vernachlässigung von Termen höherer Ordnung. Sie ist somit allgemeiner als die klassische Näherung und kann auch in klassisch verotenen Bereichen (E > V (x)) angewendet werden. Natürlich unterliegt sie trotzdem gewissen Einschränkungen, so darf sich zum Beispiel das Potential nur langsam mit dem Ort ändern. Kleiner Einschu zur Geschichte: Die WKB-Näherung wurde im Jahr 926 zeitgleich unahängig von den Physikern Gregor Wentzel, Hendrik Anthony Kramers und Leon Brillouin formuliert das ist das gleiche Jahr in dem Erwin Schrödinger seine erühmte Gleichung formuliert hat. Natürlich haen sich auch vorher schon Mathematiker mit Differentialgleichungen zweiter Ordnung von der Form der Schrödinger-Gleichung eschäftigt. So auch der englische Mathematiker Harold Jeffreys, der ereits 924 ein allgemeines Verfahren zu Näherung von Diffentialgleichungen zweiter Ordnung entwickelt hatte. Aus diesem Grund wird die WKB-Näherung in Großritannien JWKB-Näherung genannt.

2 Herleitung der WKB-Formel: Zugrunde liegt die stationäre Schrödingergleichung: (Wir etrachten erst den den drei dimensionalen Fall und gehen dann so ald wie nötig in eine Dimension üer.) [ ] 2m + V ( r) Ψ = EΨ () Zur Lösung verwenden wir den Ansatz: Ψ = exp[ i σ( r)] (2) Hier ist σ eine komplexe Funktion. Dies edeutet fast keine Beschränkung der Allgemeinheit außer an den Nullstellen von Ψ. Wollen wir nun die Schrödingergleichung lösen, so enötigen wir die zweite Aleitung: Ψ = i exp[ i σ( r)] σ exp[ i σ( r)]( σ)2 (3) Einsetzen in die Schrödingergleichung ergit: so dass direkt 2 2m ( i σ ( σ)2 ) + V = E (4) folgt. Schreit man jetzt σ( r) als Potenzreihe von ħ: iħ 2 σ + ( σ) 2 = 2m(E V (r)) (5) σ( r) = σ 0 ( r) + ħ i σ ( r) + ( ħ i )2 σ 2 ( r) + ( ħ i )3 σ 3 ( r)... (6) und setzt man dies oen ein und ordnet nach Potenzen von ħ : {( σ 0 ) 2 2m(E V (r))} + ħ i { 2 σ σ 0 σ }+ ( ħ i )2 { 2 σ + 2 σ 0 σ 2 + ( σ ) 2 } +... = 0 (7) Setzt man die einzelnen Terme hinter ħ einzeln Null und richt ei ( ħ i i )2 a, so folgt: ( σ 0 ) 2 2m(E V (r)) = 0 (8) 2

3 und 2 σ σ 0 σ = 0 (9) Da der eindimensionale Fall für das grundlegende Verständnis mehr leistet, wenden wir uns jetzt diesem Fall zu: Die oigen Gleichungen verwandeln sich jetzt in: sowie Löst man (0) nach x σ 0 auf, folgt: ( x σ 0 ) 2 2m(E V (x)) = 0 (0) 2 xσ 0 + 2( x σ 0 )( x σ ) = 0 () x σ 0 = ± 2m(E V (x)) = ± (2) Das ist natürlich genau der Impuls. Auch () kann man jetzt auflösen: ± x = 2 xσ 0 = x x σ 0 = 2( x σ 0 )( x σ ) = (±)2( x σ ) (3) Es folgt unmittelar: x σ = x 2 = 2 x ln() (4) und damit haen wir σ 0 und σ estimmt: ˆ x ˆ x σ 0 = ± p(x )dx = ± 2m(E V (x ))dx (5) σ = ln() + c (6) 2 Einsetzen von (5) und (6) in den ursprünglichen Ansatz (2) liefert: Ψ(x) = exp( i ħ (σ 0 + ħ i σ )) = C exp(± i ħ ˆ x 2m(E V (x ))dx ) (7) Daraus ergit sich der allgemeine WKB-Ansatz: Ψ(x) = C exp( i ħ ˆ x 2m(E V (x ))dx )+ C 2 exp( i ħ ˆ x 2m(E V (x ))dx ) (8) Unterteilt man noch in klassisch erlaute E V Geiete und klassisch verotene Geiete E < V, so ergeen sich folgende Ansätze: 3

4 Für klassisch erlaute Geiete : Ψ(x) = C exp( i ħ ˆ x 2m(E V (x ))dx ) + C 2 exp( i ˆ x 2m(E V (x ))dx ) ħ (9) Für klassisch verotene Geiete: Ψ(x) = C exp( ħ ˆ x 2m( E V (x ) )dx ) + C 2 exp( ˆ x 2m( E V (x ) )dx ) ħ (20) Damit liegen die grundlegenden Gleichungen der WKB-Methode vor. Grenzen der WKB-Näherung: Ausgehend von unserem WKB-Ansatz prüfen wir, wann dieser Ansatz die Schrödingergleichung exakt löst. Daraus ergeen sich Aussagen üer die Anwendungsrenzen der WKB-Methode. Wir etrachten Ψ(x) = C exp(± i ħ ˆ x 2m(E V (x ))dx ) (2) und erechnen die zweite Aleitung: Ψ (x) = ( p (x) 2 ± i ħ )Ψ(x)) = [ 3 4 (p p )2 2 3 ( p 4 p )2 2 p 2 p p p2 ħ 2 p p ħ 2 ] Ψ(x) = p2 ħ 2 Ψ(x) (22) Jetzt soll Ψ(x) möglichst gut die Schrödingergleichung lösen: ħ2 2m Ψ (x) = (E V (x))ψ (23) 4

5 also zum Vergleich mit (22) Man sieht : Ψ (x) = 2m(E V (x)) Ψ = p2 ħ 2 ħ Ψ (24) 2 3 ( p 4 p )2 2 p 2 ħ 2 p p 0 (25) liefert das gewünschte Ergenis. Das edeutet, falls ħ 2 p 2 = 0 und ħ 2 p p 4 p 3 die Schrödingergleichung exakt gelöst. Betrachtet man also = 0 wird ħ p p = ħ d 2 dx p = d ħ dx p = d λ(x) << (26) dx 2π also genau die Aleitung der de Broglie Wellenlänge nach dem Ort x. Schaut man sich das genauer an, so sieht man: d ħ dx = d ħ ħmv (x) = << (27) dx 2m(E V (x)) (2m(E V (x))) 3/2 Das edeutet: V darf sich im Verhältnis zum Impuls nur schwach ändern. Dann ändert sich auch die de Broglie Wellenlänge nur wenig mit x. Doch wo macht die WKB-Näherung wirklich Proleme? Bei = 0! Da geht Ψ. Das passiert an den klassischen Wendepunkten, wenn E = V (x). Da angenommen wird,dass V (x) sich nur mit x ändert, können wir wie folgt vorgehen: Man löse die Schrödingergleichung in einer Umgeung der Wendepunkte exakt, indem man V (x) linear approximiert und als Lösung die Airy-Funktion findet. Geht man nur weit genug vom Wendepunkt weg, so geht die Airy-Funktion in Ψ = 4 x cos( 2c 3 x3/2 π) zw. Ψ = 4 4 x sin( 2c 3 x3/2 π ) üer. Hier flickt man dann 4 die Airyfunktion und die WKB Näherung aneinander. Verindungsgleichungen: Nehmen wir also als Beispiel den harmonischen Oszillator, oder ein ähnliches Potential. a sei der rechte und der linke Wendepunkt. Damit Ψ = C exp( i ˆ x 2m(E V (x ))dx )+ ħ C 2 exp( i ħ ˆ x 2m(E V (x ))dx ) (28) 5

6 regulär leit, also in die Airyfunktion üergeht, muss einerseits Ψ I = C cos( ħ ˆ x gelten und andererseits die rechte Seite geflickt werden: Ψ II = C cos( ħ C cos( ħ p( x)d x π 4 ) (29) p( x)d x + ħ x ˆ x Verlangt man, dass Ψ I = Ψ II, so ist C = ±C und Also ist ħ ˆ x p( x)d x π 4 = ħ ħ p( x)d x + ħ p( x)d x + π 4 ) = ˆ x p( x)d x + π 4 ) (30) p( x)d x + π + Nπ (3) 4 p( x)d x = (N + )π (32) 2 Schliesslich folgt durch Umschreien die Bohr-Sommerfeldsche Quantisierungsedingung: p( x)d x = (N + 2πħ 2 ) (33) Anwendung : Harmonischer Oszillator: Ausgehend vom Impuls = 2m(E 2 mω2 x 2 ) /2 = 2mE( m 2 E ω2 x 2 ) /2 (34) lassen sich die Umkehrpunkte estimmen (Nullstellen von ) 2E x,2 = ± (35) mω 2 Wir enötigen nun p( x)d x : ˆ x2 m p( x)d x = 2 2mE( x 2 E ω2 x 2 ) /2 dx = 2 2mE ˆ ( θ 2 ) /2 2E mω 2 dθ = 2E ω π 6 (36)

7 Nun gilt die Bohr-Sommerfeldsche Quantisierungsedingung: p( x)d x = 2E 2πħ 2πħ ω π = (N + 2 ) (37) Also gilt E = ħω(n + 2 ) (38) Dies ist genau das Ergenis aus der quantenmechanischen Rechnung. Anwendung: Der Tunneleffekt: Tunneleffekt Mit der WKB-Näherung wurde der Grundstein für die quantenmechanische Erklärung von Tunnelprozessen gelegt. Mit dieser Methode konnten 928 George Gamow ei seinem Aufenthalt ei Max Born in Göttingen, Ronald W. Gurney und Edward U. Condon den Alphazerfall und Ralph Howard Fowler und Lothar Wolfgang Nordheim die Feldemission von Elektronen erklären. Man etrachte hierfür die Streuung an einer rechteckigen Potentialarriere. Links der Barriere gilt: Ψ(x) = Ae ikx + Be ikx (39) mit der einfallenden Amplitude A und der reflektierten Amplitude B. (k 2mE/ ) Rechts der Barriere gilt nun: Ψ(x) = F e ikx (40) 7

8 F ist die transmittierte Amplitude. Für den Transmissionskoeffizienten gilt: T = F 2 A 2 (4) Im Tunnelereich wird nun die WKB-Näherung für den klassich verotenen Bereich angewendet: Ψ(x) = C exp( ħ ˆ x 2m( E V (x ) )dx )+ D exp( ħ ˆ x 2m( E V (x ) )dx ) Ist die Barriere sehr hoch oder sehr reit, so muss der Koeffizient des exponentiell zunehmenden Terms D klein sein. Die Verhältnisse der Amplituden für die einfallende und die transmittierte Welle werden im Wesentlichen durch die gesamte Aschwächung des Exponentialterms üer dem nichtklassischen Bereich estimmt: Folglich gilt T = e 2γ mit F A exp( ħ γ ħ γ wird als Tunnelfaktor ezeichnet. Beispiel Alphazerfall: 0 0 (42) dx (43) dx (44) Alphazerfall 8

9 Mit dem Potential V (x) = γ = ˆ r2 r 2Ze 2 4πɛ 0 r ergit sich für den Tunnelfaktor: 2Ze 2m( 2 2mE E)dr = 4πɛ 0 r 2mE ˆ r2 r r2 r dr = [r 2 ( π 2 sin r r 2 ) r (r 2 r )] (45) Verlangt man weiter r << r 2 : ergit sich mit sin(x) x für klein x γ = 2mE [ π 2 r 2 2 r r 2 ] = K r 2 + K 2 r2 = k Z E + k 2 (46) Für den Transmissionskoeffizienten ergit sich schließlich: T (E) Z = exp( 2(K r 2 + K 2 r2 )) = exp( 2(k E + k 2 )) (47) Zeitahängiger Fall: Schlisslich soll noch der zeitahängige Fall der Schrödingergleichung etrachtet werden. Dazu gilt: 2m Ψ + V ( x, t)ψ = i tψ (48) mit dem gewohnten Ansatz: Ψ = A( x, t) exp( i S( x, t)) (49) Auch hier setzen wir (49) in (48) ein, ordnen nach und trennen den Term vor 0 a: 2m ( S)2 + V ( x, t) + t S = 0 (50) Wir identifizieren S mit S = p und schreien: H( x, p, t) + t S = 0 (5) 9

10 Da aer folgt: ds dt = i S x i x i t + S t = i ˆ S = S x i ẋ i H = L (52) Ldt (53) Dies entspricht der klassischen Wirkung. Auslick: Die WKB-Methode ist ald Hundert Jahre alt, und man könnte meinen, sie sei von gestern. Ihre Anwendungen sind keineswegs auf die Schrödingergleichung eschränkt. Beispielsweise wird sie in der Akustik genutzt. Aer auch in der Astronomie findet sie Anwendungen is in die neueste Zeit. Immer, wenn die Differentialgleichung die Form der Schrödingergleichung hat und die Randedingungen erfüllar sind, ildet sie ein geeignetes Instrument für physikalische Untersuchungen. Quellen: David J. Griffiths, Quantenmechanik: Eine Einführung, S Pearson Studium Physik, 202 Alert Messiah, Quantenmechanik Band, S , De Gruyter, 99 Wolfgang Nolting, Grundkurs Theoretische Physik 5/2: Quantenmechanik - Methoden und Anwendungen, S , Springer, 202 Links: pdf

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

3.4 Kondition eines Problems

3.4 Kondition eines Problems 38 KAPITEL 3. FEHLERANALYSE Beispiel 3.18 Betrachte M(10, 5, 1). Dann sind x 4.2832, y 4.2821, z 5.7632 darstellare Zahlen und (x y)z 0.00633952. Das korrekte Ergenis in M ist daher 0.0063395. Der Ausdruck

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer

Mehr

Relativistische Quantenmechanik und die Klein-Gordon Gleichung

Relativistische Quantenmechanik und die Klein-Gordon Gleichung Relativistische Quantenmechanik und die Klein-Gordon Gleichung Oliver Smith o smit01 wwu.de) 17. Februar 2015 Wir wollen die Klein-Gordon Gleichung untersuchen und Formalismen einführen, um Parallelen

Mehr

Ferienkurs Theoretische Quantenmechanik 2010

Ferienkurs Theoretische Quantenmechanik 2010 Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Quantenmechanik 010 1 dimensionale Probleme Inhaltsverzeichnis 1 Die Schrödingergleichung 1.1 Wiederholung

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 2 3. Semester ARBEITSBLATT 2

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 2 3. Semester ARBEITSBLATT 2 Mathematik: Mag. Schmid Wolfgang Areitslatt 3. Semester ARBEITSBLATT Natürlich treten quadratische Gleichungen nicht nur direkt auf, sondern entstehen nach verschiedenen Umformungen. Beispiel: Gi die Lösungsmenge

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 13 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

Ballistischer Transport von Elektronen durch Nanostrukturen

Ballistischer Transport von Elektronen durch Nanostrukturen Ausarbeitung des Seminarvortrags Ballistischer Transport von Elektronen durch Nanostrukturen Frederik Edens gehalten am 10. Februar 016 Inhaltsverzeichnis 1. Motivation. Einführendes Beispiel - Streuung

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialruchzerlegung Unknown: www.gute-mathe-fragen.de/user/unknown Letzte Änderung: 11.09.2013 1 Contents 1 Nutzen/Ziel [Integration] 3 2 Partialruchzerlegung 4 2.1 Rellee Nullstellen (einfach).....................

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Beispiele: Harmonischer Oszillator und Kastenpotential

Beispiele: Harmonischer Oszillator und Kastenpotential Beispiele: Harmonischer Oszillator und Kastenpotential Ramona Wohlleb Mathematische Strukturen der Quantenmechanik Sommersemester 011 1 Der harmonische Oszillator In Analogie zum klassischen harmonischen

Mehr

Integralrechnung - Einführung Seite 1 von 6. Vergleicht man die Ergebnisse miteinander, so kann man folgende Entdeckung machen:

Integralrechnung - Einführung Seite 1 von 6. Vergleicht man die Ergebnisse miteinander, so kann man folgende Entdeckung machen: Integralrechnung - Einführung Seite von 6 Berechnung von Flächeninhalten zwischen dem Graphen einer Funktion und der x-achse: Beispiel : f(x)= Fläche zwischen Graph und x-achse üer dem Intervall [;]: Bei

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

Die Geschichte der Quantenmechanik

Die Geschichte der Quantenmechanik Die Geschichte der Quantenmechanik Kurt Bräuer Institut für Theoretische Physik 5.04.006 www.kbraeuer.de 1 'Urväter' 5.04.006 www.kbraeuer.de Strahlung schwarzer Körper: Max Plank 1900 Plank'sches Strahlungsgesetz:

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

Herleitung der Gleichung des Graphen Prüfen Sie die folgenden Schritte der Berechnung zur Bestimmung der Gleichung des Graphen nach.

Herleitung der Gleichung des Graphen Prüfen Sie die folgenden Schritte der Berechnung zur Bestimmung der Gleichung des Graphen nach. Die Versiera der Maria Agnesi Maria Gaetana Agnesi (* 16.5.1718 in Mailand, 9.1.1799 ed.) war eine italienische Mathematikerin, die ursprünglich easichtigte, ins Kloster zu gehen, auf Wunsch ihres Vaters

Mehr

Elliptische Integrale und das allgemeine geometrische Mittel (agm):

Elliptische Integrale und das allgemeine geometrische Mittel (agm): Elliptische Integrale und das allgemeine geometrische Mittel (agm): Typische Aufgaen der Analysis waren im 8. Jahrhundert nach der Erfindung der Differential- und Integralrechnung durch Leiniz und Newton,

Mehr

6 Lineare Abbildungen der euklidischen Ebene

6 Lineare Abbildungen der euklidischen Ebene 6 Lineare Aildungen der euklidischen Eene In diesem Kapitel etrachten wir nur noch lineare Aildungen der euklidischen Eene auf sich seler: f : E E oder f : R 2 R 2 Zudem verwenden wir das Skalarprodukt

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv 1.31 2017/06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Die Lösungen der S.-Glg. für das freie Teilchen

Die Lösungen der S.-Glg. für das freie Teilchen Die Lösungen der S.-Glg. für das freie Teilchen Zeitabhängige S- G l g., ħ ħ x (, (, m i = + Vrt rt Analogie zu den eletromagnetischen Wellen, Materiewellen, intuitives Raten etc. Ansatz f ü r W e l l

Mehr

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen

Mehr

PC III Aufbau der Materie

PC III Aufbau der Materie PC III Aufbau der Materie Kapitel 3 Einfache Anwendungen Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen Die Schrödingergleichung zeitunabhängige

Mehr

2x 1. x 3 mit der maximalen Definitionsmenge D f IR. und die Art der Definitionslücke von f an und bestimmen Sie die Nullstelle von f.

2x 1. x 3 mit der maximalen Definitionsmenge D f IR. und die Art der Definitionslücke von f an und bestimmen Sie die Nullstelle von f. Aiturprüfung Berufliche Oerschule 07 Mathematik Nichttechnik - A II - Lösung Teilaufgae.0 Gegeen ist die reelle Funktion f mit f( x) Ihr Graph wird mit G f ezeichnet. x mit der maximalen Definitionsmenge

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 1 Prof Dr Alexander Shnirman Blatt 7 Dr Boris Narozhny, Dr Holger Schmi 25521 1 Die

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik PHYSIKDEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN Felix Rucker, Matthias Herzog Übungsklausur 9.9. Kurze Fragen (6 Punkte) Ferienkurs Quantenmechanik Übungsklausur a) Wie ist ein quantenmechanischer Drehimpuls

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Blatt 11.4: Deltafunktion und Fourierreihen

Blatt 11.4: Deltafunktion und Fourierreihen Faultät für Physi R: Rechenmethoden für Physier, WiSe 215/16 Dozent: Jan von Delft Übungen: Benedit Bruognolo, Dennis Schimmel, Fraue Schwarz, uas Weidinger http://homepages.physi.uni-muenchen.de/~vondelft/ehre/15r/

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

8 Das Bohrsche Atommodell

8 Das Bohrsche Atommodell 8 Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse,

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Seminar zur Theorie der Teilchen und Felder Supersymmetrie

Seminar zur Theorie der Teilchen und Felder Supersymmetrie Alexander Hock a-hock@gmx.net Seminar zur Theorie der Teilchen und Felder Supersymmetrie Datum des Vortrags: 28.05.2014 Betreuer: Prof. Dr. J. Heitger Westfälische Wilhelms-Universität Münster, Deutschland

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Ferienkurs Experimentalphysik

Ferienkurs Experimentalphysik Ferienkurs Experimentlphysik 4 009 Übung 1 Heisenberg sche Unschärfereltion Zeigen Sie, dss eine Messprtur beim Doppelspltexperiment, die den Durchgng eines Teilchens durch ein Loch detektieren knn, ds

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Wiederholung: Spaltung und Fusion

Wiederholung: Spaltung und Fusion Wiederholung: Spaltung und Fusion Tröpfchenmodell: Stabilste Kerne liegen im Bereich A~60 Große Energiemenge kann bei der Spaltung eines schweren Kernes in zwei mittelschwere Kerne und bei der Fusion von

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

Diplomarbeitsvortrag

Diplomarbeitsvortrag Diplomarbeitsvortrag von Peer Mumcu Institut für Theoretische Physik A Lehr- und Forschungsgebiet Laserphysik RWTH Aachen Überblick Streuung in starken Laserfeldern 1-Teilchen Schrödingergleichung, analytische

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

Theoretische Physik mit Maple, WS 2010/ Übungsblatt (Besprechung am ) R( ) ( ( ( ) ( ))) ( ) u ( x)

Theoretische Physik mit Maple, WS 2010/ Übungsblatt (Besprechung am ) R( ) ( ( ( ) ( ))) ( ) u ( x) Theoretische Physik mit Maple, WS 2010/2011 9. Übungsblatt (Besprechung am 24.1.2011) Quantenmechanische Streuung am Kastenpotential Wir betrachten die zeitunabhängige Schrödinger-Gleichung (ZuSG) und

Mehr

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom Physikalische Chemie II (für Biol./Pharm. Wiss.) S 207 Lösung 7 Musterlösung zum Übungsblatt 7 vom 0.04.207 Diffusionspotential. Zu dieser Teilaufgabe vgl. Adam, Läuger, Stark, S. 326/327 und Skript I.3.3.

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

5. Die Integralrechnung

5. Die Integralrechnung 5. Die Integralrechnung 5.1 Die ursprüngliche Einführung des Integrals Ursprünglich wurde das Integral zur Flächendefinition und -erechnung eingeführt: x Aszissenachse (Blaue) Oersummen als oere Schranke,

Mehr

2 Einführung in die Prinzipien der Quantenmechanik

2 Einführung in die Prinzipien der Quantenmechanik Einführung in die Prinzipien der Quantenmechanik.1 Bedeutung von Axiomen (Postulaten) Axiome (Axiom griechisch für Grundsatz) sind Postulate, die nicht beweisbar sind, mit denen aber durch logische Folgerungen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Wichtiges zur Analysis

Wichtiges zur Analysis Wichtiges zur Analysis Definitionsmenge: hier ist zu eachten: das Argument eines Logarithmus muss positiv sein (siehe dazu auch Ungleichungen lösen!) Der Nenner eines Bruchs darf nicht gleich sein. grundlegende

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Modulprüfung 2006 Klasse B 05 / B1. Mathematik

Modulprüfung 2006 Klasse B 05 / B1. Mathematik Modulprüfung 2006 Klasse B 05 / B1 Mathematik Zeit: 120 Minuten WIR1-2006/ 25 /Burgdorf/B 152 Fr 24.2.06/10.25-12.05 2 Bedingungen: Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 4. Vorlesung Pawel Romanczuk WS 2016/17 Zusammenfassung letzte VL Orts- und Impulsdarstellung Gaussches Wellenpacket Unendl. Potentialtopf

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion 5. Verteilungsfunktion Die Verteilungsfunktion git an welche Wahrscheinlichkeit sich is zu einem estimmten Wert der Zufallsvarialen kumuliert ( angehäuft, angesammelt ) hat. Die Verteilungsfunktion F()

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

Lösen von Differentialgleichungen durch Reihenentwicklung

Lösen von Differentialgleichungen durch Reihenentwicklung Lösen von Differentialgleichungen durch Reihenentwicklung Thomas Wassong FB17 Mathematik Universität Kassel 30. April 2008 Einführung Reihen in der Mathematik Reihen zum Lösen von Differentialgleichungen

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

Jemand legt 1000 Fr. auf sein Sparkonto, wo es jährlich zu 0.5% verzinst wird. Nach wie vielen Jahren hat es mindestens 1500 Fr. auf dem Sparkonto?

Jemand legt 1000 Fr. auf sein Sparkonto, wo es jährlich zu 0.5% verzinst wird. Nach wie vielen Jahren hat es mindestens 1500 Fr. auf dem Sparkonto? Logarithmieren.1 Ziele Logarithmen in verschiedenen Logarithmensysteme können erechnet werden Grundlegenden Eigenschaften der Logarithmen und die Logarithmengesetze können in Beispielen angewendet werden.

Mehr

Wechselkurse und Finanzmarkt-Indizes

Wechselkurse und Finanzmarkt-Indizes 8. Mai 2008 Inhaltsverzeichnis 1 Wechselkurse Einführung Wechselkurs US Dollar - Deutsche Mark Statistischer Prozess 2 Reinjektion Eigenschaften der Fluktuationen von x(τ) 3 Diffusion auf Finanzmärkten

Mehr

5. Zufallsvariablen und ihre Verteilung

5. Zufallsvariablen und ihre Verteilung 5. Zufallsvarialen und ihre Verteilung 5. Begriff der Zufallsvarialen Bisher haen wir Ereignissen Wahrscheinlichkeiten zugeordnet. Sie estehen aus einem oder mehreren Ergenissen eines Zufallsvorgangs,

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr