Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:"

Transkript

1 Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum:

2 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen des Modells 3. Lorentzoszillator 4. Sommerfeldmodell 4.1 Fermi-Kugel 4. Wärmekapazität 5. Wiedemann-Franz-Gesetz

3 1.1 Elektronen schlägt Stoney Existenz einer Elementarladung vor - Stoney/Helmholtz: eléctron (altgr. für Bernstein) : experimenteller Nachweis des Elektrons durch Thomson Rosinenkuchen-Modell : Bestimmung der Elementarladung durch Millikan

4 1. Metalle ca. 80 % aller Elemente

5 1. Metalle - hohe elektrische Leitfähigkeit σ - hohe Wärmeleitfähigkeit λ - hohe Duktilität - metallischer Glanz Natrium

6 . Drude-Modell (1900) - Valenzelektronen verhalten sich wie ideales Gas im Kristall Elektronengas - positiv geladene Atomrümpfe sind klein und unbeweglich - Elektronen führen Stöße mit Atomrümpfen aus mittlere freie Weglänge Λ, mittlere Stoßzeit τ - Zwischen den Stößen ist Bewegung der Elektronen völlig frei Paul Drude

7 Drude-Modell

8 .1 Ohm'sches Gesetz Bewegungsgleichung : m m v + τ v D + e E = 0 Stationärer Zustand : v = 0 vd = Stromdichte : j= eτ E m 1 dq dx A = n e v D A dv dt n τe j= E m nτe ; mit σ = m j =σe

9 . Grenzen des Modells - Berechneter Widerstand sechs Mal so groß wie der Gemessene - Mittlere freie Weglänge Λ hängt von Qualität und Temperatur des Kristalls ab - Elektrische Leitfähigkeit σ und Wärmeleitfähigkeit λ sind temperaturabhängig - keine Erklärung für metallischen Glanz - gilt stark eingeschränkt nur für Metalle - unter welchen Bedingungen ist ein Festkörper ein Metall, Halbmetall, Halbleiter, Isolator? - etc

10 3. Lorentzoszillator , Erweiterung des Drude-Modells - massiver, positiv geladener Kern - leichte kugelförmige Elektronenhülle - EMW verschiebt Elektronenhülle gegenüber Kern Harmonischer Oszillator Bewegungsgleichung : m x + b x + D x = e E 0 ei ω t 10

11 3. Lorentzoszillator m e x + b x + D x = e E 0 ei ωt Bewegungsgleichung : mit ω0 = D ; me γ = b me x (t ) = x 0 e i ω t Ansatz : x0 = e E0 m e (ω0 + ω + i γ ω) N e x0 n = 1 ϵ0 E N e n (ω) = ϵ( ω) = 1 + m e ϵ 0 (ω0 ω + i γ ω)

12 3. Lorentzoszillator - Elektronen folgen anregenden Feld ohne Rückstellkraft: ω ω ph 10 s ω s γ 0 ωp Dispersion für Metalle: n = 1 ω ( ) Plasmafrequenz : Hohe Reflexion für: ω < ωp Metall transparent für: ω > ωp Ne ωp = ϵ0 m e 1

13 3. Lorentzoszillator - Metalle reflektieren oberhalb von λ nm - erklärt Farbe bei einigen Metallen - Ausnahmen z.b. Kupfer und Gold

14 4. Sommerfeld-Modell Elektron wird als quantenmechanisches Teilchen betrachtet Elektron als Fermion genügt der Fermi-Dirac-Verteilung Pauli-Prinzip gültig - immer noch keine Wechselwirkung der Elektronen untereinander Arnold Sommerfeld - Elektron befindet sich im Potentialtopf: ebene stehende Wellen sind Lösungen der Schrödinger-Gleichung

15 4.1 Fermi-Kugel Schrödinger Gleichung : Ψ = EΨ H Ebene Welle: Ψ k ( r ) = e i k r ℏ k E= m Periodische Randbedingung : Ψ ( x, y, z ) = Ψ ( x + L, y, z ) = Ψ ( x, y+ L, z) = Ψ( x, y, z + L) Diskrete, quantisierte k Werte : nx π k = L ny nz Einheitszellen besitzen Kantenlänge () π L 15

16 4.1 Fermi-Kugel - Einheitszellen bilden eine Kugel mit Radius kf - Für die Anzahl an Elektronen erhält man: Fermi Wellenvektor : 3 π N kf = V Fermi Geschwindigkeit : ℏ 3 3π N vf = m V 3 ( ) π L = V k 3F 3π 3 ( Fermi Energie : ℏ 3π N EF = m V Fermi Temperatur : TF = N = 4π 3 k 3 F 3 ) EF kb 16

17 4. Wärmekapazität 3 Ne EF Zustandsdichte : D( E) = Fermi Dirac Verteilung : f (E,T ) = E EF 1 E E F exp +1 k BT ( ) Innere Energie : U = E D( E) f ( E, T ) de 0 T π C el = kb Ne TF Beitrag der Elektronen

18 4. Wärmekapazität Zusammen mit phononischen Anteil aus Debye-Modell Kalium 4 3 T 1 π T C ges = π k B N e + N kb 3 TF 5 ΘD - ΘD: K, TF: K - phononischer gleich elektronischer Anteil bei niedrigen C ges = γ + BT T Temperaturen, z.b. Silber bei T=1,8 K

19 5. Wiedemann-Franz-Gesetz λ = LT σ , Wiedemann/Franz : Verhältnis von elektr. zu therm. Leitfähigkeit konstant bei jedem Metall, bei gleicher Temperatur - 187, Lorenz: λ T σ Lorenz-Zahl L , Drude: erste theoretische Erklärung

20 5. Wiedemann-Franz-Gesetz Aus kinetischer Gastheorie: λ= ρcvλ = C v τ 3 3 V Drude Sommerfeld C= v = () 3kBT m (3) T C el = π k B N TF v F = ( ) σt ( ) 3 kb L= e 3 k N B 3 kb λ= e aus () und (3): (1) 1, λ= π 3 aus () und (3): WΩ K L= π 3 kbt F m (3) ( ) kb e σt ( ) kb e () 8, WΩ K 0

21 Zusammenfassung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen des Modells 3. Lorentzoszillator 4. Sommerfeldmodell 4.1 Fermi-Kugel 4. Wärmekapazität 5. Wiedemann-Franz-Gesetz

22 Quellen Becher Christoph, Skript zu Experimentalphysik 3a Hartmann Uwe, Nanostrukturforschung und Nanotechnologie: Band 1: Grundlagen Kopitzki Konrad, Einführung in die Festkörperphysik Möller Michael, Skript zu Elektronik 1 Pelster Rolf, Skript zu Experimentalphysik 4a

23 Abbildungen - 3: : : - 7: : : : Hartmann Uwe, Nanostrukturforschung und Nanotechnologie: Band 1: Grundlagen - 16: : Kopitzki Konrad, Einführung in die Festkörperphysik

24 Vielen Dank für Ihre Aufmerksamkeit!

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

Elektronen im Festkörper

Elektronen im Festkörper Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen

Mehr

10.Einführung in die Festkörperphysik

10.Einführung in die Festkörperphysik 1.1 1.Einführung in die Festkörperphysik Die Festkörperphysik ist ein Zweig der modernen Physik, in dem mittlerweile ca. 5% aller Physiker arbeiten. Viele moderne Anwendungen insbesondere im Bereich der

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Fragen zur Vorlesung Licht und Materie

Fragen zur Vorlesung Licht und Materie Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I

Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Der Tunneleffekt Jan Lukas Becker Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Übersicht 1) Herleitung des Tunneleffekts 2) Der Tunneleffekt in Metallen 3) Einzel-Elektronen-Tunneln

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen und Durchgeführt am: 13 Februar 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Hall-Effekt.............................

Mehr

5 Freie Elektronen. 5.1 Klassische Beschreibung. 5.1.1 Metalle und ihre Eigenschaften. 5.1.2 Das Drude-Modell. Abbildung 5.1: Metallische Bindung.

5 Freie Elektronen. 5.1 Klassische Beschreibung. 5.1.1 Metalle und ihre Eigenschaften. 5.1.2 Das Drude-Modell. Abbildung 5.1: Metallische Bindung. 5. Klassische Beschreibung 5.. Metalle und ihre Eigenschaften Elektrische Leitfähigkeit Metallglanz 9+ 9+ 9+ 9+ 8-8- 8-8- 9+ 9+ 9+ 9+ 8-8- 8-8- Wärmeleitfähigkeit Pyrit (FeS) Abbildung 5.: Metallische

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Physik 2 (B.Sc. EIT) 7. Übungsblatt

Physik 2 (B.Sc. EIT) 7. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof. Dr. H. Baugärtner Übungen: Dr.-Ing. Tanja Stipel-Lindner,

Mehr

6. Die Chemische Bindung

6. Die Chemische Bindung 6. Die Chemische Bindung Hauptbindungsarten Kovalente Bindung Ionenbindung Metallische Bindung Nebenbindungsarten Van der Waals Wechselwirkung Wasserstoffbrückenbindung Metalle www.webelements.com Eigenschaften

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Elektrische Eigenschaften von Festkörpern

Elektrische Eigenschaften von Festkörpern Elektrische Eigenschaften von n Quellennachweis zu den Abbildungen R. Müller, Grundlagen der Halbleiter-Elektronik. C.R. Bolognesi, Vorlesungsunterlagen. W.C. Dash, R. Newman, Phys. Rev., 99, 1955, 1151.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Tunnelmodell für Gläser:

Tunnelmodell für Gläser: Tunnelmodell für Gläser: x 4.1.2 Gläser x Bewegungszustände von Eigendefekten z. B. teilvernetzte SiO 2 -Tetraeder in Quarzglas 2 3 4 V(x) = a x + bx + cx O O Si O O O Si O O Konfigurations-Koordinate

Mehr

5. Freie Elektronen. 5.1. Das klassische Drude-Modell. 5.1.1. Freies Elektronengas

5. Freie Elektronen. 5.1. Das klassische Drude-Modell. 5.1.1. Freies Elektronengas Prof. Dieter Suter Festkörperphysik WS 05 / 06 5.1. Das klassische Drude-Modell 5.1.1. Freies Elektronengas 5. Freie Elektronen In diesem Kapitel soll in erster Linie der Versuch unternommen werden, das

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

E13 PhysikalischesGrundpraktikum

E13 PhysikalischesGrundpraktikum E13 PhysikalischesGrundpraktikum Abteilung Elektrizitätslehre Hall-Effekt und Ladungstransport in Halbleitern 1 Vorbereitung Themen: 1. Leitungsmechanismen in Metallen und Halbleitern (Drude-Modell; Bändermodell,

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Elektronen in Festkörpern

Elektronen in Festkörpern 6 Elektronen in Festkörpern Anhand des Modells des fast freien Elektronengases kann eine Anzahl wichtiger physikalischer Eigenschaften von Metallen erklärt werden. Nach diesem Modell bewegen sich die am

Mehr

6. Transporteigenschaften von Metallen

6. Transporteigenschaften von Metallen 6. Transporteigenschaften von Metallen 6. llgemeine Transportgleichung a) elektrische Leitung b) Wärmeleitung c) Diffusion llgemeine Transportgleichung: j C Φ j : C : Φ : Stromdichte Proportionalitätskonstante

Mehr

Maxwell- und Materialgleichungen. B rote t. divb 0 D roth j t divd. E H D B j

Maxwell- und Materialgleichungen. B rote t. divb 0 D roth j t divd. E H D B j Maxwell- und Materialgleichungen B rote t divb D roth j t divd E H D B j elektrische Feldstärke magnetische Feldstärke elektrischeverschiebungsdichte magnetische Flussdichte elektrische Stromdichte DrE

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Praktikum Materialwissenschaft II. Wärmeleitung

Praktikum Materialwissenschaft II. Wärmeleitung Praktikum Materialwissenschaft II Wärmeleitung Gruppe 8 André Schwöbel 1328037 Jörg Schließer 1401598 Maximilian Fries 1407149 e-mail: a.schwoebel@gmail.com Betreuer: Markus König 21.11.2007 Inhaltsverzeichnis

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

Das Modell der freien Elektronen

Das Modell der freien Elektronen Kapitel 6 Das Modell der freien lektronen Die physikalischen igenschaften eines Festkörpers können weitgehend entweder durch die Gitter-Dynamik oder durch das Verhalten der lektronen (allg. Ladungsträger)

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

=!'04 #>4 )-:!- / )) $!# & $ % # %)6 ) + # 6 0 %% )90 % 1% $ 9116 69)" %" :"6. 1-0 &6 -% ' 0' )%1 0(,"'% #6 0 )90 1-11 ) 9 #,0. 1 #% 0 9 & %) ) '' #' ) 0 # %6 ;+'' 0 6%((&0 6?9 ;+'' 0 9)&6? #' 1 0 +& $

Mehr

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz

Mehr

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse 4.2 Metallkristalle - 75 % aller Elemente sind Metalle - hohe thermische und elektrische Leitfähigkeit - metallischer Glanz - Duktilität (Zähigkeit, Verformungsvermögen): Fähigkeit eines Werkstoffs, sich

Mehr

Photonische Kristalle

Photonische Kristalle Kapitel 2 Photonische Kristalle 2.1 Einführung In den letzten 20 Jahren entwickelten sich die Photonischen Kristalle zu einem bevorzugten Gegenstand der Grundlagenforschung aber auch der angewandten Forschung

Mehr

Ohmscher Spannungsteiler

Ohmscher Spannungsteiler Fakultät Technik Bereich Informationstechnik Ohmscher Spannungsteiler Beispielbericht Blockveranstaltung im SS2006 Technische Dokumentation von M. Mustermann Fakultät Technik Bereich Informationstechnik

Mehr

Seebeck-/Peltier-Effekt: thermoelektrische Materialien

Seebeck-/Peltier-Effekt: thermoelektrische Materialien Seebeck-/Peltier-Effekt: thermoelektrische (Seebeck-Effekt) [1] Matthias Neumann, Sebastian Paulik Folie 1 1. Seebeck-Effekt 1.1 Einführung 1.2 Theorie 1.3 Anwendung Thomas Johann Seebeck (1770-1831) 2.

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

Stromstärke. STROM und SPANNUNG. Driftgeschwindigkeit. Stromträger. Ladungstransport pro Zeiteinheit. Dimension: 1 A = 1 Ampere = 1 C/s.

Stromstärke. STROM und SPANNUNG. Driftgeschwindigkeit. Stromträger. Ladungstransport pro Zeiteinheit. Dimension: 1 A = 1 Ampere = 1 C/s. Stromstärke STROM und SPNNUNG Ladungstransport pro Zeiteinheit Dimension: = mpere = C/s EX-II SS200 I = dq dt = j d S Stromdichte : /cm 2 Stromträger Elektronen bzw. positiv oder negativ geladene Ionen

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen Faraday-Rotation I. Rückmann, H. Bieker, P. Kruse Universität Bremen Bad Honnef 2014 I. Rückmann, H. Bieker, P. Kruse (Uni-Bremen) Faraday-Rotation Bad Honnef 2014 1 / 18 Faraday-Rotation magnetfeldinduzierte

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN Praktische Aktivität: Messung der Planck-Konstante mit LEDs 1 Quantenphysik Die Physik der sehr kleinen Teilchen mit großartigen Anwendungsmöglichkeiten Teil 3: PRAKTISCHE AKTIVITÄTEN Messung der Planck-Konstante

Mehr

E 2 Temperaturabhängigkeit elektrischer Widerstände

E 2 Temperaturabhängigkeit elektrischer Widerstände E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.

Mehr

Die Macht und Ohnmacht der Quantenwelt

Die Macht und Ohnmacht der Quantenwelt Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik

Mehr

Inhaltsverzeichnis. Kurz, G�nther Strà mungslehre, Optik, Elektrizit�tslehre, Magnetismus digitalisiert durch: IDS Basel Bern

Inhaltsverzeichnis. Kurz, GÃ?nther Strà mungslehre, Optik, ElektrizitÃ?tslehre, Magnetismus digitalisiert durch: IDS Basel Bern Inhaltsverzeichnis I Strömungslehre 11 1 Ruhende Flüssigkeiten (und Gase) - Hydrostatik 11 1.1 Charakterisierung von Flüssigkeiten 11 1.2 Druck - Definition und abgeleitete 11 1.3 Druckänderungen in ruhenden

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

14. November Silizium-Solarzelle. Gruppe 36. Simon Honc Christian Hütter

14. November Silizium-Solarzelle. Gruppe 36. Simon Honc Christian Hütter 14. November 25 Silizium-Solarzelle Gruppe 36 Simon Honc shonc@web.de Christian Hütter Christian.huetter@gmx.de 1 I. Inhaltsverzeichnis I. Inhaltsverzeichnis... 2 II. Theoretische Grundlagen... 3 1. Das

Mehr

der Periodendauer ist die Frequenz der Schwingung = ω 1 (Masse mal Beschleunigung). Die Lösung dieser Differentialgleichung führt auf die

der Periodendauer ist die Frequenz der Schwingung = ω 1 (Masse mal Beschleunigung). Die Lösung dieser Differentialgleichung führt auf die Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Werkstoffwissenschaften 6 / AlN Martensstr. 7, 9158 Erlangen orlesung Grundlagen der WET I Dr.-Ing. Matthias Bickermann, Prof. Dr. A. Winnacker

Mehr

15. Vom Atom zum Festkörper

15. Vom Atom zum Festkörper 15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl

Mehr

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung Versuch Nr. 02: Bestimmung eines Ohmschen Widerstandes nach der Substitutionsmethode Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor:

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )=

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )= Übung zur Vorlesung PN II Physik für Chemiker Sommersemester 2012 Prof. Tim Liedl, Department für Physik, LMU München Lösung zur Probeklausur (Besprechungstermin 08.06.2012) Aufgabe 1: Elektrostatik Elektrische

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

1 2 G G (3.1) , wobei a 0 die Gitterkonstante ist, sind diese Punkte durch die kartesischen Koordinaten

1 2 G G (3.1) , wobei a 0 die Gitterkonstante ist, sind diese Punkte durch die kartesischen Koordinaten Kapitel 3 Der unendlich ausgedehnte Festkörper 3.1 Die Brillouinsche-Zone des fcc-gitters Die Brillouinsche-Zone (1. BZ) ist definiert als Wigner-Seitz-Zelle im reziproken Gitter. Ein Wellenvektor k liegt

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Elektrolytische Leitfähigkeit

Elektrolytische Leitfähigkeit Elektrolytische Leitfähigkeit 1 Elektrolytische Leitfähigkeit Gegenstand dieses Versuches ist der Zusammenhang der elektrolytischen Leitfähigkeit starker und schwacher Elektrolyten mit deren Konzentration.

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Standardmodell der Teilchenphysik

Standardmodell der Teilchenphysik Standardmodell der Teilchenphysik Eine Übersicht Bjoern Walk bwalk@students.uni-mainz.de 30. Oktober 2006 / Seminar des fortgeschrittenen Praktikums Gliederung Grundlagen Teilchen Früh entdeckte Teilchen

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Atomaufbau. Elektronen e (-) Atomhülle

Atomaufbau. Elektronen e (-) Atomhülle Atomaufbau Institut für Elementarteilchen Nukleonen Protonen p (+) Neutronen n (o) Elektronen e (-) Atomkern Atomhülle Atom WIBA-NET 2005 Prof. Setzer 1 Elementarteilchen Institut für Name Symbol Masse

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 01/13 Christoph Wölper Universität Duisburg-Essen Koordinationszahlen Ionenradien # dichteste Packung mit 1 Nachbarn -> in Ionengittern weniger

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

Der Photoelektrische Effekt

Der Photoelektrische Effekt Der Photoelektrische Effekt Anna-Maria Klingenböck und Sarah Langer 16.10.2012 Inhaltsverzeichnis 1 Das Licht Welle oder Teilchen? 1 2 Eine einfache Variante 2 3 Versuchsaufbau 3 3.1 1. Versuch...............................

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Messung der Viskosität von Hochtemperatur-Metallschmelzen

Messung der Viskosität von Hochtemperatur-Metallschmelzen Messung der Viskosität von Hochtemperatur-Metallschmelzen G. Lohöfer Institut für Materialphysik im Weltraum, DLR, Köln AK Thermophysik, Graz, 03.-04.05.01 1 Probleme beim Prozessieren von Metallschmelzen

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Festkörperphysik. Prof. Dr. Reinhard Strehlow. Hochschulübergreifender Studiengang Wirtschaftsingenieur. Festkörperphysik p. 1/20

Festkörperphysik. Prof. Dr. Reinhard Strehlow. Hochschulübergreifender Studiengang Wirtschaftsingenieur. Festkörperphysik p. 1/20 Festkörperphysik Prof Dr Reinhard Strehlow Hochschulübergreifender Studiengang Wirtschaftsingenieur Festkörperphysik p 1/20 Inhalt Allgemeines über Festkörper und ihre Herstellung Kristallstruktur und

Mehr

3. Bausteine der Materie: Atomhülle. Form der Atomorbitale. s-orbitale kugelsymmetrische Elektronendichteverteilung

3. Bausteine der Materie: Atomhülle. Form der Atomorbitale. s-orbitale kugelsymmetrische Elektronendichteverteilung 3. Bausteine der Materie: Atomhülle Form der Atomorbitale s-orbitale kugelsymmetrische Elektronendichteverteilung 1s 2s 3d - Orbitale 3. Bausteine der Materie: Atomhülle 3. Bausteine der Materie: Atomhülle

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Experimentalphysik 4 - SS11 Physik der Atome und Kerne

Experimentalphysik 4 - SS11 Physik der Atome und Kerne Experimentalphysik 4 - SS Physik der Atome und Kerne Prof. Dr. Tilman Pfau 5. Physikalisches Institut Übungsblatt 06 Besprechung: 8. Juni Aufgabe : Koeffizient a C des Coulomb-Terms 4 Punkte In dieser

Mehr

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2) Blatt 1 (von 2) 1. Leuchtelektronen-Modell des Na-Atoms 5 BE Berechne aus dem experimentellen Wert der Ionisierungsenergie von Natrium, 5, 12 ev, die effektive Kernladungszahl für das Leuchtelektron der

Mehr

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt Kanalstrahlexperimente hatten schwere, positiv geladene Teilchen beim Wasserstoff nachgewiesen Aufgrund von Streuexperimenten postulierte

Mehr