Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2013 Prof. Dr. F. Kremer

Größe: px
Ab Seite anzeigen:

Download "Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2013 Prof. Dr. F. Kremer"

Transkript

1 Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 3 Prof. Dr. F. Kremer Üersicht der Vorlesung am Wiederholung (Drude-Modell ( freies Elektronengas, Plasmaschwingung, Grenzen des Drude- Modells Folgerungen aus der Translationsvarianz des Gitters Das Kronig-Penney Modell Das Bändermodell der elektronischen Zustände in einem Festkörper

2 Wiederholung (Drude-Modell ( freies Elektronengas, Plasmaschwingung, Grenzen des Drude-Modells Etwa 75 der chemischen Elemente zeigen unter Normaledingungen Metallcharakter, d.h. sie zeichnen sich durch folgende Eigenschaften aus: a durch die ihnen gemeinsame chemische Bindung durch eine große elektrische Leitfähigkeit c durch die Existenz quasifreier Elektronen d durch eine sehr hohe Teilchenzahldichte der quasifreien Elektronen e durch die Verringerung der Leitfähigkeit mit wachsender Temperatur f durch eine großen optischen Asorptions- und Reflexionsgrad g durch die Proportionalität zwischen thermischer und elektrischer Leitfähigkeit, woei für alle Metalle die Proportionalitätskonstante eine universelle Konstante ist. (Wiedemann Franz sches Gesetz Um 9 entwickelte Drude das Modell des freien Elektronengases. Es erlaut lediglich eine qualitative Interpretation der el. Leitfähigkeit. Sein Grenzen erkennt man insesondere In der inkorrekten Beschreiung dertemperaturahängigikeit der DC-Leitfähigkeit Der Tatsache, dass die Frequenzahängigkeit der Leitfähigkeit komplizierter ist 3 Der Tatsache, dass das Drude-Modell nicht erklären kann, wann ein Material ein Isolator und wann ein Metall? Im Drudemodell wurde davon ausgegangen, daß die freien Elektronen einer Boltzmann Statistik genügen. Das ist falsch, wie von A, Sommerfeld 98 erkannt. Weiterhin wurden isher der Beitrag des periodischen Potentials und Korrelationseffekte zwischen Elektronen weggelassen. Folgerungen aus der Translationsvarianz des Gitters Die Translationsvarianz des Gitters esagt Ps = Ps+ r ( ( (

3 ( für ein Potential Ps mit einem Gittervektor r. Die Energieeigenwerte für ein quasi-freies Elektron ergeen sich aus dem Hamilton- Operator Ĥ Ĥ ψ = Eψ Ĥ= ep( s (3 me Der Hamiltonoperator ist invariant ei der Sustitution s s + r, wegen ( und der Tatsache, dass invariant ist, wenn man einen konstanten Faktor r zu der Koordinaten s addiert. Also müssen ψ ( s und ψ ( s + r die gleichen Eigenwerte haen. Die Wellenfunktion ψ ( s und ψ ( s + r mögen sich nur durch einen konstanten Faktor r unterscheiden, der nur von r ahängt. ψ ( s + r = C ( r ψ ( s (4 Im Einzelnen muss gelten was heißt s r s r dv C r C r s s dv + + ψ + ψ + = ψ ψ ( ( ( ( ( ( C r C r C r = ( ( = ( Dies ist mit dem folgenden Ansatz erfüllt C r = e ( ik r Einsetzen von (7 in (4 liefert ( s r ik r e ψ + = ψ ( s Eine Lösung der Eigenwertgleichung ( muss, wenn sie der Periodizitätsforderung genügen soll, auch Gl. (8 erfüllen. Das motiviert den Ansatz ψ = (9 ( s u ik s ( s e und man erhält us se s r e e also ist us ( Die Funktion ik s ik r ik s =ψ =ψ + = ( ( ( ik ( s+ r =ψ ( s+ r e u( s+ r eenfalls translationsinvariant. ψ = ( s u ik s ( s e wird als Bloch-Funktion ezeichnet und 98 in Leipzig von Felix Bloch, dem ersten Assistenten von Werner Heisenerg, entdeckt. ( (5 (6 (7 (8 ( ( 3

4 Das Kronig-Penney Modell Die Energieeigenwerte für ein Elektron in einem periodischen Potential (in einer Dimension folgen aus: d Ĥ= + W m dx e p ( x ( W p E a l l 3 l In "" gilt: [,a] Wp ( x = (3 x Ansatz: Eene Wellen ( x c exp( ik x c exp( ik x ψ = + (4 d ψ dx ( x ( x k ( =ψ = ψ x (5 Einsetzen in die Schrödingergleichung mit diesem Ansatz liefert m E e k = (6 woei E die Energieeigenwerte des Elektrons sind. In "" mit [-,] macht man einen ähnlichen Ansatz: mit ( x c exp( ik x c exp( ik x ψ = + (7 d ψ ( x 3 4 ( x k ( ψ = ψ x (8 dx ( m E E k = (9 4

5 Für die Wellenfunktion in "" mit [a, a+] gilt eine periodische Fortführung von ψ (x mit der Periodizität = a +, d. h. mit k = π/ ( x exp( ik ( x ψ = ψ ( ( ( ( ( 3 ( 4 ( ( ψ x = exp ik c exp ik x + c exp ik x Um die Koeffizienten c i zu estimmen, muss die Stetigkeit der Wellenfunktion und ihrer Aleitungen an den Intervall-Grenzen erücksichtigt werden. ψ ( =ψ ( (a ; ψ ( =ψ ( ψ ( a =ψ ( a (c ; ψ ( a =ψ ( a Damit ergit sich ein lineares Gleichungssystem c + c = c + c 3 4 ( + ( = ( ( ( cexpika cexp ika ( 3 4 = exp ik c exp ik + c exp ik ( ( ( (d aus (a aus (c k c c = k c c aus ( 3 4 ( ( ( = k exp( ik c exp( ik c exp( ik k c exp ik a c exp ik a ( = 3 4 aus (d ( ( (3 Dieses System von linearen Gleichungen hat eine nicht-triviale Lösung nur unter der Bedingung k + k cosk = cos( ka cos( k sin( ka sin( k k k. Fall: E< E k k ist imaginär (4 k = ik k ist reell Aus (4 folgt wegen oder k k ( ( ( cos k = cos ka cosh k sin( ka sinh( k (5 k k iz iz 4 e + e z z cosz = = +...! 4! Z Z 4 e + e z z coshz = = (s. Bronstein S. 7! 4! 5

6 ( cosz = cosh iz ( sinz = isinh iz Die erlauten Energieeigenwerte sind limitiert durch die Bedingung: Für E folgt k k ( ( * cos ka cosh k sin( ka sinh( k + (6 k k k ( m E E = k (7 also k Mit ergit sich: k k k kk kk k E = (8 k = const E (9 E Analog folgt cosh k ( ( sinh k k (3 (3 mit Also folgt aus (6 3 5 z z sinh z = z (3 3! 5! k a cos k a + sin k a k (33 oder ( ( ( ka ( k a sin( k a cos ka + (34 k a mea e cos( ka + γ sin( k a ka (35 oder ( ( ka sin k a γ + cos k a + (36 ( 6

7 . Fall: E > E Analog zu Fall aer ohne "physikalischen Sinn" für E Für das Energietermschema eines quasi-freien Elektrons in einem periodischen Potential eines kuischen Kristalls (k x, k y = k z = folgt Das Bändermodell der elektronischen Zustände in einem Festkörper Das Energieand mit vollständig esetzten elektronischen Zuständen, das am höchsten ei T = K ist, ist das Valenzand, das nächst höhere das Leitungsand. Elektronen eines vollesetzten Bandes tragen nicht zum Ladungstransport ei, weil die Wechselwirkung eines Elektrons mit einem äußeren elektrischen Feld nicht möglich ist. 7

8 Das Energieand mit vollständig esetzten elektronischen Zuständen, das am höchsten ei T = K ist, ist das Valenzand, das nächst höhere das Leitungsand. Elektronen eines vollesetzten Bandes tragen nicht zum zum Ladungstransport ei, weil die Wechselwirkung eines Elektrons mit einem äußeren elektrischen Feld nicht möglich ist. a Metalle, Halmetalle,c Halleiter, d Isolatoren Bandlücke: W Leitungsand W Valenzand = ΔW: Isolator: ΔW:,5 ev Halleiter: ΔW i,5 ev Metall: ΔW i Der Ladungstransport im Halleiter ist thermisch aktiviert, Metalle haen eine entgegengesetzte Temperaturahängigkeit 8

9 Üerlappen sich das Valenz- und Leitungsand nur in einem kleinen Bereich (<% zw. ist das Leitungsand ei T=K fast vollständig leer (weniger als % esetzt so spricht man von einem Halmetall Metall. Art. Halmetalle sind Elemente der 3. is 6. Gruppe des Periodischen Systems. Sie esitzen i. A. sowohl metallische als auch nichtmetallische Modifikationen. Beispiele sind z.b. Arsen, Antimon und Wismut. Im Bereich der Halmetalle vollzieht sich der Üergang von der metallischen zur homöopolaren Bindung. In Halmetallen kommt auf 5 Atome ca. ein quasifreies Elektron, während in Metallen auf jedes Atom angenähert angenähert ein quasifreies Elektron kommt. Die Leitfähigkeit der Halmetalle ist daher um Größenordnungen kleiner als die der Metalle (Halmetalle: σ: - is -4 Ω cm ei T=3K, Metalle ~ 5 Ω cm. Ist die Energielücke (and gap <,5eV zwischen Valenz- und Leitungsand, so spricht man von Halleitern. Bei ihnen kann durch thermische Anregung eine erheliche Anzahl von Ladungsträgern vom Valenzand in das Leitungsand gehoen werden. Zwischen Halmetallen und Metallen zw. Halleitern und Isolatoren esteht somit kein qualitativer Unterschied, sondern nur ein quantitativer Unterschied. Kontrollfragen für die Vorlesung am Welche experimentellen Befunde zgl. der elektrischen Leitfähigkeit können im Rahmen einer klassischen (d.h. nicht-quantenmechanischen physikalischen Beschreiung üerhaupt nicht erklärt werden? 3. Was einhaltet das Kronig-Penney Modell? 3. Erklären Sie das Bändermodell. 3. Wie unterscheiden sich im Bändermodell ein Metall, ein Halmetall, ein Halleiter und ein Isolator? 9

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

Identische Teilchen. Kapitel Das Pauli-Prinzip (Ausschlussprinzip) System von zwei Teilchen: Ψ( r 1, r 2,t) Schr. Gl. i Ψ t = HΨ.

Identische Teilchen. Kapitel Das Pauli-Prinzip (Ausschlussprinzip) System von zwei Teilchen: Ψ( r 1, r 2,t) Schr. Gl. i Ψ t = HΨ. Kapitel 5 Identische Teilchen 5.1 Das Pauli-Prinzip (Ausschlussprinzip) System von zwei Teilchen: Schr. Gl mit W keit Normierung Ψ( r 1, r 2,t) i Ψ t = HΨ H = h2 2m 1 2 1 h2 2m 2 2 2 +V( r 1, r 2,t) Ψ(

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

V (x) = 1 2 mω2 x 2. E n = ω n + 1 )

V (x) = 1 2 mω2 x 2. E n = ω n + 1 ) Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik Beispiel- und Üungsklausur Musterlösungen 1. Elektronen im harmonischen

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Symmetrietransformationen

Symmetrietransformationen Kapitel 6 Symmetrietransformationen Besonders wichtig, nicht nur in der Quantenmechanik, sind zeitliche und räumliche Verschiebungen sowie Drehungen. Man bezeichnet sie auch als Symmetrietransformationen,

Mehr

Elektronen im Festkörper

Elektronen im Festkörper Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen

Mehr

von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik bei Prof. Dr. Wolschin im Wintersemester 2013/14

von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik bei Prof. Dr. Wolschin im Wintersemester 2013/14 Die WKB-Näherung von Martin Kroesen im Rahmen des Seminars zur Quantenmechanik ei Prof. Dr. Wolschin im Wintersemester 203/4 Kurzzusammenfassung: Im Rahmen dieses Seminarvortrags wird die WKB-Näherung

Mehr

Fragen zur Vorlesung Licht und Materie

Fragen zur Vorlesung Licht und Materie Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell

Mehr

Aufgabe Σ Punkte Max

Aufgabe Σ Punkte Max Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik Klausur 20. September 2005 Name:........................................

Mehr

Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften

Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Markus Gräfe Physikalisch-Astronomische Fakultät Jena 18. Juni 2009 Inhaltsverzeichnis 1 Motivation 2 Grundlagen Leitungsmechanismen

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

Ferromagnetismus: Heisenberg-Modell

Ferromagnetismus: Heisenberg-Modell Ferromagnetismus: Heisenberg-Modell magnetische Elektronen nehmen nicht an der chemischen Bindung teil lokalisierte Beschreibung (4f und 5f Systeme seltene Erden) 4f-Ferromagnete nahe am atomaren Wert!

Mehr

Mott-Isolator-Übergang

Mott-Isolator-Übergang -Übergang Patrick Paul Denis Kast Universität Ulm 5. Februar 2009 Seminar zu Theorie der kondensierten Materie II WS 2008/09 Gliederung Festkörper-Modelle 1 Festkörper-Modelle Bändermodell Tight-Binding-Modell

Mehr

Inhaltsverzeichnis. 0 Einleitung... 1

Inhaltsverzeichnis. 0 Einleitung... 1 0 Einleitung... 1 1 Periodische Strukturen... 5 1.1 Kristallstruktur, Bravais-Gitter, Wigner-Seitz-Zelle...... 5 1.1.1 Kristallisation von Festkörpern....... 5 1.1.2 Kristall-System und Kristall-Gitter...

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Festkörperelektronik 4. Übung

Festkörperelektronik 4. Übung Festkörperelektronik 4. Übung Felix Glöckler 23. Juni 2006 1 Übersicht Themen heute: Feedback Spin Drehimpuls Wasserstoffatom, Bohr vs. Schrödinger Wasserstoffmolekülion, kovalente Bindung Elektronen in

Mehr

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv 1.31 2017/06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Elektromagnetische Eigenschaften von Metallen, Potentiale

Elektromagnetische Eigenschaften von Metallen, Potentiale Übung 8 Abgabe: 02.05. bzw. 05.05.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektromagnetische Eigenschaften von Metallen, Potentiale

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

Warum Halbleiter verstehen?

Warum Halbleiter verstehen? 7.1 Warum Halbleiter verstehen? In der Vorlesung Elektronische Schaltungen haben Sie die Kennlinien verschiedener Halbleiterbauelemente kennen gelernt: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version

Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version Grundlagen-Vertiefung PW10 Ladungstransport und Leitfähigkeit Version 2007-10-11 Inhaltsverzeichnis 1 1.1 Klassische Theorie des Ladungstransports.................. 1 1.2 Temperaturabhängigkeit der elektrischen

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Die chemische Bindung

Die chemische Bindung Die chemische Bindung Die Valenz-Bond Theorie Molekülorbitale Die Bänder Theorie der Festkörper bei einer ionischen Bindung bildet bildet sich ein Dipol aus ('Übertragung von Elektronen') Eine kovalente

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Dirac Fermionen in Graphen und Topologischen Isolatoren. Prof. Dr. Patrik Recher, 21. Mai 2012

Dirac Fermionen in Graphen und Topologischen Isolatoren. Prof. Dr. Patrik Recher, 21. Mai 2012 Dirac Fermionen in Graphen und Topologischen Isolatoren Prof. Dr. Patrik Recher, 21. Mai 2012 Inhalt Dirac Gleichung in der relativistischen Quantenmechanik Elektronen in Graphen und topologischen Isolatoren

Mehr

Inhaltsverzeichnis. Vorwort. Wie man dieses Buch liest. Periodensystem der Elemente

Inhaltsverzeichnis. Vorwort. Wie man dieses Buch liest. Periodensystem der Elemente Inhaltsverzeichnis Vorwort Wie man dieses Buch liest Periodensystem der Elemente v vii xiv 1 Flüssigkristalle 1 1.1 Motivation und Phänomenologie.................. 1 1.2 Was ist ein Flüssigkristall?.....................

Mehr

Mode der Bewegung, Freiheitsgrade

Mode der Bewegung, Freiheitsgrade Mode der Bewegung, Freiheitsgrade Bewegungsmoden (normal modes of motion) : Jede UNABHÄNGIGE Bewegungsmöglichkeit der Atome (unabhängig: im quantenmechanischen Sinne durch orthogonale Wellenfunktionen

Mehr

3.6. BLOCH WELLEN 151

3.6. BLOCH WELLEN 151 3.6. BLOCH WELLEN 151 3.6 Bloch Wellen Das Thema dieses Abschnittes sind die stationären Lösungen der Schrödinger Gleichung für Teilchen, also im Fall der Festkörper Elektronen, die sich in einem periodischen

Mehr

Exponentialfunktion (1)

Exponentialfunktion (1) Exponentialfunktion (1) Satz 3.37 Die Potenzreihe n=0 z n n! konvergiert für alle z C absolut (R = ). Beweis. Mit dem Quotienkriterium ergibt sich für alle z C z n+1 (n + 1)! n! z n = z 0. n + 1 Peter

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Quasi-exakt lösbare quantenmechanische Potentiale

Quasi-exakt lösbare quantenmechanische Potentiale Quasi-exakt lösbare quantenmechanische Potentiale Ausarbeitung zum Seminar zur Theorie der Atome, Kerne und kondensierten Materie vom.10.014 Philipp Marauhn p_mara01@uni-muenster.de Inhaltsverzeichnis

Mehr

Realisation eines 2D-Elektronengases

Realisation eines 2D-Elektronengases Realisation eines 2D-Elektronengases Gezeigt am Beispiel einer Heterojunction und eines MOS-FET T. Baumgratz J. Rosskopf Univerität Ulm Seminar zu Theorie der Kondensierten Materie II Gliederung 1 2 3

Mehr

Opto-elektronische. Materialeigenschaften VL # 3

Opto-elektronische. Materialeigenschaften VL # 3 Opto-elektronische Materialeigenschaften VL # 3 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen und Halbleitern

Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen und Halbleitern Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen und Halbleitern Gruppe 24: Alex Baumer, Axel Öland, Manuel Diehm 17. Februar 2005 Inhaltsverzeichnis 1 Einleitung 1 2 Grundlagen 1 2.1

Mehr

V 1 : x > L. V 0 : d > x. Über dem Gebiet mit V=0 gewinnt das Elektron Energie, die Wellenlänge verkürzt

V 1 : x > L. V 0 : d > x. Über dem Gebiet mit V=0 gewinnt das Elektron Energie, die Wellenlänge verkürzt Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik Klausur Musterlösung 24. März 2005 1. Potentialtöpfe Seien V 1 > 0,

Mehr

Elliptische Integrale und das allgemeine geometrische Mittel (agm):

Elliptische Integrale und das allgemeine geometrische Mittel (agm): Elliptische Integrale und das allgemeine geometrische Mittel (agm): Typische Aufgaen der Analysis waren im 8. Jahrhundert nach der Erfindung der Differential- und Integralrechnung durch Leiniz und Newton,

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 8 Vladimir yakonov Lehrstuhl Experimentelle Physik VI VL5 4-6-8 el. 9/888 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 5. as freie Elektronengas 5.

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Gesamtdrehimpuls Spin-Bahn-Kopplung

Gesamtdrehimpuls Spin-Bahn-Kopplung Gesamtdrehimpuls Spin-Bahn-Kopplung > 0 Elektron besitzt Bahndrehimpuls L und S koppeln über die resultierenden Magnetfelder (Spin-Bahn-Kopplung) Vektoraddition zum Gesamtdrehimpuls J = L + S Für J gelten

Mehr

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter. II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches

Mehr

Elektronische Eigenschaften von Halbleitern

Elektronische Eigenschaften von Halbleitern Elektronische Eigenschaften von Halbleitern In der Vorlesung Elektronische Schaltungen lernen Sie das Verhalten verschiedener Halbleiterbauelemente kennen: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

PC III Aufbau der Materie

PC III Aufbau der Materie PC III Aufbau der Materie Kapitel 3 Einfache Anwendungen Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen Die Schrödingergleichung zeitunabhängige

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung Funktionswerkstoffe Elektronische Eigenschaften - Einleitung Bandstruktur Elektronenverteilung (Fermi-Dirac) Elektronenbeweglichkeit und Leitfähigkeit Metalle Elektronenanregung Leitfähigkeitsänderungen

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Gliederung der Vorlesung Festkörperelektronik

Gliederung der Vorlesung Festkörperelektronik Gliederung der Vorlesung Festkörperelektronik 1. Grundlagen der Quantenphysik 2. Elektronische Zustände 3. Aufbau der Materie 4. Elektronen in Kristallen 5. Halbleiter 6. Quantenstatistik 7. Dotierte Halbleiter

Mehr

Photonische Kristalle

Photonische Kristalle Kapitel 2 Photonische Kristalle 2.1 Einführung In den letzten 20 Jahren entwickelten sich die Photonischen Kristalle zu einem bevorzugten Gegenstand der Grundlagenforschung aber auch der angewandten Forschung

Mehr

Josephson Kontakt. Hauptseminar. Lehel Sabo und Marco Miller. 10. Februar / 24

Josephson Kontakt. Hauptseminar. Lehel Sabo und Marco Miller. 10. Februar / 24 Josephson Kontakt Hauptseminar Lehel Sabo und Marco Miller 10. Februar 2011 1 / 24 2 / 24 Inhaltsverzeichnis 1 Supraleitung 2 Josephson-Gleichungen 3 Josephson-Kontakt 3 / 24 4 / 24 Supraleitung Was ist

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Ausarbeitung zum Theoretischen Seminar

Ausarbeitung zum Theoretischen Seminar Ausarbeitung zum Theoretischen Seminar Kovalente Molekübindungen 28.01.2015 Robin.Stegmueller@googlemail.com Inhaltsverzeichnis 1 Einführung 1 1.1 Molekulare Bindungen......................... 1 1.2 Beispiel:

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

Festkörperphys i. Einführung in die Grundlagen

Festkörperphys i. Einführung in die Grundlagen Harald Ibach Hans Lüth Festkörperphys i Einführung in die Grundlagen 1. Die chemische Bindung in Festkörpern 1 1.1 Das Periodensystem 1 1.2 Kovalente Bindung 4 1.3 DieIonenbindung 9 1.4 Metallische Bindung

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen

Mehr

Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that

Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that swallowed his hand after Peter Pan cut it off. Theorie der kondensierten

Mehr

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband 8.1 Berechnung der eitfähigkeit Quantitativ wird die eitfähigkeit σ berechnet durch: adung des Elektrons Beweglichkeit der adungsträger im eitungsband ( ) σ = e µ n + µ p n Anzahl der adungsträger im eitungsband

Mehr

Theoretische Chemie / Computerchemie

Theoretische Chemie / Computerchemie Theoretische Chemie / Computerchemie Bernd Hartke Theoretische Chemie Institut für Physikalische Chemie Christian-Albrechts-Universität Kiel Max-Eyth-Straße 2 Erdgeschoß, Raum 29 Tel.: 43/88-2753 hartke@pctc.uni-kiel.de

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Wasserstoffatom Vorlesung: Mo 1h-12h, Do9h-1h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i Die Wahrscheinlichkeit, das System zu einem bestimmten Zeitpunkt in einem bestimmten Zustand anzutreffen, ist durch das Betragsquadrat der Wellenfunktion (x, t) 2 gegeben Die Erwartungswerte von Operatoren

Mehr

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel Modelle für elektronische Zustände Einfachstes klassisches

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 4 Molekülstruktur Ausnahmen von der Oktettregel Hypervalente Verbindungen VSEPR Hybridisierung Molekülorbitale

Mehr

8 Das klassische ideale Gas

8 Das klassische ideale Gas 8 Das klassische ideale Gas 8.1 Unterscheidbare Atome Gleichartige Atome (etwa zwei He-Atome) sind in der Quantenmechanik grundsätzlich nicht unterscheidbar. Wir wollen dies jedoch zunächst ignorieren,

Mehr

Erratum: Potentialbarriere

Erratum: Potentialbarriere Erratum: Potentialbarriere E

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

6. Fast freie Elektronen: Bandstrukturen

6. Fast freie Elektronen: Bandstrukturen Prof. Dieter Suter Festkörperphysik WS 01 / 02 6. Fast freie Elektronen: Bandstrukturen 6.1. Periodisches Potenzial 6.1.1. Probleme des Modells freier Elektronen Im Modell der freien Elektronen werden

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Opto-elektronische. Materialeigenschaften VL # 4

Opto-elektronische. Materialeigenschaften VL # 4 Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

12.1 Grundidee der Zellen-Methoden

12.1 Grundidee der Zellen-Methoden Kapitel 12 Zellen-Methoden Bei den bisherigen Methoden zur Bandstrukturberechnung (PW, OPW, Pseudopotentiale) wurde jeweils ein Bloch-Ansatz gemacht, d.h. die berechnete Wellenfunktion war im gesamten

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

"Einführung in die Festkörperphysik" Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons

Einführung in die Festkörperphysik Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons Inhalt der Vorlesung "Einführung in die Festkörperphysik" für Dezember 2009 ist geplant: 5. Energiebänder 5.1 Motivation 5.2 Das Modell des fast freien Elektrons 5.3 Das stark gebundene Elektron 5.4 Das

Mehr

Elektrodynamische Wellen

Elektrodynamische Wellen Elektrodynamische Wellen Hannah Vogel 23.01.2017 Hannah Vogel Elektrodynamische Wellen 23.01.2017 1 / 33 Inhaltsverzeichnis 1 Elektrische und Magnetische Kräfte und Felder 2 Die Maxwell schen Gleichungen

Mehr

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b Übungen zur Vorlesung Theoretische Chemie II Übungsblatt SoSe 205 Lösungen. H 2 + Molekülion a) Konstruieren Sie die Schrödingergleichung in Matrixdarstellung. Zunächst geht man von der stationären Schrödinger-Gleichung

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Relativistische Quantenmechanik und die Klein-Gordon Gleichung

Relativistische Quantenmechanik und die Klein-Gordon Gleichung Relativistische Quantenmechanik und die Klein-Gordon Gleichung Oliver Smith o smit01 wwu.de) 17. Februar 2015 Wir wollen die Klein-Gordon Gleichung untersuchen und Formalismen einführen, um Parallelen

Mehr

Theorie der Kondensierten Materie I WS 2016/2017

Theorie der Kondensierten Materie I WS 2016/2017 Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Theorie der Kondensierten Mterie I WS 06/07 Prof. Dr. A. Shnirmn Bltt PD Dr. B. Nrozhny, M.Sc. T. Ludwig Lösungsvorschlg.

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XI

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XI Prof. Dr. F. Koch Dr. H. E. Porteanu fkoch@ph.tum.de porteanu@ph.tum.de WS 4-5 HÖHEE PHYSIK SKIPTUM VOLESUNGBLATT XI 4..5 Molekülphysik Atome binden zu Molekülen und Festkörpern durch interatomare Kräfte

Mehr

Elektrodynamik eines Plasmas

Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Klassifikation von Plasmen Klassisches Plasma / Quantenplasma nicht-relativistisches / relativistisches Plasma Schwach / stark wechselwirkendes

Mehr