Theoretische Physik II Quantenmechanik

Größe: px
Ab Seite anzeigen:

Download "Theoretische Physik II Quantenmechanik"

Transkript

1 Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige und die stationäre Schrödingergleichung an. (b Wie lauten die Eigenwertgleichungen für Drehimpulse? Welche Werte können die auftretenden Quantenzahlen im Allgemeinen annehmen? (c Beweisen Sie, dass die Eigenwerte eines hermiteschen Operators reell sind. (d Beweisen Sie, dass die Eigenvektoren eines hermiteschen Operators, die zu verschiedenen Eigenwerten gehören, orthogonal sind. (e Zur Zeit t 0 befinde sich das quantenmechanische System im Energieeigenzustand φ n. In welchem Zustand befindet es sich zur Zeit t > t 0? (10 Punkte (a m xψ(x, t + V ψ(x, t = Eψ(x, t m xψ(x, t + V ψ(x, t = i t ψ(x, t stationär zeitabhängig (b ˆL lm = l(l + 1 lm l = n, n N 0 ˆL z lm = m lm m = l, l + 1,..., l (c ψ Â ψ = a ψ ψ = ψ Â ψ = ψ Â ψ = a a R

2 Sommersemester 014 Quantenmechanik Lösung zur Probeklausur (d Seien a, b Eigenvektoren, a, b Eigenwerte und  = Â. Betrachten wir: Wir können auch schreiben b  a = a b a (1 Subtrahiert man nun ( von (1 ergibt sich b  a = a  b = b a b = b b a ( 0 = (a b b a Da a und b verschieden sind gilt (a b 0 b a = 0 (e φ n (T = Û(t, 0 φ n = e i Ent φ n Aufgabe : Wir betrachten die folgende Wellenfunktion: ψ(x, y, z = N(x + y + z exp [ ] (x + y + z α Mit N einer Normierungskonstante, und α ein geeigneter Parameter. Wir berechnen nun die Ergebnisse der Drehimpulsmessung an diesen System. (a Schreiben Sie die Wellenfunktion günstigerweise erst einmal um in Kugelkoordinaten {r, θ, φ}, und bringen Sie diese auf die folgende Form: ψ(r, θ, φ = R(rT (θ, φ (b Entwickeln Sie T (θ, φ dann in Kugelfunktionen Yl m (θ, φ, und normieren Sie am besten das resultierende Ergebnis. (c Berechnen Sie die Wahrscheinlichkeiten der folgenden Messergebnisse: 1. L = und L z = 0.. L = und L z =.. L = und L z =. (18 Punkte

3 Sommersemester 014 Quantenmechanik Lösung zur Probeklausur (a Umschreiben in Kugelkoordinaten: (b Kugelfunktionen x = r sin(θ cos(φ y = r sin(θ cos(φ z = r cos(θ ψ(r, θ, φ = Nr (sin(θ(cos(φ + sin(φ + cos(θ e r /a = R(rT (θ, φ Y1 1 (θ, φ = 8π sin(θeiφ Y1 0 (θ, φ = 4π cos(θ Y1 1 (θ, φ = 8π sin(θe iφ T (θ, φ = l,m a lm Yl m (θ, φ = sin(θcos(φ + sin(θs sin(φ + cos(θ wobei a lm = (Yl m T (θ, φ sin(θdθ dφ besser: ( 1 T (θ, φ = sin(θ (eiφ + e iφ + 1 i (eiφ e iφ Normierung von T (θ, φ: + 4π = 1 sin(θ ( e iφ (1 i + e iφ (1 + i + = 1 8π [ Y 1 1 (1 i + Y1 1 (1 + i] + π 1 = [(1 + iy1 (1 iy1 1 + Y1 0 ] (Y m l Y 1 0 4π Y 1 0 Yl m sin(θ dθdφ = δ ll δ mm = l m lm Somit gilt für T (θ, φ βt (θ, φ: 1 = β T (θ, φt (θ, φ sin(θ dθdφ = β π ( + + = 4πβ β = 1 4π 4π Y 1 0

4 Sommersemester 014 Quantenmechanik Lösung zur Probeklausur (c Berechnung der Wahrscheinlichkeiten: (1 L = l(l + 1 =, L z = 0 l = 1, m = 0 P = 10 T = 1 = 1 6 ( L =, L z = l = 1, m = 1 P = 11 T = 1 + i = 1 6 ( L =, L z = l = 1, m = 1 P = 1 1 T = 1 + i = 1 6 Aufgabe : Wir betrachten einen eindimensionalen harmonischen Oszillator mit dem Hamiltonoperator Ĥ = ˆp µ + µωˆx mit den Energiezuständen n zu den Energieeigenwerten E n = ω(n + 1/ (n {0, 1,,...}. Zur Zeit t = 0 sei der Zustand durch gegeben. (a Geben Sie ψ(t für t 0 an. ψ(t = 0 = 1 0 i 1 1 (b Mit welcher Wahrscheinlichkeit wird jeweils die Energie E 0 bzw. E 1 bzw. E gemessen? (c Berechnen Sie die Erwartungswerte von Ort x und Impuls p bezüglich ψ(t. (d Berechnen Sie die Ortsraumdichte ψ(x, t. Dabei ist ψ(x, t = x ψ(t. (15 Punkte 4

5 Sommersemester 014 Quantenmechanik Lösung zur Probeklausur (a ψ(t = 1 ( exp ie 0 = 1 exp t ( exp 0 i ( iω t 0 i exp t ie 1 ( iω t 1 1 (b P 0 (t = 0 ψ(t = 1 P 1 (t = 1 ψ(t = 1 P n (t = n ψ(t = 0 für n. (c Diese Aufgabe löst man am besten mit Hilfe der Auf- und Absteigeoperatoren. Es gilt: mω â = ˆx + i ˆp ( m ω und â n = n n 1, â n = n + 1 n + 1 (4 Aus ( folgt ˆx = mω (â + â, mω ˆp = i (â â Zusammen mit der Orthonormiertheit der n ergibt sich mit Hilfe von (4 x (t = ψ(t ˆxψ(t = mω sin(ωt, m ω p (t = ψ(t ˆpψ(t = cos(ωt Letzteres hätte man auch aus dem Ehrenfestschen Theorem herleiten können: p (t = m d x (t dt (d Die Wellenfunktion ist durch Ψ(x, t = x ψ(t = 1 exp ( iωt ψ 0 (x i ( exp iωt ψ 1 (x (5 5

6 Sommersemester 014 Quantenmechanik Lösung zur Probeklausur gegeben. Es gilt die n-te Energieeigenfunktion ψ n (x = x n = 1 a π n n! H n ( x a exp ( x Dabei ist H n das n-te Hermitesche Polynom und a = /(mω. Setzen wir die Hermitepolynome H 0 (x = 1 und H 1 (x = x ein, ergibt (5 für die Ortsaufenthaltswahrscheinlichkeitsverteilung Ψ(x, t = 1 ( 1 π a + x a sin(ωt x exp ( x a a Aufgabe 4: Welchen Wert muss L haben, damit die Grundzustandsenergie eines Teilchens (m im Potential κ für x < a mit κ, a > 0 m V (x = 0 für a < x < L sonst a. den Wert Null hat? (10 Punkte Betrachte den Aussenbereich x > L: ψ(x = 0 ψ(±l = 0 Bereich I: a < x < L: Schrödingergleichung liefert: xψ I = 0 ψ I ψ I (x = Ax + B = A(x L Bereich II: a < x < a: Hierauf die Schrödingergleichung angewendet ergibt: ( x κ ψ II = 0 ψ II ψ II (x = C cos(κx + D sin(κx Hierbei ist D = 0, da der Grundzustand keine Knoten hat. Aus den Anschlussbedingungen erhalten wir ψ I (a! = ψ II (a ψ I(a! = ψ II(a A(a L = C cos(κa A = κc sin(κa Teilen der beiden letzten Gleichungen liefert: L = a + cos(κa κ sin(κa 6

7 Sommersemester 014 Quantenmechanik Lösung zur Probeklausur Aufgabe 5*: Der Hamiltonoperator des verschobenen linearen harmonischen Oszillators besitzt die Form Ĥ = ˆp m + mω ˆx γ m ω ˆx mit γ einer dimensionslosen reellen Konstante. (a Wie lauten die exakten Eigenwerte E n (γ und die exakten Eigenvektoren u n (γ von Ĥ? Für welche Werte des Parameters γ ist die Konvergenz einer störungstheoretischen Entwicklung für E n (γ zu erwarten, wenn man W := γ m ω ˆx als Störung ansieht? (b Führen Sie die Berechnung der Eigenwerte E n (γ von Ĥ = H 0 + W, H 0 = ˆp m + mω ˆx, W = γ mω ˆx in erster und zweiter Ordnung Störungstheorie durch. (15 Punkte (a Der Hamiltonoperator des Systems kann zu einem vollständigen Quadrat in ˆx ergänzt werden: Ĥ = ˆp m + mω (ˆx x 0 mω x 0, x 0 := γ m ω. mω Lösung des Eigenwertproblems: ( E n = n + 1 ω mω x 0, n N 0 ; Eigenfunktionen in der Ortsdarstellung ] α u n (x x n = [ n n! π exp α (x x 0 H n (α(x x 0, mit α := (mω/. 7

8 Sommersemester 014 Quantenmechanik Lösung zur Probeklausur Abbildung 1: Potentialverlauf und Energieeigenwerte: (a für den ungestörten Oszillator mit dem Potential V (x = mω x /; (b für den gestörten (verschobenen Oszillator mit dem Potential U(x, γ = mω x / γ m ω x (für γ < 0 gezeichnet. Ĥ(γ u n (γ = E n (γ u n (γ ; E n (γ = ω (n + 1 γ, ] α u n (x x n = [ n n! π exp α (x x 0 H n (α(x x 0, mω γ α :=, x 0 := α Da die exakte Lösung für E n (γ ein Polynom zweiten Grades im Störungsparameter γ ist, hat man zu erwarten, dass sich in zweiter Ordnung Störungstheorie die exakten Eigenwerte E n (γ ergeben, und alle Korrekturen höherer Ordnung null sind, sodass die störungstheoretische Entwicklung für E n (γ für beliebig großes γ, d.h. für beliebig starke Störung, konvergiert. (b Nach Vorlesung gilt: E n (γ = En 0 + ɛ (1 n (γ + ɛ ( n (γ +..., u n (γ = n + χ (1 n (γ + χ ( n (γ +...; n (γ = n W (γ n, χ (1 n (γ = n n ɛ (1 n W (γ n E 0 n E 0 n n, Mit ɛ ( n (γ = n W (γ χ (1 n (γ,... W (γ = γ m ω ˆx = γ ω(â + â, E 0 n E 0 n = (n n ω 8

9 Sommersemester 014 Quantenmechanik Lösung zur Probeklausur folgt und n W n = γ ω[ n + 1δ n,n+1 + nδ n,n 1] ɛ (1 n = 0, χ (1 n = γ[ n + 1 n + 1 n n 1 ], ɛ ( n = γ ω n (â + â χ (1 n = γ ω[ n + 1 n â n + 1 n n â n 1 ] = γ ω[(n + 1 n] = γ ω Damit haben wir tatsächlich in zweiter Ordnung Störungstheorie die exakten Eigenwerte von Ĥ = H 0 + W erhalten: E n ( (γ = En 0 + ɛ (1 n (γ + ɛ ( n (γ = (n + 1 γ ω = E n (γ. 9

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Einführung in die Quantenmechanik

Einführung in die Quantenmechanik Einführung in die Quantenmechanik Vorlesungsskript zum theoretischen Teil des Moduls P3 Einführung in die Quantenphysik Prof. Dr. Jan Plefka Quantenfeld- und Stringtheorie Institut für Physik Version 16.

Mehr

Jürgen Wurm. 31. Mai 2006

Jürgen Wurm. 31. Mai 2006 Kohärente Zustände Jürgen Wurm 31. Mai 006 Vortrag zum Seminar Quantenoptik im SS 006 1 Inhaltsverzeichnis 1 Einleitung 3 Quantisierung des elektromagnetischen Feldes 3.1 Entwicklung des Feldes nach Eigenmoden.............................

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht,

ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht, 10 MEHRELEKTRONENATOME 6 ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht, erhält man die gewünschten antisymmetrischen Wellenfunktionen als Determinanten, deren Kolonnen jeweils

Mehr

II.2 Lösung der freien Klein Gordon-Gleichung

II.2 Lösung der freien Klein Gordon-Gleichung II. Lösung der freien Klein Gordon-Gleichung II..1 Allgemeine Lösung Da die Klein Gordon-Gleichung eine lineare partielle Differentialgleichung ist, kann man als Lösungsansatz eine ebene Welle φ(x) N e

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Experimentalphysik IV

Experimentalphysik IV Experimentalphysik IV Bernd von Issendorff 3. Juli 215 1 Atomphysik 1.1 Bemerkungen zur Quantenmechanik Postulat: Materie hat Welleneigenschaften. Der Zustand eines Systems wird durch eine komplexwertige

Mehr

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Christoph Bischko, Lukas Einkemmer, Dominik Steinhauser Fakultät für Mathematik, Informatik und Physik Universität Innsbruck 2. Juli, 2010 Christoph,

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

JavaPsi Zur Quantenmechanik am Computer

JavaPsi Zur Quantenmechanik am Computer JavaPsi Zur Quantenmechanik am Computer Marcel Schmittfull April 2003 Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen der Quantenmechanik 2 2.1 Superposition von Zuständen........................... 2 2.2

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Analytische Fortsetzung der Gross-Pitaevskii-Gleichung für PT -symmetrische Bose-Einstein-Kondensate

Analytische Fortsetzung der Gross-Pitaevskii-Gleichung für PT -symmetrische Bose-Einstein-Kondensate Analytische Fortsetzung der Gross-Pitaevskii-Gleichung für PT -symmetrische Bose-Einstein-Kondensate Bachelorarbeit von Helmut Frasch 24. Februar 2014 Prüfer: Prof. Dr. Jörg Main 1. Institut für Theoretische

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung 10 Teilchenphysik, HS 007-SS 008, Prof. A. Rubbia ETH Zurich) 7. Die Klein-Gordon-Gleichung Kapitel 7 Bosonfelder: Die Klein-Gordon Gleichung Wir können im Prinzip die Schrödinger-Gleichung einfach erweitern.

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Schwingungen und komplexe Zahlen

Schwingungen und komplexe Zahlen Schwingungen und komplexe Zahlen Andreas de Vries FH Südwestfalen University of Applied Sciences, Haldener Straße 82, D-5895 Hagen, Germany e-mail: de-vries@fh-swf.de Hagen, im Mai 22 (Erste Version: November

Mehr

Mitschrieb zu Physikalische Chemie II: Quantenmechanik und Spektroskopie

Mitschrieb zu Physikalische Chemie II: Quantenmechanik und Spektroskopie Mitschrieb zu Physikalische Chemie II: Quantenmechanik und Spektroskopie Prof. Dr. Horst Hippler Vorlesung Sommersemester 2002 Letzte Aktualisierung und Verbesserung: 29. Dezember 2003 Mitschrieb der Vorlesung

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

Vorlesungsskript Prof. Nierste, SS 2009. Quantenmechanik I. 22. April 2009. zuletzt aktualisiert am 24. August 2009

Vorlesungsskript Prof. Nierste, SS 2009. Quantenmechanik I. 22. April 2009. zuletzt aktualisiert am 24. August 2009 Vorlesungsskript Prof. Nierste, SS 009 Quantenmechanik I Florian Keller Tobias Mayer. April 009 zuletzt aktualisiert am 4. August 009 Inhaltsverzeichnis 1 Grundbegriffe 5 1.1 Ursprung der Quantenphysik..........................

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Manuel Zingl 83433 WS 2/2 Einleitung Helium (in stabiler Form) setzt sich aus zwei Protonen, ein

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Supersymmetrische Quantenmechanik

Supersymmetrische Quantenmechanik Supersymmetrische Quantenmechanik Vorlesung mit Übungen Sommersemester 2014 Universität Erlangen-Nürnberg Georg Junker European Southern Observatory 15. April 2014 Vorbemerkungen 1. Montags 9-12 Vorlesung;

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Q2: Detaillierte Eingabebeschreibungen

Q2: Detaillierte Eingabebeschreibungen Q2: Detaillierte Eingabebeschreibungen Martin Lehner, Gymnasium Biel-Seeland, Schweiz martin.lehner@gymbiel-seeland.ch Inhaltsverzeichnis 1 Allgemeines 2 2 Elektronische Rechnungen 2 2.1 Elektronische

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Computer Vision SS 2011. Skript

Computer Vision SS 2011. Skript Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Kapitel 9 Die komplexen Zahlen Der Körper der komplexen Zahlen Die Gauß sche Zahlenebene Algebraische Gleichungen Anwendungen Der Körper der komplexen Zahlen Die Definition der komplexen Zahlen Definition

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Man betrachte zunächst die Quantenmechanik zweier Teilchen. Jedes Teilchen für sich werde durch die übliche Einteilchen-Quantenmechanik beschrieben:

Man betrachte zunächst die Quantenmechanik zweier Teilchen. Jedes Teilchen für sich werde durch die übliche Einteilchen-Quantenmechanik beschrieben: Kapitel 9 Quantenmechanik von Mehr-Teilchen-Systeme Mehr-Teilchen-Systeme sind aus zwei Gründen schwieriger zu behandeln als Ein-Teilchen-Systeme. Zum einen führt Wechselwirkung zwischen Teilchen dazu,

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen XIV Gewöhnliche Differentialgleichungen Definition 4. : Sei n IN, F : D(F IR n+2 IR. Gewöhnliche DGL n ter Ordnung a F (x, y, y,..., y (n = heißt gewöhnliche Differentialgleichung (DGL n ter Ordnung. Läßt

Mehr

Theoretische Physik D: Quantenmechanik I

Theoretische Physik D: Quantenmechanik I Theoretische Physik D: Quantenmechanik I Sommersemester 009 Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Ursprung der Quantenphysik......................... 3 1. Zustände, Observable, Operatoren......................

Mehr

Übungen aus den numerischen Methoden der Astronomie SS 2011

Übungen aus den numerischen Methoden der Astronomie SS 2011 Übungen aus den numerischen Methoden der Astronomie SS 2011 1. Fermat Teil I : Berechnen Sie die Fläche eines rechtwinkeligen Dreiecks mit Hilfe des pythagoräischen Lehrsatzes. Die beiden Katheten sollen

Mehr

Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle

Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle Technische Universität Dresden Dr. rer. nat. Frank Morherr Was

Mehr

Quantenmechanik, ein paar Fragen und Antworten

Quantenmechanik, ein paar Fragen und Antworten Quantenmechanik, ein paar Fragen und Antworten Matthias Pospiech Inhaltsverzeichnis 1 Quantenmechanik allgemein.............................. 3 Mathe........................................... 6 3 Gaußpakete........................................

Mehr

Orthogonale Funktionenräume

Orthogonale Funktionenräume Orthogonale Funktionenräume Richard Küng February 27, 24 Contents Vektorräume mit Skalarprodukt 2 2 Lineare Abbildungen: Matrizen und Operatoren 8 2. Matrizen................................ 8 2.. Diagonalisieren

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

MSG Kurs 10. Klasse, 2011/2012

MSG Kurs 10. Klasse, 2011/2012 MSG Kurs 10. Klasse, 011/01 Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stochastik Inhaltsverzeichnis 1 Komplexe Zahlen 3 1.1 Heuristische Herleitung I (Potenzreihen)......................

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

1 Grundlagen der optischen Spektroskopie

1 Grundlagen der optischen Spektroskopie Vorbemerkungen 1 Grundlagen der optischen Spektroskopie Gegenstand: Wechselwirkung von Licht mit Materie Licht im engeren Sinn: Licht im infraroten bis ultravioletten Spektralbereich Wir werden uns meist

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Anhang A3 Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Für die Darstellung und Berechnung von Wechselstromkreisen sind sogenannte Zeigerdiagramme sehr von Nutzen. Dies sind instruktive

Mehr

9 Weitreichende Wechselwirkungen zwischen zwei Molekülen

9 Weitreichende Wechselwirkungen zwischen zwei Molekülen 9 Weitreichende Wechselwirkungen zwischen zwei Molekülen 9.1 Elektrostatische Wechselwirkungen als Beiträge erster Ordnung Die elektrostatische Wechselwirkung zwischen zwei Molekülen A und B kann durch

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Notizen zur Vorlesung Gewöhnliche Differentialgleichungen G Sweers Wintersemester 08/09 ii Inhaltsverzeichnis Einführung Modelle 2 Explizite Lösungen 4 2 Trennbar 5 22 Linear erster Ordnung 6 23 Homogen

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract:

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract: Radioaktivität II Gamma Absorption (Lehrer AB) Abstract: Den SchülerInnen soll der Umgang mit radioaktiven Stoffen nähergebracht werden. Im Rahmen dieses Versuches nehmen die SchülerInnen Messwerte eines

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

Thomas Biekötter. 17. Mai 2012. Bachelorarbeit Examensmodul im Studiengang Physik (Bachelor of Science)

Thomas Biekötter. 17. Mai 2012. Bachelorarbeit Examensmodul im Studiengang Physik (Bachelor of Science) Berechnung quantenmechanischer Energieaufspaltung mit der Pfadintegralmethode Calculation of quantum mechanical energy splittings by means of path integrals Thomas Biekötter 17. Mai 01 Bachelorarbeit Examensmodul

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

1 Zwei Teilchen in einem Kastenpotenzial

1 Zwei Teilchen in einem Kastenpotenzial 1 Zwei Teilchen in einem Kastenpotenzial Es geht hier darum herauszu nden, welche prinzipiellen Eigenschaften die Wellenfunktion für mehrere Teilchen im gleichen Potenzial aufweisen muss. Wir unterscheiden

Mehr

Hilbertraum-Methoden

Hilbertraum-Methoden Skript zur Vorlesung Hilbertraum-Methoden SS 2013 Peter Junghanns Hinweis: Das vorliegende Skript stellt nur ein Gerüst zu den Inhalten der Vorlesung dar. Die Vorlesung selbst bietet weiterführende Erläuterungen,

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode K.Bräuer: Computersimulation physikalischer Phänomene mit der Finiten-Elemente-Methode 1 Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode Kurt Bräuer Privatdozent am Institut

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr