"Einführung in die Festkörperphysik" Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons

Größe: px
Ab Seite anzeigen:

Download ""Einführung in die Festkörperphysik" Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons"

Transkript

1

2

3

4

5 Inhalt der Vorlesung "Einführung in die Festkörperphysik" für Dezember 2009 ist geplant: 5. Energiebänder 5.1 Motivation 5.2 Das Modell des fast freien Elektrons 5.3 Das stark gebundene Elektron 5.4 Das Bloch sche Theorem 5.5 Beispiel: Kronig-Penney-Modell 5.6 Messung von Bandstrukturen 5.7 Messung von Bandstrukturen, Zustandsdichte Vorlesungswoche 5.6 Messung von Bandstrukturen Brillouin-Zonnen und Fermi-Flächen Fermiflächen und Metalle 6.1 Das reduzierte Zonenschema 6.2 Konstruktion von Fermiflächen 6.3 Berechnung von Energiebändern 6.4 Experimentelle Methoden 11 Do.17.Dez

6 5.6 Brillouin-Zonnen und Fermi-Flächen Die Gestalt der Brillouin-Zone hat einen großen Einfluß aus das Aussehen oder die Gestalt der Fermi-Fläche. Das schauen wir uns im 2-dim einmal an: Fall 1 (n.b.: dieser Fall ist selten): Fermi-Kugel liegt vollständig in der 1. BZ: Dann ist die Grenze durch die BZ unwichtig. Hun Bild 8.29a+b Hun Bild 8.28 Quadratisches Gitter mit den ersten 3 Brillouin- Zonen: Diese füllen wir nun mit Elektronen. (In der Modellvorstellung ohne weitere Einflüsse ist die Fermi-Fläche eine Kugel mit 3 2 Radius k F = 3 π n Die Oberfläche trennt die besetzten Zustände von den unbesetzten). Fall 2: Fermi-Kugel geht über die 1. BZ hinaus: Dann liegt ein Teil der Zustände in der 2.BZ, also im nächst höheren Band. Die Ecken der 1.BZ sind nicht gefüllt. Die e - der 2.BZ bilden ein teilweise gefülltes 2.Band. Nun: Reduktion auf 1.BZ: Die e - in unterschiedlichen Bändern stehen senkrecht aufeinander, sie sehen sich nicht zu einem k-vektor gibt es mehrere Zustände in der 1.BZ! 237

7 Hun Bild 8.30a+b Hun Bild 8.32a+b+c Weiter: Wir haben gesehen, das bei realen Metallen sich eine Energielücke an den Grenzen der BZ ergibt (Konsequenz aus dem periodischen Potential: diese E-Lücken ergeben sich aus der Bragg-Bedingung stehende Wellen E-Lücken). Die Fermi-Fläche wird dadurch an den Grenzen deformiert. Diese geänderte Dispersion bezgl. eines freien Elektrons kann man auch messen, kommt in den nächsten Sitzungen... Zurück zum Zonenschema: Dieses Bild zeigt in allen Teilbildern dasgleiche: Es handelt sich um das erweiterte reduzierte und periodische Zonenschema. Die Fläche "1" des erweiterten Zonenschemas wird in die erste BZ "reduziert": TF mit 2π. Durch den Einfluss der Periodizität "stossen" sich die Bänder an den Zonengrenzen ab, bzw. durch die Ausnutzung der Bragg-Bedingung für e - -Wellen findet eine Absenkung/Erhöhung der Bänder statt. Die hellblauen Flächen sind erhöht, die dunklen abgesenkt. Nun dasselbe 3-dim: 238

8 Weiter: Al ist 3-wertig, fcc, und das Beispiel für ein Metall mit Elektronen, bei denen die Zustände sich als quasifreie Elektronen beschreiben lassen. Die Zustände in der 1.BZ sind vollständig, in der 2.BZ teilweise besetzt. Die Zustände der Fermi- Fläche der 2.BZ sind am Rand der Zone besetzt, im Innern unbesetzt. Zustände der 3. BZ (unten Mitte) bilden röhrenartige Gebilde im k-raum. Durch WW mit dem Gitter sind allerdings nur die ringähnlichen Gebilde besetzt, diese sind untereinander nicht verbunden. Hun Bild 8.16 Hun Bild 8.33a+b+c 3.BZ, mit Gitter WW 2.BZ 3.BZ, quasi-freie Elektronen 239

9 Inhalt der Vorlesung "Einführung in die Festkörperphysik" für Dezember 2009 ist geplant: 5. Energiebänder 5.1 Motivation 5.2 Das Modell des fast freien Elektrons 5.3 Das stark gebundene Elektron 5.4 Das Bloch sche Theorem 5.5 Beispiel: Kronig-Penney-Modell 5.6 Brillouin-Zonnen und Fermi-Flächen 5.7 Messung von Bandstrukturen, Zustandsdichte 6. Fermiflächen und Metalle 6.1 Das reduzierte Zonenschema 6.2 Konstruktion von Fermiflächen 6.3 Berechnung von Energiebändern 6.4 Experimentelle Methoden Vorlesungswoche Do.17.Dez

10 5.7 Messung von Bandstrukturen, Zustandsdichte Eine sehr wichtige Methode zur Messung von Bandstrukturen ist die Photoemissionsspektroskopie. Beispiel: hν=1480 ev: Eindringtiefe ca µm E kin = hν - E bin - φ unterschiedliche Niveaus unter E F Intensitäten! Aufspaltung in s, p, d, f in: p 1/2,p 3/2, d 3/2, d 5 /2 etc. Verhältnis: p-niveaus: 1:2 d 2:3 f 3:4 also: ein d 3/2 -Zustand hat (2j+1)-Unterzustände: -3/2, -1/2, 1/2, 3/2 also 4 Stück ein d 5/2 hat 6 Stück 4:6 oder 2:3 241

11 Elektronenspektroskopie 242

12 photoeffect: E kin = hν-e bin - Φ hν-e 1 - Φ electron energy E kin hν hν hν-e 2 - Φ hν E Vac = 0 E bin =0= E F E' 1 E' 2 hν E kin = 0 Φ E 1 E 2 bound electrons photoelectron spectrum E kin N(E kin ) photoelectron spectrum E kin N(E kin ) Spektrum vom Silizium 2p: intensity (arb. un.) relative binding energy (ev) 243

13 XPS-Spektrum von Magnetit (Fe 3 O 4 ) Jedes Element hat seinen spektralen "Fingerabdruck". Hier sind das Fe- und O-Signal sehr stark, also in der Probe sind Eisen und Sauerstoff. Zur Technik: Ende 15.Dez

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie Physik der kondensierten Materie Kapitel 8 Elektronen im periodischen Potential Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz In Vertretung von Carsten Deibel Optik & Photonik

Mehr

Elektronen im Festkörper

Elektronen im Festkörper Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

Quantenphysik I SS Gerhard Franz hm.edu

Quantenphysik I SS Gerhard Franz hm.edu Quantenphysik I SS 2017 Gerhard Franz mailto:gerhard.franz @ hm.edu Kompetenzzentrum Nanostrukturtechnik Hochschule München http://www.gerhard-franz.org Gerhard Franz, Quantenphysik I, SS 2017 p. 1/7 Quantenmechanik

Mehr

Optische Eigenschaften von Metallen und Legierungen

Optische Eigenschaften von Metallen und Legierungen Reine und angewandte Metallkunde in Einzeldarstellungen Herausgegeben von W. Köster Band 22 Optische Eigenschaften von Metallen und Legierungen Mit einer Einführung in die Elektronentheorie der Metalle

Mehr

Ultraviolette Photoelektronenspektroskopie (UPS)

Ultraviolette Photoelektronenspektroskopie (UPS) Ultraviolette Photoelektronenspektroskopie (UPS) hν e - Photoeffekt: (Nobelpreis Einstein 1905): E kin (max) = hν - φ allgemeiner: E kin = hν E bin -φ Φ: Austrittsarbeit [ev], E bin : Bindungsenergie,

Mehr

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz Vorlesung Festkörperphysik WS 2014/2015 Vorlesungen 28.10.14 Universität Rostock Heinrich Stolz 1 2. Das Reziproke Gitter Wichtige mathematische Objekt in der Physik mit periodischer Struktur? ebene Welle

Mehr

Versuch 40: UV-Photoelektronenspektroskopie

Versuch 40: UV-Photoelektronenspektroskopie Versuch 40: UV-Photoelektronenspektroskopie Ort: MZG (Technische Physik), Zi. 0.175 hω k k ϑ ϕ k Probe worum geht s? Messung der elektronischen Bandstruktur E(k) eines 2D-Festkörpers (Graphit) mittels

Mehr

Mott-Isolator-Übergang

Mott-Isolator-Übergang -Übergang Patrick Paul Denis Kast Universität Ulm 5. Februar 2009 Seminar zu Theorie der kondensierten Materie II WS 2008/09 Gliederung Festkörper-Modelle 1 Festkörper-Modelle Bändermodell Tight-Binding-Modell

Mehr

ELEKTRONEN IN FESTKÖRPERN

ELEKTRONEN IN FESTKÖRPERN 118 6. ELEKTRONEN IN FESTKÖRPERN 6.11 Feriflächen I bisher betrachteten eindiensionalen Fall wird der Grundzustand von der Ferienergie und de Feri-Niveau bestit. Das Feri-Niveau stellt den Zustand it der

Mehr

Kohlenstoff-Nanoröhren

Kohlenstoff-Nanoröhren Kohlenstoff-Nanoröhren Metall oder Halbleiter: atomare und elektronische Struktur 10. Mai 2004 Malte Avenhaus Institut für Technische Physik II Kohlenstoff-Nanoröhren p.1/35 Übersicht 1. Motivation 2.

Mehr

ElektronischeBandstruktur

ElektronischeBandstruktur ElektronischeBandstruktur Literatur: C. Kittel Einführungin die Festkörperphysik Kapitel 7,8 Ashcroft & Mermin, Kapitel 7,8 Ziman Principles of the Theory of solids, Kapitel 3 Dispersionsrelation für

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2014 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2014 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 04 Prof. Dr. F. Kremer Übersicht der Vorlesung am.6.04 Wiederholung (Drude-Modell ( freies Elektronengas ), Plasmaschwingung, Grenzen des Drude-

Mehr

Kapitel 6: Freie Elektronen im Festkörper

Kapitel 6: Freie Elektronen im Festkörper Kapitel 6: Freie Elektronen im Festkörper Doktorandenseminar 2004 Festkörperphysik Stefan E. Müller 12. Juli 2004 Inhalt: Ein-Elektron-Näherung im Potentialtopf Fermi-Gas bei T = 0K Fermi-Gas bei T > 0K

Mehr

1.17eV exp eV exp Halbleiter

1.17eV exp eV exp Halbleiter 7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke

Mehr

Übungen zur Vorlesung Photoelektronenspektroskopie

Übungen zur Vorlesung Photoelektronenspektroskopie Übungen zur Vorlesung Photoelektronenspektroskopie PES an Metall-Halbleiter-Kontakten Grundlagen: Dotierung von Halbleitern Der Metall-Halbleiter-Kontakt (Schottky-Kontakt) PES an Schottky-Kontakten Kurvenzerlegung

Mehr

Inhaltsverzeichnis. 0 Einleitung... 1

Inhaltsverzeichnis. 0 Einleitung... 1 0 Einleitung... 1 1 Periodische Strukturen... 5 1.1 Kristallstruktur, Bravais-Gitter, Wigner-Seitz-Zelle...... 5 1.1.1 Kristallisation von Festkörpern....... 5 1.1.2 Kristall-System und Kristall-Gitter...

Mehr

1. Was versteht man unter einer Symmetrieoperation? 2. Benennen Sie fünf Symmetrieoperationen und geben Sie je ein Beispiel dazu.

1. Was versteht man unter einer Symmetrieoperation? 2. Benennen Sie fünf Symmetrieoperationen und geben Sie je ein Beispiel dazu. 1. Was versteht man unter einer Symmetrieoperation? 2. Benennen Sie fünf Symmetrieoperationen und geben Sie je ein Beispiel dazu. Zeichnen Sie auch die entsprechenden Symmetrieelemente ein. 3. Was sind

Mehr

Ferromagnetismus: Heisenberg-Modell

Ferromagnetismus: Heisenberg-Modell Ferromagnetismus: Heisenberg-Modell magnetische Elektronen nehmen nicht an der chemischen Bindung teil lokalisierte Beschreibung (4f und 5f Systeme seltene Erden) 4f-Ferromagnete nahe am atomaren Wert!

Mehr

Photonische Kristalle Clemens Ringpfeil

Photonische Kristalle Clemens Ringpfeil Photonische Kristalle 22.11.2001 Clemens Ringpfeil Inhalt Einführung Grundlagen Historischer Überblick Herstellung Anwendungen Passive Wellenleiter Optische Bauelemente können nur sehr beschränkt auf einem

Mehr

Photonische Kristalle

Photonische Kristalle Kapitel 2 Photonische Kristalle 2.1 Einführung In den letzten 20 Jahren entwickelten sich die Photonischen Kristalle zu einem bevorzugten Gegenstand der Grundlagenforschung aber auch der angewandten Forschung

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,

Mehr

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter. II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

Aufbau der Materie II Festkörperphysik für LA nicht vertieft. neue Folien WS 09/10

Aufbau der Materie II Festkörperphysik für LA nicht vertieft. neue Folien WS 09/10 Aufbau der Materie II Festkörperphysik für LA nicht vertieft neue Folien WS 09/10 Literaturempfehlungen 1. Charles Kittel: Einführung in die Festkörperphysik (Oldenbourg Verlag) 2. Konrad Kopitzki: Einführung

Mehr

6. Fast freie Elektronen: Bandstrukturen

6. Fast freie Elektronen: Bandstrukturen Prof. Dieter Suter Festkörperphysik WS 01 / 02 6. Fast freie Elektronen: Bandstrukturen 6.1. Periodisches Potenzial 6.1.1. Probleme des Modells freier Elektronen Im Modell der freien Elektronen werden

Mehr

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik Werkstoffe der lektrotechnik im Studiengang lektrotechnik - Bändermodell der lektronen im Kristall - Prof. Dr. Ulrich Hahn WS 2008/2009 Orbitale für lektronen im Kristall Kristall: regelmäßige Anordnung

Mehr

Theoretische Festkörperphysik I, II. E. Schachinger H. Sormann

Theoretische Festkörperphysik I, II. E. Schachinger H. Sormann Theoretische Festkörperphysik I, II E. Schachinger H. Sormann 31. Mai 2005 Inhaltsverzeichnis 1 Gruppentheoretische Betrachtungen am starren Gitter I 1 1.1 Allgemeines............................ 1 1.2

Mehr

Dies ist die Sammlung des Materials von Dienstag, bis Freitag Zustandsdichte für Elektronen und Photonen, 1D,2D,3D

Dies ist die Sammlung des Materials von Dienstag, bis Freitag Zustandsdichte für Elektronen und Photonen, 1D,2D,3D Exp. Phys. 5, WS16/17 Denninger skript_3_1_016_b Dies ist die Sammlung des Materials von Dienstag, 16.1. bis Freitag 3.1.016. Inhalt: 1. fcc_struktur.pdf Seite Bilder von ausgewählten Oberflächen. bragg_beugung.pdf

Mehr

Elektronen im periodischen Potential

Elektronen im periodischen Potential Elektronen im periodischen Potential Blochfunktionen / Blochelektronen Elektronenwellen unterscheiden sich von ebenen Wellen durch eine gitterperiodische Modulation. Diese Bloch-Wellen werden in einem

Mehr

Gliederung der Vorlesung Festkörperelektronik

Gliederung der Vorlesung Festkörperelektronik Gliederung der Vorlesung Festkörperelektronik 1. Grundlagen der Quantenphysik 2. Elektronische Zustände 3. Aufbau der Materie 4. Elektronen in Kristallen 5. Halbleiter 6. Quantenstatistik 7. Dotierte Halbleiter

Mehr

( ) ( ) ( ) Beginnend mit der größten Wellenlänge λ1= L sind auf Abb hierzu Beispiele gegeben.

( ) ( ) ( ) Beginnend mit der größten Wellenlänge λ1= L sind auf Abb hierzu Beispiele gegeben. 16 5.3.3. Das reale Elektronengas (in der Vorlesung nicht behandelt, nicht prüfungsrelevant; weiter bei 5.3.4.) 5.3.3.1. Periodische Randbedingungen Im folgenden soll die Wechselwirkung der Elektronen

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

Angle-Resolved Photoelectron Spectroscopy

Angle-Resolved Photoelectron Spectroscopy Angle-Resolved Photoelectron Spectroscopy Max Ünzelmann Experimental Methods in surface sciences Einleitung [1] Al2O3 e-beam evaporated onto silicon (100)/SiO2 photoemission peaks Auger-lines inelastic

Mehr

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband 8.1 Berechnung der eitfähigkeit Quantitativ wird die eitfähigkeit σ berechnet durch: adung des Elektrons Beweglichkeit der adungsträger im eitungsband ( ) σ = e µ n + µ p n Anzahl der adungsträger im eitungsband

Mehr

Gerd Czycholl. Theoretische Festkörperphysik Band 1. Grundlagen: Phononen und Elektronen in Kristallen 4. Auflage

Gerd Czycholl. Theoretische Festkörperphysik Band 1. Grundlagen: Phononen und Elektronen in Kristallen 4. Auflage Theoretische Festkörperphysik Band 1 Grundlagen: Phononen und Elektronen in Kristallen 4. Auflage Theoretische Festkörperphysik Band 1 Theoretische Festkörperphysik Band 1 Grundlagen: Phononen und Elektronen

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

Festkörperelektronik 2008 Übungsblatt 5

Festkörperelektronik 2008 Übungsblatt 5 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 5. Übungsblatt 26. Juni 2008 Die

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Jan-Peter Bäcker und Martin Lonsky

Jan-Peter Bäcker und Martin Lonsky Jan-Peter Bäcker und Martin Lonsky Photoemissionsspektroskopie Jan-Peter Bäcker und Martin Lonsky Inhalt PES allgemein Experimenteller Aufbau ARPES Photon-Elektron-Wechselwirkung Deutung der Messergebnisse

Mehr

Festkörperelektronik 5. Übung

Festkörperelektronik 5. Übung estkörperelektronik 5. Übung elix Glöckler 7. Juli 2006 1 Übersicht Themen heute: Übungs-Umfrage Bandstruktur Gruppengeschwindigkeit effektive Masse Driftstrom Löcher Zustandsdichte ermi-verteilung Bloch-Oszillation

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen 1 Theorien zur elektrischen Leitung in Metallen Um 1900 unabhängig

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 21 30.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 21 Prof. Thorsten Kröll 30.06.2011 1 H 2

Mehr

5 Anwendung der Dichtefunktionaltheorie

5 Anwendung der Dichtefunktionaltheorie 5 Anwendung der Dichtefunktionaltheorie Im Rahmen der Born-Oppenheimer-Näherung lässt sich der elektronische Grundzustand E g mithilfe der Dichtefunktionaltheorie berechnen, wobei das Einelektronenpotenzial

Mehr

6. Fast freie Elektronen: Bandstrukturen

6. Fast freie Elektronen: Bandstrukturen Prof. Dieter Suter Festkörperphysik WS 05 / 06 6. Fast freie Elektronen: Bandstrukturen 6.1. Periodisches Potenzial 6.1.1. Probleme des Modells freier Elektronen Im Modell der freien Elektronen werden

Mehr

II.3. Primitive Elementarzellen und Basisvektoren

II.3. Primitive Elementarzellen und Basisvektoren II.3. Primitive Elementarzellen und Basisvektoren Elementarzelle (EZ): lückenlose Überdeckung des Raumes, Beispiel: Würfel für kubische Gitter, Primitive EZ: enthält 1 Gitterpunkt Beispiel: kubische bcc-struktur

Mehr

Festkörper. Festkörper

Festkörper. Festkörper Festkörper Einteilung der Materie in drei Aggregatszustände: fest, flüssig, gasförmig Unterscheidung Festkörper behält seine Form Nachteil: Ungenaue Abgrenzung Beispiel: Ist Butter Festkörper oder Flüssigkeit

Mehr

Theoretische Festkörperphysik

Theoretische Festkörperphysik Gerd Czycholl Theoretische Festkörperphysik Von den klassischen Modellen zu modernen Forschungsthemen 3., aktualisierte Auflage Mit über 60 Übungsaufgaben mit vollständigen Lösungen im Internet unter www.springer.com

Mehr

7. Elektronen im periodischen Potential

7. Elektronen im periodischen Potential 7 Elektronen im periodischen Potentil 71 Blochfunktionen Wir betrchten nun Elektronen im periodischen Potentil der Atomrümpfe eines Festkörpers Dzu suchen wir die Lösung der Schrödingergleichung m V r

Mehr

Festkörperphysik. Aufgaben und Lösun

Festkörperphysik. Aufgaben und Lösun Festkörperphysik. Aufgaben und Lösun von Prof. Dr. Rudolf Gross Dr. Achim Marx Priv.-Doz. Dr. Dietrich Einzel Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Kristallstruktur 1 ALI Tetraederwinkel

Mehr

Spektroskopie an SWCNTs

Spektroskopie an SWCNTs Spektroskopie an SWCNTs Raman, EELS, X-ray Rudolf Pfeiffer rpfei@ap.univie.ac.at Institut für Materialphysik, Universität Wien 11. Dezember 2002 Spektroskopie an SWCNTs p.1/37 Inhalt Einleitung Raman-Spektroskopie

Mehr

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 5: Optische Übergänge in Halbleitern Prof. Dr.

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 5: Optische Übergänge in Halbleitern Prof. Dr. Halbleiterphysik und Anwendungen Teil 5: Optische Übergänge in Halbleitern Prof. Dr. Sven Ingebrandt Fachhochschule Kaiserslautern - Standort Zweibrücken www.hs-kl.de Vorlesungsplanung Grün: Termine, die

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

6. Die Chemische Bindung

6. Die Chemische Bindung 6. Die Chemische Bindung Hauptbindungsarten Kovalente Bindung Ionenbindung Metallische Bindung Nebenbindungsarten Van der Waals Wechselwirkung Wasserstoffbrückenbindung Metalle www.webelements.com Eigenschaften

Mehr

Festkorperspektroskopie

Festkorperspektroskopie Hans Kuzmany Festkorperspektroskopie Eine Einführung Mit 222 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong 1. Einleitung 1 2. Grundlagen der Festkörperphysik 4 2.1

Mehr

Bandstrukturen - leicht gemacht

Bandstrukturen - leicht gemacht Bandstrukturen - leicht gemacht Eva Haas Stephanie Rošker Juni 2009 Projekt Festkörperphysik Inhaltsverzeichnis 1 Bandstrukturen 3 2 Energiebänder 3 3 Brillouin-Zonen - eine Übersicht 7 4 Beispiele 8 4.1

Mehr

Ab-initio Berechnung der ultraschnellen Dynamik angeregter Elektronen in Volumen- und Oberflächenzuständen von Metallen

Ab-initio Berechnung der ultraschnellen Dynamik angeregter Elektronen in Volumen- und Oberflächenzuständen von Metallen Ab-initio Berechnung der ultraschnellen Dynamik angeregter Elektronen in Volumen- und Oberflächenzuständen von Metallen Im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation von

Mehr

Der lichtelektrische Effekt (Photoeffekt)

Der lichtelektrische Effekt (Photoeffekt) Der lichtelektrische Effekt (Photoeffekt) Versuchsanordnung Zn-Platte, amalgamiert Wulfsches Elektrometer Spannung, ca. 800 V Knappe Erklärung des Versuches Licht löst aus der Zn-Platte Elektronen aus

Mehr

Kristallstruktur 1 Tetraederwinkel Die Millerschen Indizes Die hcp-struktur Bravais-Gitter 3

Kristallstruktur 1 Tetraederwinkel Die Millerschen Indizes Die hcp-struktur Bravais-Gitter 3 In ha Itsverzeichn is Vorwort V 1 ALl Al.2 A1.3 Al.4 Al.5 Al.6 Al.7 Al.8 Kristallstruktur 1 Tetraederwinkel.............................................................. 1 Die Millerschen Indizes......................................................

Mehr

Inhalt. Vorwort V. Zum Inhalt von Band VI. Danksagung IX. Symbolverzeichnis Band VI

Inhalt. Vorwort V. Zum Inhalt von Band VI. Danksagung IX. Symbolverzeichnis Band VI Inhalt Vorwort V Zum Inhalt von Band VI VII Danksagung IX Symbolverzeichnis Band VI XVII 1 Statistische Physik 1 1.1 Elementare Statistik und Wahrscheinlichkeit 3 1.1.1 Grundbegriffe 3 1.1.2 Die eindimensionale

Mehr

II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik

II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik Das Verhalten von Teilchen (insbesondere Elektronen (e s)) wird beschrieben durch eine Wellenfunktion Ψ(x,t): Massepunkt

Mehr

Intrinsische Halbleiter

Intrinsische Halbleiter Intrinsische Halbleiter Ein völlig reines Halbleitermaterial (ohne Fremdatome, ohne Fehlstellen, ohne "Antisites") nennt man intrinsisch. Bei einem intrinsischen Halbleiter hängen die Ladungsträgerkonzentrationen

Mehr

Kernmodelle! Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell

Kernmodelle! Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell Kernmodelle! Kerne sind zusammengesetzte Systeme aus Protonen und Neutronen:

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Theorie der Kondensierten Materie I WS 2016/2017

Theorie der Kondensierten Materie I WS 2016/2017 Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Theorie der Kondensierten Mterie I WS 06/07 Prof. Dr. A. Shnirmn Bltt PD Dr. B. Nrozhny, M.Sc. T. Ludwig Lösungsvorschlg.

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # Elektronengas # Bändermodell Bindungsmodelle Metallbindung > Bindungsmodelle Elektronengas

Mehr

FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK

FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Elektronik 1 - Bauelemente Vorlesung 5, 09.11.2017 Nils Pohl FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Organisatorisches Terminübersicht 02.11. 12:15 Vorlesung

Mehr

Innerer lichtelektrischer Effekt

Innerer lichtelektrischer Effekt IHO: Versuch 18 Innerer lichtelektrischer Effekt Zielsetzung Für einen Halbleiter soll bei unterschiedlichen Temperaturen die beiden materialspezifischen werte bestimmt werden, die zur Auslösung des inneren

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 8 Vladimir yakonov Lehrstuhl Experimentelle Physik VI VL5 4-6-8 el. 9/888 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 5. as freie Elektronengas 5.

Mehr

2.5. Fermi Dirac Verteilung

2.5. Fermi Dirac Verteilung .5. ermi Dirac Verteilung Eletronen und Löcher sind ermionen (Spin / bzw. 3/ => Pauli Prinzip: Nur ein Teilchen pro Zustand, ermi-dirac Verteilungsfuntion (Abb..5. E E exp T Abbildung.5.: ermi-dirac Verteilung

Mehr

Elemente optischer Netze

Elemente optischer Netze Vieweg+TeubnerPLUS Zusatzinformationen zu Medien des Vieweg+Teubner Verlags Elemente optischer Netze Grundlagen und Praxis der optischen Datenübertragung Erscheinungsjahr 2011 2. Auflage Kapitel 5 Bilder

Mehr

Gitterschwingungen in Festkörpern

Gitterschwingungen in Festkörpern in Festkörpern Gitterschwingungen Wie bei den Molekülen wollen wir im folgenden die Dynamik der Festkörper, also Schwingungen des Kristallgitters behandeln Erklärung, Beschreibung Elastische Eigenschaften

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

1.2. Photonen / Photo Effekt

1.2. Photonen / Photo Effekt 1.. Photonen / Photo Effekt Newton, Descartes: Korpuskeltheorie des Lichtes nicht erfolgreich Huygens, Fresnel, Hertz, Maxwell: Wellentheorie erfolgreich Moderne Beobachtung: Das V-Licht eines Lichbogens

Mehr

14. Teilchen und Wellen

14. Teilchen und Wellen Inhalt 14.1 Strahlung schwarzer Körper 14.2 Der Photoeffekt 14.3 Der Comptoneffekt 14.4 Materiewellen 14.5 Interpretation von Teilchenwellen 14.6 Die Schrödingergleichung 14.7 Heisenberg sche Unschärferelation

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2013 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2013 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 3 Prof. Dr. F. Kremer Üersicht der Vorlesung am 3.6.3 Wiederholung (Drude-Modell ( freies Elektronengas, Plasmaschwingung, Grenzen des Drude- Modells

Mehr

Identische Teilchen. Kapitel Das Pauli-Prinzip (Ausschlussprinzip) System von zwei Teilchen: Ψ( r 1, r 2,t) Schr. Gl. i Ψ t = HΨ.

Identische Teilchen. Kapitel Das Pauli-Prinzip (Ausschlussprinzip) System von zwei Teilchen: Ψ( r 1, r 2,t) Schr. Gl. i Ψ t = HΨ. Kapitel 5 Identische Teilchen 5.1 Das Pauli-Prinzip (Ausschlussprinzip) System von zwei Teilchen: Schr. Gl mit W keit Normierung Ψ( r 1, r 2,t) i Ψ t = HΨ H = h2 2m 1 2 1 h2 2m 2 2 2 +V( r 1, r 2,t) Ψ(

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein

Mehr

Opto-elektronische. Materialeigenschaften VL # 10

Opto-elektronische. Materialeigenschaften VL # 10 Opto-elektronische Materialeigenschaften VL # 10 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Fragen zur Vorlesung Licht und Materie

Fragen zur Vorlesung Licht und Materie Fragen zur Vorlesung Licht und Materie SoSe 2017 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Vorlesung 1: Lorentz-Modell Themenkomplex Wechselwirkung Licht-Materie

Mehr

Transporteigenschaften von Ladungsträgern in Halbleitern - Hall-Effekt

Transporteigenschaften von Ladungsträgern in Halbleitern - Hall-Effekt Entwicklung und Aufbau eines Experiments für das physikalische Praktikum für Fortgeschrittene: Transporteigenschaften von Ladungsträgern in Halbleitern - Hall-Effekt Zulassungsarbeit Kapitel 1 bis 3 Matthias

Mehr

Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that

Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that swallowed his hand after Peter Pan cut it off. Theorie der kondensierten

Mehr

Chemical Bonding. type Energies Forces. ionic E ~ 1/r F ~ 1/r 2. covalent E ~ 1/r 3 F ~ 1/r 4. van der Waals E ~ 1/r 5 F ~ 1/r 6.

Chemical Bonding. type Energies Forces. ionic E ~ 1/r F ~ 1/r 2. covalent E ~ 1/r 3 F ~ 1/r 4. van der Waals E ~ 1/r 5 F ~ 1/r 6. Chemical Bonding type Energies Forces ionic E ~ 1/r F ~ 1/r 2 covalent E ~ 1/r 3 F ~ 1/r 4 van der Waals E ~ 1/r 5 F ~ 1/r 6 Chemical Bonding Chemical Bonding Inmixing of sodium states Antiparallel Couplings

Mehr

Übungsblatt 03 (Hausaufgaben)

Übungsblatt 03 (Hausaufgaben) Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen

Mehr

Festkörperphys i. Einführung in die Grundlagen

Festkörperphys i. Einführung in die Grundlagen Harald Ibach Hans Lüth Festkörperphys i Einführung in die Grundlagen 1. Die chemische Bindung in Festkörpern 1 1.1 Das Periodensystem 1 1.2 Kovalente Bindung 4 1.3 DieIonenbindung 9 1.4 Metallische Bindung

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

2.3.1 Streu- und Beugungseigenschaften von Elektronen

2.3.1 Streu- und Beugungseigenschaften von Elektronen 2.3 Elektronenbeugung 2.3.1 Streu- und Beugungseigenschaften von Elektronen Entdeckung: Davisson, Germer, 1927: Theorie: De Broglie, 1924 λ = h mv = h 2me E 150 Å, mit U in Volt U 150 ev ˆ= 1 Å; 100 ev

Mehr

Warum Halbleiter verstehen?

Warum Halbleiter verstehen? 7.1 Warum Halbleiter verstehen? In der Vorlesung Elektronische Schaltungen haben Sie die Kennlinien verschiedener Halbleiterbauelemente kennen gelernt: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

Die chemische Bindung

Die chemische Bindung Die chemische Bindung Die Valenz-Bond Theorie Molekülorbitale Die Bänder Theorie der Festkörper bei einer ionischen Bindung bildet bildet sich ein Dipol aus ('Übertragung von Elektronen') Eine kovalente

Mehr

Clusterphysik. Moderne Molekülphysik SS 2013

Clusterphysik. Moderne Molekülphysik SS 2013 Clusterphysik Moderne Molekülphysik SS 2013 Michael Martins michael.martins@desy.de Folien werden im WWW bereitgestellt Vorlesung im Diplom und Masterstudiengang Insgesamt 5 LP 2 SWS Vorlesung, Mittwoch

Mehr