8.2. Der harmonische Oszillator, quantenmechanisch

Größe: px
Ab Seite anzeigen:

Download "8.2. Der harmonische Oszillator, quantenmechanisch"

Transkript

1 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : D m Bewegungsgleichung: m D F -D Potentielle Energie: ( D ~ ) d ~ D V( D/* Kinetische Energie: 0 m p m V( 0.0 Lösungsansatz: (t) 0 cos(ωt) harmonicpotential.opj -m ω 0 cos(ωt) -D 0 cos(ωt) Dies ist die klassische Schwingungs-Kreisfrequenz. Potentielle Energie am Punkt ± 0 : V ± ) ( D 0 0 ω D m 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator

2 Kinetische Energie: v( t) ( t) ω 0 sin( ωt) Die höchste kinetische Energie ist bei 0, v ma 0 ma m ω 0 Ekin ω Nun ist ω ma D/m E kin D0 V ( ± 0) Gesamtenergie: E m ω 0 sin ( ωt) + D m D 0 sin ( ωt) + D0 cos ( ωt) m D (sin ( ωt) + cos ( ωt)) D0 Die Gesamtenergie E mω ist also eine Konstante der Bewegung! 0 Jede Gesamtenergie E, d.h. jeder Wert von 0 ist erlaubt! 0 Quantenmechanisch: Schrödinger-Gleichung: + V ( ( E ψ( d d m ψ 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator

3 d d m ψ( V ( D [ E V ( ] ψ( d d ψ( Versuch einer numerischen Lösung auf dem Computer: m D E ψ( ) V( Gesamtenergie E D E ψ d d ψ ( m ( ψ ) D dψ( d E ψ( ψ( + d ψ ( + d ψ( + ψ ( d ψ ( + ψ ( d harmonicpot0.opj V( ψ( +d ψ ( ψ ( m D E ψ( harmonicpot03.opj 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 3

4 Rechenvorschrift: i) Man hat ψ( und ψ ( an der Stelle ii) Man berechnet : ( ) m ψ D E ψ( iii) Man berechnet: iv) Man berechnet: ψ ( + ψ ( + ψ ( ψ ( + ψ( + ψ ( Jetzt hat man die Werte ψ(+ und ψ (+ und wiederholt die Vorschrift. Ausgehend von ψ(0), ψ (0) kann man also in diskreten Schritten die gesamte Wellenfunktion berechnen. Es gibt zwei Arten von Lösungen unterschiedlicher Symmetrie: ) Symmetrische Lösungen: ψ g (- ψ g ( ) Antisymmetrische Lösungen: ψ u (- -ψ u ( Für die Ableitungen gilt: ) ψ g (- -ψ g ( ψ g (0) 0 ) ψ u (- ψ u ( ψ u (0) 0 ψ u (0) 0 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 4

5 Man startet also mit z.b.: ) ψ g (0), ψ g (0) 0 und errechnet die Wellenfunktion für alle 0 für beliebige Energie E ) ψ u (0) 0, ψ u (0) / Für beliebig gewählte Werte von E steigt ψ( für ± eponentiell an! Diese Lösungen sind nicht normierbar! Und damit für gebundene Teilchen nicht akzeptabel! Nur für bestimmte Werte von E gehen die Lösungen ψ( 0 für ±. Diese speziellen Lösungen lassen sich normieren, ihre Aufenthaltswahrscheinlichkeit ist endlich. Nur diese Lösungen sind akzeptable Lösungen für das quantenmechanische Problem. Im Hinblick auf die Anwendungen in der Atomphysik interessieren uns hier vor allem die Lösungen für E < 0, also für gebundene Teilchen. 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 5

6 ω e.337 ev n E ω ( n+ ) n 0,,,3,..., Grundzustand n 0 E ev 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 6

7 ω e.337 ev n E ω ( n+ ) n 0,,,3,..., Anregungszustand n 0/07/004 3:3 E ev Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 7

8 ω e.337 ev n E ω ( n+ ) n 0,,,3,..., Anregungszustand n 0/07/004 3:3 E ev Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 8

9 ω e.337 ev n E ω ( n+ ) n 0,,,3,..., Anregungszustand n 3 0/07/004 3:3 E ev Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 9

10 E ω e.337 ev n 7 n 6 n 5 n 4 n 3 n n n 0 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 0

11 Eperimentell ( Computational Physics ) D wurden folgende Eigenwerte bestimmt: D 3. J/m Es gilt: /s Erwartet : ( n + / ) ω E n Gerade Ungerade Theorie ω e ω m.337 ev Man hat eine ausgezeichnete Übereinstimmung zwischen den numerisch bestimmten Werten und den Werten aus der analytischen Lösung. In den meisten interessanten Fällen ist die Schrödinger-Gleichung nur numerisch lösbar. Die Vergleiche mit den analytischen Lösungen (sofern diese bekannt sind) dienen also dazu, die Genauigkeit der numerischen Lösungen abzuschätzen. Berechnet mit dem Applet harmony.java 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator

12 Lösung der eindimensionalen Schrödinger-Gleichung C-Programm Segment: #define NPUNKTE 000 #define NINT 00 int i,j; double,delt,anf,end,psi,dpsi;... PSI.0; DPSI 0.0; /* für gerade Lösungen */ delt (end-anf)/(double)(npunkte-)/(double)(nint-); 0.0; for(i0;i<npunkte;i++) { for(j0;j<nint;j++) { DPSI DPSI + *m/(hbar*hbar)*(v(-e)*psi*delt; /* Neue Ableitung */ PSI PSI + DPSI*delt; /* Neue Wellenfunktion */ +delt; } psiwert[i] PSI; /* Wert an der Stelle i */ } 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator

13 8.3 Der Potentialtopf (Quantum well) 8.3. Der Quantentopf mit unendlich hohen Wänden -L/ +L/ d ( ) ( ( )) Ψ E V m d Ψ( 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 3

14 Gerade Lösungen Ungerade Lösungen ψ E n g n g ( n n n u n n π kn (n + ) Enu kn π (n) m A cos( k m L ψ ( m B sin( k m L Die Energieeigenwerte steigen quadratisch mit einer ganzen Zahl n 0,,,3,... an. Im quantumwell mit unendlich hohen Wänden gibt es abzählbar unendlich viele Energieeigenzustände. Die Wellenfunktionen ψ ng ( und ψ nu ( sind reell. Es sind stehende Wellen. Der Impuls dieser Eigenzustände ist Null, d.h. das eingesperrte Teilchen bewegt sich mit keiner Vorzugsrichtung. Es ist stationär. Dynamische Zustände (mit Bewegung) ergeben sich durch die kohärente Überlagerung mehrerer dieser Energieeigenzustände (kommt später). 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 4

15 Quantumwell mit endlich hohen Wänden, numerische Lösung Quantumwell 0 ev tief nm breit ev ev Energie (ev) ev.8635 ev.6590 ev ev Abstand (nm) quantumwellneu.opj 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 5

16 Dreieckpotential mit endlich hohen Wänden, numerische Lösung Trianglewell 0 ev tief nm breit 0 Energie (ev) ev ev.5585 ev Abstand (nm) trianglewell.opj 0/07/004 3:3 Teilchen & Wellen SS 004 Denninger Harmonischer Oszillator 6

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 3. Vorlesung Pawel Romanczuk WS 2017/18 1 Zusammenfassung letzte VL Quantenzustände als Wellenfunktionen (Normierung) Operatoren (Orts-, Impuls

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

Die Schrödinger Gleichung

Die Schrödinger Gleichung Die Schrödinger Gleichung Eine Einführung Christian Hirsch Die Schrödinger Gleichung p. 1/16 Begriffserklärung Was ist die Schrödingergleichung? Die Schrödinger Gleichung p. 2/16 Begriffserklärung Was

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 4. Vorlesung Pawel Romanczuk WS 2016/17 Zusammenfassung letzte VL Orts- und Impulsdarstellung Gaussches Wellenpacket Unendl. Potentialtopf

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

Festkörperelektronik 3. Übung

Festkörperelektronik 3. Übung Festkörperelektronik 3. Übung Felix Glöckler 02. Juni 2006 1 Übersicht Themen heute: Motivation Ziele Rückblick Quantenmechanik Aufgabentypen/Lösungsmethoden in der QM Stückweise konstante Potentiale Tunneln

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Wigner-Funktion und kohärente Zustände

Wigner-Funktion und kohärente Zustände Wigner-Funktion und kohärente Zustände Daniel Kavajin Seminar zur Theorie der Atome, Kerne und kondensierten Materie 21.11.2012 Einleitung Ein klassischer Zustand wird durch einen Punkt im Phasenraum repräsentiert.

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Probeklausur zu Physikalische Chemie II für Lehramt

Probeklausur zu Physikalische Chemie II für Lehramt Department Chemie Dr. Don C. Lamb http://www.cup.uni-muenchen.de/pc/lamb Probeklausur zu Physikalische Chemie II für Lehramt Zur Bearbeitung der Klausur ist nur der freie Platz dieser vor Ihnen liegenden

Mehr

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 3 Eindimensionale Potentialprobleme 3.1 Problemstellung Fragestellung. Es soll die quantenmechanische Beschreibung eines Teilchens in einer Dimension, das ein Potential V sieht (Abbildung 3.1),

Mehr

4.9 Der Harmonische Oszillator

4.9 Der Harmonische Oszillator 4.9 Der Harmonische Oszillator Zum harmonischen Oszillator gehört klassisch die Hamiltonfunktion H = p m + k x. 4.58) Damit wird z.b. näherungsweise die Bewegung von einzelnen Atomen in einem Festkörper

Mehr

6.7 Delta-Funktion Potentialbarriere

6.7 Delta-Funktion Potentialbarriere Skript zur 9. Vorlesung Quantenmechanik, Montag den 6. Mai, 0. 6.7 Delta-Funktion Potentialbarriere Betrachten wir nun eine negative) δ-funktion Potentialbarriere mit dem Potential V) = v 0 δ a). V 0 a

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik PHYSIKDEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN Felix Rucker, Matthias Herzog Übungsklausur 9.9. Kurze Fragen (6 Punkte) Ferienkurs Quantenmechanik Übungsklausur a) Wie ist ein quantenmechanischer Drehimpuls

Mehr

Quasi-exakt lösbare quantenmechanische Potentiale

Quasi-exakt lösbare quantenmechanische Potentiale Quasi-exakt lösbare quantenmechanische Potentiale Ausarbeitung zum Seminar zur Theorie der Atome, Kerne und kondensierten Materie vom.10.014 Philipp Marauhn p_mara01@uni-muenster.de Inhaltsverzeichnis

Mehr

Exakte Lösungen der stationären Schrödingergleichung

Exakte Lösungen der stationären Schrödingergleichung Teil III Exakte Lösungen der stationären Schrödingergleichung Inhaltsangabe 6 Eindimensionale Probleme 43 6.1 Das Teilchen im unendlich tiefen Kasten.......... 44 6.1.1 Modell und Lösung der Schrödingergleichung...

Mehr

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Numerische Methoden der Physik. 5 Gewöhnliche Differentialgleichungen, Randwertprobleme

Numerische Methoden der Physik. 5 Gewöhnliche Differentialgleichungen, Randwertprobleme Numerische Methoden der Physik 5 Gewöhnliche Differentialgleichungen, Randwertprobleme Marc Wagner Institut für theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main SS 2014 5.2.1 Beispiel:

Mehr

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme Seite 1 Ferienkurs Quantenmechanik Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme Die Quantenmechanik

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Der quantenmechanische harmonische Oszillator

Der quantenmechanische harmonische Oszillator 88 Kapitel 0 Der quantenmechanische harmonische Oszillator In diesem Kapitel befassen wir uns mit den quantenmechanischen Eigenschaften eines der grundlegenden Modelle der Physik, dem harmonischen Oszillator.

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 4 Eindimensionale Potentialprobleme Wir werden nun die Schrödingergleichung in der Ortsdarstellung für einige einfache Potentialprobleme lösen. Wir betrachten ein spinloses Teilchen der Masse m,

Mehr

Vertiefende Theoretische Chemie Übungen

Vertiefende Theoretische Chemie Übungen Universität eipzig Studiengang Chemie (Bachelor) Sommersemester 5 Vertiefende Theoretische Chemie Übungen Inhaltsverzeichnis Teilchen im Kasten. Translation: Teilchen im Kasten............................................

Mehr

9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.:

9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.: phys4.015 Page 1 9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators Schrödinger-Gl.: Normierung: dimensionslose Einheiten x für die Koordinate x und Ε für die Energie E somit

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Atome im elektrischen Feld

Atome im elektrischen Feld Kapitel 3 Atome im elektrischen Feld 3.1 Beobachtung und experimenteller Befund Unter dem Einfluss elektrischer Felder kommt es zur Frequenzverschiebung und Aufspaltung in optischen Spektren. Dieser Effekt

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 1 Prof Dr Alexander Shnirman Blatt 7 Dr Boris Narozhny, Dr Holger Schmi 25521 1 Die

Mehr

Was sind Quantenobjekte?

Was sind Quantenobjekte? Quantenobjekte Was sind Quantenobjekte? Die Quantentheorie beschreibt das Verhalten von Quantenobjekten in Raum und Zeit. Als Quantenobjekte oder Mikroteilchen werden in der Physik Objekte bezeichnet,

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

Beispiele: Harmonischer Oszillator und Kastenpotential

Beispiele: Harmonischer Oszillator und Kastenpotential Beispiele: Harmonischer Oszillator und Kastenpotential Ramona Wohlleb Mathematische Strukturen der Quantenmechanik Sommersemester 011 1 Der harmonische Oszillator In Analogie zum klassischen harmonischen

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Musterlösung 01/09/2014

Musterlösung 01/09/2014 Musterlösung 1/9/14 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 1km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Ferienkurs Theoretische Quantenmechanik 2010

Ferienkurs Theoretische Quantenmechanik 2010 Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Quantenmechanik 010 1 dimensionale Probleme Inhaltsverzeichnis 1 Die Schrödingergleichung 1.1 Wiederholung

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

8 Das Bohrsche Atommodell

8 Das Bohrsche Atommodell 8 Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse,

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie

Seminar zur Theorie der Atome, Kerne und kondensierten Materie Seminar zur Theorie der Atome, Kerne und kondensierten Materie Unschärfen in klassischen und quantenmechanischen Systemen Wigner Funktionen und Weyl-Transformation Christoher Schmoll 13.November 13 Wigner

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung,

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, Phasenebene Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, können als Kurven u = f (u, u ), t (u(t), v(t)), v = u, in der sogenannten Phasenebene visualisiert werden. Dabei verläuft

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 16 MICHAEL FEINDT & THOMAS KUH INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kernkraft KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

ψ(x,t) = Ae i(kx ωt) (4.5) (analog zu (2.2)) k = 2π λ e

ψ(x,t) = Ae i(kx ωt) (4.5) (analog zu (2.2)) k = 2π λ e 20 4 Einteilchen-Wellenfunktionen 4.4 Freie Teilchen Auf ein freies Elektron wirkt keine äußere Kraft. Damit ist gemäß Gleichung (1.8) das Potential V null. Die Einelektronenfunktionen sind sogenannte

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Kapitel 10. Potentiale Elektronen im Potentialtopf

Kapitel 10. Potentiale Elektronen im Potentialtopf Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr KIT WS 6/7 Moderne Theoretische Physik II V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch Klausur Lösung 4. April 7, :-: Uhr Aufgabe : Störung zum zweidimensionalen harmonischen Oszillator ++7 Punkte a Die

Mehr

4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf

4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf 4-1 4 Anwendungen 4.6 Übungen 4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf Wir werden jetzt die Übergangswahrscheinlichkeit für ein Teilchen der Masse m und der Ladung e in

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Roter Faden: Vorlesung 12+13+14: Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Versuche: Huygens sche Prinzip, Schwebungen zweier Schwinggabel,

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 000 Aufgabe III Atomphysik 1. Laserbremsung eines Atomstrahls In einem Atomofen befindet sich Cäsium-Gas der Temperatur T. Die mittlere m Geschwindigkeit der

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 13. Vorlesung 11.7.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr