Polynominterpolation

Größe: px
Ab Seite anzeigen:

Download "Polynominterpolation"

Transkript

1 Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses Polynom wird Interpolationspolynom genannt und man sagt, es interpoliere die gegebenen Punkte. 1. Anwendungen Interpolationspolynom 7. Grades Polynome lassen sich sehr leicht integrieren und ableiten. Deswegen tauchen interpolierende Polynome an vielen Stellen in der numerischen Mathematik auf, beispielsweise bei der numerischen Integration und entsprechend bei Verfahren zur numerischen Lösung gewöhnlicher Differentialgleichungen. 2. Problemstellung Für n + 1 gegebene Wertepaare (x i, y i ) mit paarweise verschiedenen Stützstellen x i wird das eindeutig bestimmte Polynom P n-ten Grades gesucht, das alle Gleichungen P (x i ) = y i erfüllt. Hierbei ist P im Vektorraum der Polynome mit Grad n oder kleiner zu suchen, R n [X]. Das Problem lässt sich lösen, indem das durch die Gleichungen P (x i ) = y i definierte Lineare Gleichungssystem gelöst wird. Die Lösung des Gleichungssystems sind genau die Koeffizienten des gesuchten Polynoms P. Da sich ein und dasselbe Polynom aber unterschiedlich darstellen lässt, je nachdem welche Basis für den Vektorraum R n [X] gewählt wird, kann man ganz verschiedene Gleichungssysteme erhalten. Wählt man für R n [X] die Standardbasis {X k 0 k n}, also für P die Darstellung P (X) = a 0 + a 1 X a n X n, so erhält man ein Gleichungssystem mit der Vandermonde-Matrix: 1 x 0 x n x n x n n a 0 a n = y 0. y n. 1

2 Diese ist regulär, wenn die Stützstellen x i paarweise verschieden sind, das Gleichungssystem lässt sich dann eindeutig lösen. Somit ist die Existenz und Eindeutigkeit des gesuchten Polynoms P immer sichergestellt. Zur Berechnung der Koeffizienten a k des Polynoms P bleibt also nur folgende Matrixmultiplikation durchzuführen: a 0. a n = 1 x 0 x n x n x n n 1 y 0 Trotz der theoretischen Machbarkeit wird diese Art der Interpolation in der Praxis nicht durchgeführt da die Berechnung zu lang ist. Bei Wahl einer anderen Basis als der Standardbasis zur Beschreibung des Polynoms P kann der Aufwand verringert werden. 3. Lagrangesche Interpolationsformel Eher für theoretische Betrachtungen günstig ist eine Darstellung in der Lagrange-Basis. Hier nennt man die Basisfunktionen Lagrange-Polynome die so definiert sind, dass l i (x) = l i (x j ) = δ ij = n j=0, j i x x j x i x j. { 1 falls i = j 0 falls i j gilt, wobei das Kronecker-Delta darstellt. Die Lösung des Interpolationsproblems lässt sich dann einfach angeben als n P (x) = y i l i (x) i=0 mit den Stützwerten y i. Dies wird häufig benutzt, um die Existenz der Lösung des Interpolationsproblems zu beweisen. Ein Vorteil der Lagrange-Basis ist, dass die Basisfunktionen von den Stützwerten y i unabhängig sind. Dadurch lassen sich verschiedene Sätze von Stützwerten y i mit gleichen Stützstellen x i schnell interpolieren, wenn die Basisfunktionen einmal bestimmt worden sind. y n 2

3 Beispiel 1: Schreibe das Interpolationspolynom für die Funktion f(x) = x 2 und die Stützstellen x 0 = 1, x 1 = 2, x 2 = 3. Lösung: Die Stützwerte sind y 0 = x 2 0 = 1, y 1 = x 2 1 = 4 und y 2 = x 2 2 = 9. Das Interpolationspolynom ist L(x) = 1 x x x x x x = x2. Beispiel 2: Schreibe das Interpolationspolynom für die Funktion f(x) = x 3 und die Stützstellen x 0 = 1, x 1 = 2, x 2 = 3. Lösung: Die Stützwerte sind y 0 = x 3 0 = 1, y 1 = x 3 1 = 8 und y 2 = x 3 2 = 27. Die Polynomen der Lagrange-Basis sind dieselben wie im vorigen Beispiel. Das Interpolationspolynom ist L(x) = 1 x x x x x x = 6x2 11x + 6. Beispiel 3: Interpoliere die Funktion f(x) = tg(x) bei gegebenen Punkten x 0 = 1, 5 f(x 0 ) = 14, x 1 = 0, 75 f(x 1 ) = 0, x 2 = 0 f(x 2 ) = 0 x 3 = 0, 75 f(x 3 ) = 0, x 4 = 1, 5 f(x 4 ) = 14, Tangensfunktion und ihre Polynominterpolante vierten Grades 3

4 Die Lagrange-Basisfunktionen sind: l 0 (x) = x x 1 = 1 x(2x 3)(4x 3)(4x + 3) x 0 x 1 x 0 x 2 x 0 x 3 x 0 x l 1 (x) = x x 0 = 8 x(2x 3)(2x + 3)(4x 3) x 1 x 0 x 1 x 2 x 1 x 3 x 1 x l 2 (x) = x x 0 x x 1 = 3 (2x + 3)(4x + 3)(4x 3)(2x 3) x 2 x 0 x 2 x 1 x 2 x 3 x 2 x l 3 (x) = x x 0 x x 1 = 8 x(2x 3)(2x + 3)(4x + 3) x 3 x 0 x 3 x 1 x 3 x 2 x 3 x l 4 (x) = x x 0 x x 1 = 1 x(2x + 3)(4x 3)(4x + 3) x 4 x 0 x 4 x 1 x 4 x 2 x 4 x also ist das Interpolationspolynom: ( P Lagrange (x) = 1 f(x0 )x(2x 3)(4x 3)(4x + 3) 8f(x )x(2x 3)(2x + 3)(4x 3) + 3f(x 2 )(2x + 3)(4x + 3)(4x 3)(2x 3) 8f(x 3 )x(2x 3)(2x + 3)(4x + 3) + + f(x 4 )x(2x + 3)(4x 3)(4x + 3) ) = 1,477474x + 4,834848x 3. Beispiel 4. (von einen gewißen Björn geschrieben): 4

5 5

6 6

7 4. Fehlerabschätzung Gegeben sei eine Funktion f, deren n+1 Funktionswerte y i an den Stellen x i durch das Polynom P interpoliert werden. Mit I sei das kleinste Intervall bezeichnet, das die Stützstellen x i und eine Stelle x enthält. Ferner sei f eine (n + 1)-mal stetig differenzierbare Funktion auf I. Dann gilt mit einem ξ I. f(x) P (x) = f (n+1) (ξ) (n + 1)! n (x x i ) i=0 7

1 2 x x x x x x2 + 83

1 2 x x x x x x2 + 83 Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

6 Polynominterpolation

6 Polynominterpolation Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe 5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke [email protected] Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht

Mehr

3 Interpolation und Approximation

3 Interpolation und Approximation In dem ersten großen Kapitel beschäftigen wir uns mit der Frage, wie eine Reihe von Daten (z.b. aus physikalischen Messungen, experimentelle Beobachtungen, Börse, etc.) durch eine möglichst einfache Funktion

Mehr

8 Polynominterpolation

8 Polynominterpolation 8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum

Mehr

Interpolation. Kapitel 3

Interpolation. Kapitel 3 Kapitel 3 Interpolation Die Interpolation von Funktionen oder Daten ist ein häufig auftretendes Problem sowohl in der Mathematik als auch in vielen Anwendungen Das allgemeine Problem, die sogenannte Dateninterpolation,

Mehr

Die Interpolationsformel von Lagrange

Die Interpolationsformel von Lagrange Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten (x i,f i ), i =,...,n mit paarweise verschiedenen Stützstellen x i x j, für i j, gibt es genau ein Polynom π n P n

Mehr

KAPITEL 8. Interpolation

KAPITEL 8. Interpolation KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0

Mehr

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr.

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Interpolation Nadine Losert Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir in den vorherigen Vorträgen verschiedene

Mehr

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013 Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche

Mehr

3.6 Approximationstheorie

3.6 Approximationstheorie 3.6 Approximationstheorie Bisher haben wir uns im Wesentlichen mit der Interpolation beschäftigt. Die Approximation ist weiter gefasst: wir suchen eine einfache Funktion p P (dabei ist der Funktionenraum

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden,

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden, Kapitel 3 Interpolation 31 Einführung Bemerkung 31 Motivation, Aufgabenstellung Gegeben seien eine Funktion f C([a,b]) und x i [a,b], i = 0,n, mit a x 0 < x 1 < < x n b (31) Die Interpolationsaufgabe besteht

Mehr

Interpolationsproblem. Interpolation. Interpolationsproblem. Interpolationsproblem. Gegeben seien eine Funktion. Φ (x; a 1,...

Interpolationsproblem. Interpolation. Interpolationsproblem. Interpolationsproblem. Gegeben seien eine Funktion. Φ (x; a 1,... sproblem Heinrich Voss [email protected] Hamburg University of Technology Institute for Numerical Simulation Gegeben seien eine Funktion Φ (x; a 1,..., a n ) : R I R, die auf einem Intervall I erklärt

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

Mathematik IV für Elektrotechnik Mathematik III für Informatik

Mathematik IV für Elektrotechnik Mathematik III für Informatik Mathematik IV für Elektrotechnik Mathematik III für Informatik Vorlesungsskriptum Stefan Ulbrich Fachbereich Mathematik Technische Universität Darmstadt Sommersemester 2011 Inhaltsverzeichnis 1 Einführung

Mehr

Interpolation und Integration mit Polynomen

Interpolation und Integration mit Polynomen Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus

Mehr

Inhalt Kapitel IV: Interpolation

Inhalt Kapitel IV: Interpolation Inhalt Kapitel IV: Interpolation IV Interpolation IV. Polynom-Interpolation IV. Spline-Interpolation Kapitel IV (InhaltIV) Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

Approximation durch Polynome

Approximation durch Polynome durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN IRYNA FEUERSTEIN Es wir ein Verfahren zur Konstruktion einer quasiinterpolierenden Funktion auf gleichmäßig verteilten Konten vorgestellt.

Mehr

1/26. Integration. Numerische Mathematik 1 WS 2011/12

1/26. Integration. Numerische Mathematik 1 WS 2011/12 1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression

Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich [email protected]

Mehr

Explizite Runge-Kutta-Verfahren

Explizite Runge-Kutta-Verfahren Explizite Runge-Kutta-Verfahren Proseminar Numerische Mathematik Leitung: Professor Dr. W. Hofmann Dominik Enseleit 06.07.2005 1 1 Einleitung Nachdem wir schon einige numerische Verfahren zur Lösung gewöhnlicher

Mehr

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 4. Differentialrechnung Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Technische Universität Dresden Fakultät Informatik Institut für Software- und Multimediatechnik Dozent: Dr. Mascolous Referent: Gliederung / Einleitung 1 / 25 1. Kurven

Mehr

NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002

NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002 NUMERISCHE MATHEMATIK II 1 (Studiengang Mathematik) Prof Dr Hans Babovsky Institut für Mathematik Technische Universität Ilmenau WS 2001/2002 1 Korrekturen, Kommentare und Verbesserungsvorschläge bitte

Mehr

KAPITEL 10. Numerische Integration

KAPITEL 10. Numerische Integration KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Verarbeitung von Messdaten

Verarbeitung von Messdaten HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

Konvergenz interpolierender Polynome

Konvergenz interpolierender Polynome Technische Universität Berlin Institut für Mathematik Konvergenz interpolierender Polynome Seminar Differentialgleichungen im Sommersemester 2012 bei Prof. Dr. Etienne Emmrich vorgelegt von David Breiter

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Funktionen. D. Horstmann: Oktober

Funktionen. D. Horstmann: Oktober Funktionen D. Horstmann: Oktober 2016 128 Funktionen Definition 9. Eine Funktion f ist eine Rechenvorschrift, die jedem Element einer Menge D genau ein Element einer Zielmenge Z zuweist. Die Menge D heißt

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Interpolationsverfahren

Interpolationsverfahren Kapitel 3 Interpolationsverfahren Peter-Wolfgang Gräber Systemanalyse in der Wasserwirtschaft KAPITEL 3 INTERPOLATIONSVERFAHREN Problem: Durch Messung sind einige Messwerte (abhängige Variable) in Abhängigkeit

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren. Juli Sie haben Minuten Zeit zum Bearbeiten der Klausur. Bitte

Mehr

Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau,

Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau, Universität Siegen, Fachbereich Maschinenbau, 31.7.9 Name: Matrikelnummer: Aufgabe 1 (8 Punkte) Für die Abschätzung der Lebensdauer eines Wälzlagers wird die Bestimmungsgröße K gemäß der obenstehenden

Mehr

Kapitel 3. Approximation von Funktionen und Daten. Interpolation Stückweise Interpolation Spline-Funktionen [

Kapitel 3. Approximation von Funktionen und Daten. Interpolation Stückweise Interpolation Spline-Funktionen [ Kapitel 3 Approximation von Funktionen und Daten Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 3/2 Approximation Approximation: Suche zu einer gegebenen Funktion f eine

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

Technische Universität München. Mathematik für Physiker 1

Technische Universität München. Mathematik für Physiker 1 Tutorübung - Lösungen T: Basiswechsel Technische Universität München Zentrum Mathematik Mathematik für Physiker Wintersemester /2 Michael Kaplan Jan Wehrheim Christian Mendl Übungsblatt 9 Wir betrachten

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Institut für Mathematik Blatt Prof. Dr. B. Martin, H. Süß Abgabe: 0.4. Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Aufgabe : 2 Punkte Stellen Sie die Gleichung der Ebene auf, in

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Übungen zu Numerisches Programmieren

Übungen zu Numerisches Programmieren Technische Universität München SS 009 Institut für Informatik Prof. Dr. Thomas Huckle Michael Lieb, M. Sc. Dipl.-Tech. Math. Stefanie Schraufstetter Übungen zu Numerisches Programmieren 3. Programmieraufgabe

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum 2: Interpolation, Extrapolation, Splines Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Program: 1) Einführung 2) Direkte Methode 3) Dividierte Differenzmethode

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 8 Dimensionstheorie Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Wenn

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

Γ = {(x, f(x)) : x R} R 2

Γ = {(x, f(x)) : x R} R 2 Numerik I. Version: 29.5.8 46 4 Interpolation 4.1 Einführung Nehmen wir an, dass eine Funktion f : R R eine physikalische Größe beschreibt und wir ihre Werte an n+1 verschiedenen Punkten x, x 1,...,x n

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) Blatt 7 SoSe 2011 - C. Curilla/ B. Janssens Präsenzaufgaben (P13)

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Lineare Differenzengleichungen und Polynome. Franz Pauer

Lineare Differenzengleichungen und Polynome. Franz Pauer Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. [email protected] Vortrag beim ÖMG-LehrerInnenfortbildungstag

Mehr

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.)

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.) 5. Gitter, Gradienten, Interpolation 5.1. Gitter (Rezk-Salama, o.j.) Gitterklassifikation: (Bartz 2005) (Rezk-Salama, o.j.) (Bartz 2005) (Rezk-Salama, o.j.) Allgemeine Gitterstrukturen: (Rezk-Salama, o.j.)

Mehr

Facharbeit. Mathematik

Facharbeit. Mathematik Albert-Schweitzer-Gymnasium Kollegstufenjahrgang 2001/2003 Erlangen Facharbeit aus dem Fach Mathematik Thema: Splinefunktionen und ihre Anwendung Verfasser: Moritz Lenz Leistungskurs: Mathematik 1 Kursleiter:

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Satz von Taylor, Taylor-Reihen

Satz von Taylor, Taylor-Reihen Satz von Taylor, Taylor-Reihen Die Kenntnis von f liefert gewisse Rücschlüsse auf die Funtion f selbst, zb Monotonie, mögliche loale Extrema Die Kenntnis von f liefert darüberhinaus eine Information, ob

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 3/4) Aufgabenblatt (9. Januar

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme 1 Lineare Gleichungssysteme Didaktische Hinweise Diese Station ist ein Unterrichtsbeispiel zur Einführung von Linearen Gleichungssystemen. Auf vier sehr detaillierten Arbeitsblättern werden die Problemstellung

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr