Polynominterpolation
|
|
|
- Alma Hauer
- vor 9 Jahren
- Abrufe
Transkript
1 Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses Polynom wird Interpolationspolynom genannt und man sagt, es interpoliere die gegebenen Punkte. 1. Anwendungen Interpolationspolynom 7. Grades Polynome lassen sich sehr leicht integrieren und ableiten. Deswegen tauchen interpolierende Polynome an vielen Stellen in der numerischen Mathematik auf, beispielsweise bei der numerischen Integration und entsprechend bei Verfahren zur numerischen Lösung gewöhnlicher Differentialgleichungen. 2. Problemstellung Für n + 1 gegebene Wertepaare (x i, y i ) mit paarweise verschiedenen Stützstellen x i wird das eindeutig bestimmte Polynom P n-ten Grades gesucht, das alle Gleichungen P (x i ) = y i erfüllt. Hierbei ist P im Vektorraum der Polynome mit Grad n oder kleiner zu suchen, R n [X]. Das Problem lässt sich lösen, indem das durch die Gleichungen P (x i ) = y i definierte Lineare Gleichungssystem gelöst wird. Die Lösung des Gleichungssystems sind genau die Koeffizienten des gesuchten Polynoms P. Da sich ein und dasselbe Polynom aber unterschiedlich darstellen lässt, je nachdem welche Basis für den Vektorraum R n [X] gewählt wird, kann man ganz verschiedene Gleichungssysteme erhalten. Wählt man für R n [X] die Standardbasis {X k 0 k n}, also für P die Darstellung P (X) = a 0 + a 1 X a n X n, so erhält man ein Gleichungssystem mit der Vandermonde-Matrix: 1 x 0 x n x n x n n a 0 a n = y 0. y n. 1
2 Diese ist regulär, wenn die Stützstellen x i paarweise verschieden sind, das Gleichungssystem lässt sich dann eindeutig lösen. Somit ist die Existenz und Eindeutigkeit des gesuchten Polynoms P immer sichergestellt. Zur Berechnung der Koeffizienten a k des Polynoms P bleibt also nur folgende Matrixmultiplikation durchzuführen: a 0. a n = 1 x 0 x n x n x n n 1 y 0 Trotz der theoretischen Machbarkeit wird diese Art der Interpolation in der Praxis nicht durchgeführt da die Berechnung zu lang ist. Bei Wahl einer anderen Basis als der Standardbasis zur Beschreibung des Polynoms P kann der Aufwand verringert werden. 3. Lagrangesche Interpolationsformel Eher für theoretische Betrachtungen günstig ist eine Darstellung in der Lagrange-Basis. Hier nennt man die Basisfunktionen Lagrange-Polynome die so definiert sind, dass l i (x) = l i (x j ) = δ ij = n j=0, j i x x j x i x j. { 1 falls i = j 0 falls i j gilt, wobei das Kronecker-Delta darstellt. Die Lösung des Interpolationsproblems lässt sich dann einfach angeben als n P (x) = y i l i (x) i=0 mit den Stützwerten y i. Dies wird häufig benutzt, um die Existenz der Lösung des Interpolationsproblems zu beweisen. Ein Vorteil der Lagrange-Basis ist, dass die Basisfunktionen von den Stützwerten y i unabhängig sind. Dadurch lassen sich verschiedene Sätze von Stützwerten y i mit gleichen Stützstellen x i schnell interpolieren, wenn die Basisfunktionen einmal bestimmt worden sind. y n 2
3 Beispiel 1: Schreibe das Interpolationspolynom für die Funktion f(x) = x 2 und die Stützstellen x 0 = 1, x 1 = 2, x 2 = 3. Lösung: Die Stützwerte sind y 0 = x 2 0 = 1, y 1 = x 2 1 = 4 und y 2 = x 2 2 = 9. Das Interpolationspolynom ist L(x) = 1 x x x x x x = x2. Beispiel 2: Schreibe das Interpolationspolynom für die Funktion f(x) = x 3 und die Stützstellen x 0 = 1, x 1 = 2, x 2 = 3. Lösung: Die Stützwerte sind y 0 = x 3 0 = 1, y 1 = x 3 1 = 8 und y 2 = x 3 2 = 27. Die Polynomen der Lagrange-Basis sind dieselben wie im vorigen Beispiel. Das Interpolationspolynom ist L(x) = 1 x x x x x x = 6x2 11x + 6. Beispiel 3: Interpoliere die Funktion f(x) = tg(x) bei gegebenen Punkten x 0 = 1, 5 f(x 0 ) = 14, x 1 = 0, 75 f(x 1 ) = 0, x 2 = 0 f(x 2 ) = 0 x 3 = 0, 75 f(x 3 ) = 0, x 4 = 1, 5 f(x 4 ) = 14, Tangensfunktion und ihre Polynominterpolante vierten Grades 3
4 Die Lagrange-Basisfunktionen sind: l 0 (x) = x x 1 = 1 x(2x 3)(4x 3)(4x + 3) x 0 x 1 x 0 x 2 x 0 x 3 x 0 x l 1 (x) = x x 0 = 8 x(2x 3)(2x + 3)(4x 3) x 1 x 0 x 1 x 2 x 1 x 3 x 1 x l 2 (x) = x x 0 x x 1 = 3 (2x + 3)(4x + 3)(4x 3)(2x 3) x 2 x 0 x 2 x 1 x 2 x 3 x 2 x l 3 (x) = x x 0 x x 1 = 8 x(2x 3)(2x + 3)(4x + 3) x 3 x 0 x 3 x 1 x 3 x 2 x 3 x l 4 (x) = x x 0 x x 1 = 1 x(2x + 3)(4x 3)(4x + 3) x 4 x 0 x 4 x 1 x 4 x 2 x 4 x also ist das Interpolationspolynom: ( P Lagrange (x) = 1 f(x0 )x(2x 3)(4x 3)(4x + 3) 8f(x )x(2x 3)(2x + 3)(4x 3) + 3f(x 2 )(2x + 3)(4x + 3)(4x 3)(2x 3) 8f(x 3 )x(2x 3)(2x + 3)(4x + 3) + + f(x 4 )x(2x + 3)(4x 3)(4x + 3) ) = 1,477474x + 4,834848x 3. Beispiel 4. (von einen gewißen Björn geschrieben): 4
5 5
6 6
7 4. Fehlerabschätzung Gegeben sei eine Funktion f, deren n+1 Funktionswerte y i an den Stellen x i durch das Polynom P interpoliert werden. Mit I sei das kleinste Intervall bezeichnet, das die Stützstellen x i und eine Stelle x enthält. Ferner sei f eine (n + 1)-mal stetig differenzierbare Funktion auf I. Dann gilt mit einem ξ I. f(x) P (x) = f (n+1) (ξ) (n + 1)! n (x x i ) i=0 7
1 2 x x x x x x2 + 83
Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die
6. Polynom-Interpolation
6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für
5 Interpolation und Approximation
5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)
6 Polynominterpolation
Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}
8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.
8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis
Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe
5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad
Numerische Verfahren
Numerische Verfahren Jens-Peter M. Zemke [email protected] Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht
3 Interpolation und Approximation
In dem ersten großen Kapitel beschäftigen wir uns mit der Frage, wie eine Reihe von Daten (z.b. aus physikalischen Messungen, experimentelle Beobachtungen, Börse, etc.) durch eine möglichst einfache Funktion
8 Polynominterpolation
8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum
Interpolation. Kapitel 3
Kapitel 3 Interpolation Die Interpolation von Funktionen oder Daten ist ein häufig auftretendes Problem sowohl in der Mathematik als auch in vielen Anwendungen Das allgemeine Problem, die sogenannte Dateninterpolation,
Die Interpolationsformel von Lagrange
Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten (x i,f i ), i =,...,n mit paarweise verschiedenen Stützstellen x i x j, für i j, gibt es genau ein Polynom π n P n
KAPITEL 8. Interpolation
KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0
Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr.
Interpolation Nadine Losert Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir in den vorherigen Vorträgen verschiedene
Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013
Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche
3.6 Approximationstheorie
3.6 Approximationstheorie Bisher haben wir uns im Wesentlichen mit der Interpolation beschäftigt. Die Approximation ist weiter gefasst: wir suchen eine einfache Funktion p P (dabei ist der Funktionenraum
(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)
33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen
Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.
Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen
3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen
KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an
Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)
Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren
[5], [0] v 4 = + λ 3
Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span
Übungen zu Splines Lösungen zu Übung 20
Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)
Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden,
Kapitel 3 Interpolation 31 Einführung Bemerkung 31 Motivation, Aufgabenstellung Gegeben seien eine Funktion f C([a,b]) und x i [a,b], i = 0,n, mit a x 0 < x 1 < < x n b (31) Die Interpolationsaufgabe besteht
Interpolationsproblem. Interpolation. Interpolationsproblem. Interpolationsproblem. Gegeben seien eine Funktion. Φ (x; a 1,...
sproblem Heinrich Voss [email protected] Hamburg University of Technology Institute for Numerical Simulation Gegeben seien eine Funktion Φ (x; a 1,..., a n ) : R I R, die auf einem Intervall I erklärt
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik
Mathematik IV für Elektrotechnik Mathematik III für Informatik
Mathematik IV für Elektrotechnik Mathematik III für Informatik Vorlesungsskriptum Stefan Ulbrich Fachbereich Mathematik Technische Universität Darmstadt Sommersemester 2011 Inhaltsverzeichnis 1 Einführung
Interpolation und Integration mit Polynomen
Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus
Inhalt Kapitel IV: Interpolation
Inhalt Kapitel IV: Interpolation IV Interpolation IV. Polynom-Interpolation IV. Spline-Interpolation Kapitel IV (InhaltIV) Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten
Begleitmaterial zur Vorlesung Numerik I
Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik
Polynominterpolation mit Matlab.
Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...
Approximation durch Polynome
durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz
Numerische Integration und Differentiation
Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische
GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida
GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?
QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN
QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN IRYNA FEUERSTEIN Es wir ein Verfahren zur Konstruktion einer quasiinterpolierenden Funktion auf gleichmäßig verteilten Konten vorgestellt.
1/26. Integration. Numerische Mathematik 1 WS 2011/12
1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren
KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.
MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw
Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression
Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich [email protected]
Explizite Runge-Kutta-Verfahren
Explizite Runge-Kutta-Verfahren Proseminar Numerische Mathematik Leitung: Professor Dr. W. Hofmann Dominik Enseleit 06.07.2005 1 1 Einleitung Nachdem wir schon einige numerische Verfahren zur Lösung gewöhnlicher
Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen
Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)
3. Übungsblatt zur Lineare Algebra I für Physiker
Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)
GRUNDLAGEN MATHEMATIK
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 4. Differentialrechnung Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies
5 Numerische Mathematik
6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul
Einführung in die numerische Mathematik
Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis
6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme
6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear
Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen
Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,
Darstellung von Kurven und Flächen
Darstellung von Kurven und Flächen Technische Universität Dresden Fakultät Informatik Institut für Software- und Multimediatechnik Dozent: Dr. Mascolous Referent: Gliederung / Einleitung 1 / 25 1. Kurven
NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002
NUMERISCHE MATHEMATIK II 1 (Studiengang Mathematik) Prof Dr Hans Babovsky Institut für Mathematik Technische Universität Ilmenau WS 2001/2002 1 Korrekturen, Kommentare und Verbesserungsvorschläge bitte
KAPITEL 10. Numerische Integration
KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)
Verarbeitung von Messdaten
HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,
In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y
Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion
Rückblick auf die letzte Vorlesung
Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige
Konvergenz interpolierender Polynome
Technische Universität Berlin Institut für Mathematik Konvergenz interpolierender Polynome Seminar Differentialgleichungen im Sommersemester 2012 bei Prof. Dr. Etienne Emmrich vorgelegt von David Breiter
Mathematik für Bauingenieure
Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.
5. Numerische Differentiation. und Integration
5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen
Funktionen. D. Horstmann: Oktober
Funktionen D. Horstmann: Oktober 2016 128 Funktionen Definition 9. Eine Funktion f ist eine Rechenvorschrift, die jedem Element einer Menge D genau ein Element einer Zielmenge Z zuweist. Die Menge D heißt
2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p
Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.
Folgerungen aus dem Auflösungsatz
Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und
Interpolationsverfahren
Kapitel 3 Interpolationsverfahren Peter-Wolfgang Gräber Systemanalyse in der Wasserwirtschaft KAPITEL 3 INTERPOLATIONSVERFAHREN Problem: Durch Messung sind einige Messwerte (abhängige Variable) in Abhängigkeit
2. Spezielle anwendungsrelevante Funktionen
2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für
Klausur zur Vordiplom-Prüfung
Technische Universität Hamburg-Harburg SS Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren. Juli Sie haben Minuten Zeit zum Bearbeiten der Klausur. Bitte
Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau,
Universität Siegen, Fachbereich Maschinenbau, 31.7.9 Name: Matrikelnummer: Aufgabe 1 (8 Punkte) Für die Abschätzung der Lebensdauer eines Wälzlagers wird die Bestimmungsgröße K gemäß der obenstehenden
Kapitel 3. Approximation von Funktionen und Daten. Interpolation Stückweise Interpolation Spline-Funktionen [
Kapitel 3 Approximation von Funktionen und Daten Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 3/2 Approximation Approximation: Suche zu einer gegebenen Funktion f eine
Ausgleichsproblem. Definition (1.0.3)
Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)
WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII
Technische Universität München. Mathematik für Physiker 1
Tutorübung - Lösungen T: Basiswechsel Technische Universität München Zentrum Mathematik Mathematik für Physiker Wintersemester /2 Michael Kaplan Jan Wehrheim Christian Mendl Übungsblatt 9 Wir betrachten
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I
Institut für Mathematik Blatt Prof. Dr. B. Martin, H. Süß Abgabe: 0.4. Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Aufgabe : 2 Punkte Stellen Sie die Gleichung der Ebene auf, in
Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.
Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion
Übungen zu Numerisches Programmieren
Technische Universität München SS 009 Institut für Informatik Prof. Dr. Thomas Huckle Michael Lieb, M. Sc. Dipl.-Tech. Math. Stefanie Schraufstetter Übungen zu Numerisches Programmieren 3. Programmieraufgabe
6 Lineare Gleichungssysteme
6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α
Die Differentialgleichung :
Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen
Practical Numerical Training UKNum
Practical Numerical Training UKNum 2: Interpolation, Extrapolation, Splines Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Program: 1) Einführung 2) Direkte Methode 3) Dividierte Differenzmethode
Lineare Differentialgleichungen höherer Ordnung
Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 8 Dimensionstheorie Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Wenn
Klausur Mathematik I
Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:
Γ = {(x, f(x)) : x R} R 2
Numerik I. Version: 29.5.8 46 4 Interpolation 4.1 Einführung Nehmen wir an, dass eine Funktion f : R R eine physikalische Größe beschreibt und wir ihre Werte an n+1 verschiedenen Punkten x, x 1,...,x n
Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens
Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) Blatt 7 SoSe 2011 - C. Curilla/ B. Janssens Präsenzaufgaben (P13)
Mathematik für Anwender I. Beispielklausur I mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.
Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.
Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
Lineare Differenzengleichungen und Polynome. Franz Pauer
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. [email protected] Vortrag beim ÖMG-LehrerInnenfortbildungstag
5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.)
5. Gitter, Gradienten, Interpolation 5.1. Gitter (Rezk-Salama, o.j.) Gitterklassifikation: (Bartz 2005) (Rezk-Salama, o.j.) (Bartz 2005) (Rezk-Salama, o.j.) Allgemeine Gitterstrukturen: (Rezk-Salama, o.j.)
Facharbeit. Mathematik
Albert-Schweitzer-Gymnasium Kollegstufenjahrgang 2001/2003 Erlangen Facharbeit aus dem Fach Mathematik Thema: Splinefunktionen und ihre Anwendung Verfasser: Moritz Lenz Leistungskurs: Mathematik 1 Kursleiter:
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Satz von Taylor, Taylor-Reihen
Satz von Taylor, Taylor-Reihen Die Kenntnis von f liefert gewisse Rücschlüsse auf die Funtion f selbst, zb Monotonie, mögliche loale Extrema Die Kenntnis von f liefert darüberhinaus eine Information, ob
(d) das zu Grunde liegende Problem gut konditioniert ist.
Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 3/4) Aufgabenblatt (9. Januar
1 Lineare Gleichungssysteme
1 Lineare Gleichungssysteme Didaktische Hinweise Diese Station ist ein Unterrichtsbeispiel zur Einführung von Linearen Gleichungssystemen. Auf vier sehr detaillierten Arbeitsblättern werden die Problemstellung
2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1
Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt
