Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt"

Transkript

1 Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dipl.-inform. Oliver Kayser-Herold Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Wir wollen uns jetzt der Implementierung des auf dem letzten Aufgabenblatt beschriebenen Algorithmus zuwenden. Als erstes stellen wir noch einmal die benötigten Problemgrößen und die verwendeten Datenstrukturen zusammen. Weiterhin geben wir noch die Strukturen der Matlab-Funktionen an, die die einzelnen Komponenten des Programms bilden, und behandeln ein erstes Beispiel, das sogenannte Driven-Cavity-Problem. 1 Die Problemgrößen und Datenstrukturen Der auf dem zweiten Aufgabenblatt beschriebene Algorithmus benötigt die folgenden Größen, die zu Beginn in einer Eingabedatei zur Verfügung gestellt werden sollen: Geometriegrößen: imax jmax delx dely Anzahl der inneren Zellen in x-richtung, Anzahl der inneren Zellen in y-richtung, δx, Größe einer Zelle in x-richtung, δy, Größe einer Zelle in y-richtung. Größen für die Zeititeration: T end Endzeit T end, delt δt, Zeitschrittweite. Parameter für die Druckiteration: itermax Maximale Anzahl von Druck-Iterationen pro Zeitschritt, epsi ɛ, Genauigkeitskriterium für die Druckiteration (res < epsi), omg ω, Relaxationsparameter für SOR-Iteration, alpha α, Diskretisationsparameter (vgl. Blatt 2). 1

2 Problemabhängige Größen: U I, V I, P I GX, GY nu Anfangsbelegung der Geschwindigkeiten und des Drucks, g x, g y, äußere Kräfte, z.b. Gravitation, ν, Viskosität (1/Reynoldszahl). Weiter sollen die folgenden Felder (Matrizen) der Dimension (imax + 2) (jmax + 2) als Datenstrukturen verwendet werden: U: Geschwindigkeit in x-richtung, V: Geschwindigkeit in y-richtung, P: Druck, RHS: Rechte Seite f für die Druckiteration, F, G: Hilfsgrößen F und G. In Matlab können Felder wie U, V, P, etc. nur von 1:n+2 und nicht von 0:n+1 indiziert werden. Es muß also eine Indexverschiebung vorgenommen werden. 2 Das Programm und seine Komponenten Das zu erstellende Programm besitzt die folgende Strukturierung: 1. Einlesen der Programmparameter. 2. Initialisierung. 3. T := Solange T T end: (a) Berechne Randwerte von U und V. (b) Berechne F, G und RHS. (c) Löse das LGS für P mit dem SOR-Verfahren. (d) Berechne U und V. (e) T := T + delt. 5. Graphische Ausgabe der Ergebnisse (Visualisierung). Die einzelnen Komponenten des Programms sollen dabei als Matlab-Routinen implementiert werden: 2

3 progpar(): Die Größen imax, jmax, delx, dely, delt, T end, itermax, epsi, omg, nu, GX, GY, U I, V I, P I werden in diesem Skript gesetzt. alpha, [U,V,P] = initgitter(imax,jmax,u I,V I,P I): Die Felder U, V, P werden auf dem ganzen Gebiet mit den konstanten Werten U I, V I und P I als Anfangswerte vorbelegt. [U,V] = randwerte(u,v,imax,jmax): Die Randwerte für die Felder U und V werden gemäß den Formeln von Abschnitt 4.4 auf Blatt 2 gesetzt. [F,G] = berechne FG(U,V,imax,jmax,delt,delx,dely,GX,GY,alpha,nu): Berechnung von F und G, dabei müssen am Rand die Formeln aus Abschnitt 4.4 berücksichtigt werden. RHS = berechne RHS(F,G,imax,jmax,delt,delx,dely): Berechnung der rechten Seite der Druckgleichung. [P,it,res] = SOR(P,RHS,U,V,GX,GY,imax,jmax,delx,dely,epsi,itermax,omg,nu): SOR-Iteration für die Druck-(Poisson-)Gleichung. Die Iteration wird abgebrochen, wenn das Residuum res die Toleranzgrenze epsi unterschreitet oder die maximale Iterationszahl itermax erreicht ist. Nach dem Abbruch wird die Anzahl it der benötigten Iterationen, das Residuum res und die neue Druckmatrix P zurückgegeben. berechne UV(F,G,P,imax,jmax,delt,delx,dely): Die neuen Geschwindigkeiten werden berechnet. visual(u,v,p): Zur Visualisierung der berechneten Werte sollen mit Hilfe des Matlabbefehls mesh die Geschwindigkeitskomponenten U, V und die Druckmatrix P aus dem letzten Zeitschritt dargestellt werden. Dabei ist darauf zu achten, daß die Randwerte künstlich gesetzt wurden und daher das Ergebnis verfälschen. Deshalb sollten diese bei der Visualisierung weggelassen werden. Weiter kann man sich mit dem Befehl quiver das Geschwindigkeitsfeld der Strömung anschauen. Die einzelnen Bilder sollten dabei durch den Befehl pause getrennt werden. Im Hauptprogramm inkompvis soll schließlich der oben angegebene Algorithmus umgesetzt werden. Mit dem Programm weiter soll eine angefangene Simulation bis zu einem neuen Zeitpunkt T end fortgesetzt werden. Für das SOR-Verfahren ergeben sich zwei Möglichkeiten, die Sie auch beide programmieren sollen: 3

4 Als erstes können Sie die SOR-Iteration gitterorientiert durchführen, d.h., Sie gehen punktweise durch das Gitter und berechnen an jedem Gitterpunkt den neuen Druckwert. Dieses können Sie durch mehrere for-schleifen realisieren. Dabei werden in jeder Iteration zunächst die Randwerte für P neu gesetzt, um die Stabilität dieser Variante des Verfahrens zu gewährleisten, d.h. p it+1 0,j = p it 1,j, p it+1 imax+1,j = p it imax,j p it+1 i,0 = p it i,1, p it+1 i,jmax+1 = p it i,jmax für j = 1,..., jmax, für i = 1,..., imax. Die zweite (in Matlab schnellere) Variante besteht darin, ein Gleichungssystem Ax = b aufzustellen, wobei der Vektor x die Komponenten der Druckmatrix P und der Vektor b die rechte Seite der Druck-Poisson-Gleichung und die entsprechenden Druckrandwerte enthalten. Danach können Sie das auf dem ersten Blatt implementierte SOR-Verfahren oder auch das PCG-Verfahren zur Lösung des Gleichungssystems verwenden. 3 Das erste Beispiel: Driven Cavity Als erstes Beispiel soll ein typisches Modellproblem der numerischen Stömungsmechanik, das sogenannte Driven-Cavity-Problem, simuliert werden. Es handelt sich dabei um einen mit einer Flüssigkeit gefüllten Topf, über den ein Band mit konstanter Geschwindigkeit gezogen wird. Dabei werden an allen vier Rändern Haftbedingungen verwendet. Am oberen Rand wird hingegen die Geschwindigkeit in x-richtung u nicht auf 0, sondern auf 1 gesetzt, um das gezogene Band zu simulieren. Im Programm wird das realisiert, indem die oberen Randwerte mittels U(2:imax+1,jmax+2) = 2 - U(2:imax+1,jmax+1) gesetzt werden. Als weitere Parameter, die aus einer Eingabedatei eingelesen werden, sollen verwendet werden: imax = 16 jmax = 16 delx = 0.2 dely = 0.2 delt = 0.02 T end = 0.2 epsi = 0.01 omg = 1.7 alpha = 0.12 itermax = 150 GX = 0 GY = 0 nu = 0.4 U I = 0 V I = 0 P I = 0 4

5 4 Weitere Aufgaben Aufgabe 1 Verwenden Sie zur Lösung des linearen Glecihungssystems Ax = b auch das Verfahren der konjugierten Gradienten. Stellen Sie eine Statistik für die Anzahl der Iterationen und die benötigte Rechenzeit pro Zeitschritt auf und geben Sie diese in geeigneter graphischer Form ab. Aufgabe 2 In Matlab können Sie mit dem Befehl movie kleine Filme erstellen, mit dem Sie die Strömungskomponenten zeitlich darstellen können. Wenn man einen Film erzeugen will, der die zeitliche Entwicklung der Strömung zeigt, so muß man die Visualisierung mit in die Zeitschleife hineinnehmen und in jedem Zeitschritt die Bildersequenzen abspeichern. Außerdem muß man die Achsen geeignet skalieren, um keine Sprünge zwischen den einzelnen Bildern zu haben. Aufgabe 3 Um den Einfluß der Parameter näher kennenzulernen, verändern Sie einige der gegebenen Parameter, und spielen Sie etwas mit dem Beispiel! Abgabe der Aufgaben:

1 Die Problemstellung

1 Die Problemstellung Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph.D. ScientifiComputing Wir wollen als erstes das in diesem Praktikum zu behandelnde Problem aus

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

MATLAB Flächendarstellungen

MATLAB Flächendarstellungen MATLAB Flächendarstellungen Einführung in Matlab 3. Semester Wintersemester 2012/2013 3. Themenblock MATLAB - Flächendarstellungen 1 Allgemeines Flächendarstellungen: graphische Darstellung von Flächendaten

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen

Mehr

Octave/Matlab-Übungen

Octave/Matlab-Übungen Aufgabe 1a Werten Sie die folgenden Ausdrücke mit Octave/Matlab aus: (i) 2 + 3(5 11) (ii) sin π 3 (iii) 2 2 + 3 2 (iv) cos 2e (v) ln π log 10 3,5 Aufgabe 1b Betrachten Sie (i) a = 0.59 + 10.06 + 4.06,

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Einführung in QtiPlot

Einführung in QtiPlot HUWagner und Julia Bek Einführung in QtiPlot 30. Juni 2011 1/13 Einführung in QtiPlot Mit Bezug auf das Liebig-Lab Praktikum an der Ludwig-Maximilians-Universität München Inhaltsverzeichnis 1 Programmeinführung

Mehr

Einführung in QtiPlot

Einführung in QtiPlot HUWagner und Julia Bek Einführung in QtiPlot 1/11 Einführung in QtiPlot Mit Bezug auf das Liebig-Lab Praktikum an der Ludwig-Maximilians-Universität München Bei Fragen und Fehlern: jubech@cup.lmu.de Inhaltsverzeichnis

Mehr

Java-Programmierung mit NetBeans

Java-Programmierung mit NetBeans Java-Programmierung mit NetBeans Steuerstrukturen Dr. Henry Herper Otto-von-Guericke-Universität Magdeburg - WS 2012/13 Steuerstrukturen Steuerstrukturen Verzweigungen Alternativen abweisende nichtabweisende

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Aufgabe 3: Konto Um Geldbeträge korrekt zu verwalten, sind zwecks Vermeidung von Rundungsfehlern entweder alle Beträge in Cents umzuwandeln und

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate 1. Phase: Methode der kleinsten Quadrate Einführung Im Vortrag über das CT-Verfahren hat Herr Köckler schon auf die Methode der kleinsten Quadrate hingewiesen. Diese Lösungsmethode, welche bei überbestimmten

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im Vergleich zu voll besetzten Matrizen. Besetzungsmuster mit spy.

Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im Vergleich zu voll besetzten Matrizen. Besetzungsmuster mit spy. 170 005 Übungen zu Numerische Methoden I Fünfte Übungseinheit 21. März, 22. und 23. April 2013 Inhalt der fünften Übungseinheit: Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

3. Übungsblatt zu Computersimulationen WS 2015/2016. Simulation des Ising-Modells

3. Übungsblatt zu Computersimulationen WS 2015/2016. Simulation des Ising-Modells 3. Übungsblatt zu Computersimulationen WS 2015/2016 Abgabe: 19.(20.) November bis 3.(4.) Dezember. Bitte tragen Sie sich in die Liste auf der Webseite der Vorlesung ein. Diese Übungsaufgabe steht exemplarisch

Mehr

Tag 9: Datenstrukturen

Tag 9: Datenstrukturen Tag 9: Datenstrukturen A) Datenstrukturen B) Cell Arrays C) Anwendungsbeispiel: Stimulation in einem psychophysikalischen Experiment A) Datenstrukturen Wenn man komplizierte Datenmengen verwalten möchte,

Mehr

1 Dein TI nspire CAS kann fast alles

1 Dein TI nspire CAS kann fast alles INHALT 1 Dein kann fast alles... 1 2 Erste Schritte... 1 2.1 Systemeinstellungen vornehmen... 1 2.2 Ein Problem... 1 3 Menü b... 3 4 Symbolisches Rechnen... 3 5 Physik... 4 6 Algebra... 5 7 Anbindung an

Mehr

Informationsverarbeitung im Bauwesen

Informationsverarbeitung im Bauwesen V14 1 / 30 Informationsverarbeitung im Bauwesen Markus Uhlmann Institut für Hydromechanik WS 2009/2010 Bemerkung: Verweise auf zusätzliche Information zum Download erscheinen in dieser Farbe V14 2 / 30

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Zm Eingewöhnen Aufgabe 1 Schreiben Sie ein Programm, daß Ihren Namen in einem Fenster ausgibt.

Zm Eingewöhnen Aufgabe 1 Schreiben Sie ein Programm, daß Ihren Namen in einem Fenster ausgibt. Zm Eingewöhnen Aufgabe 1 Schreiben Sie ein Programm, daß Ihren Namen in einem Fenster ausgibt. Aufgabe 2 Das nächste Programm soll 2 Zahlen einlesen und die zweite von der ersten abziehen! Das Ergebnis

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Klausur zur Vorlesung Höhere Mathematik I

Klausur zur Vorlesung Höhere Mathematik I Name: 28. Januar 2004, 8.30-10.30 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Übungen, Formelsammlung Schreiben Sie bitte auf dieses

Mehr

Mathematik am Computer 7. Vorlesung: Matlab, Teil II

Mathematik am Computer 7. Vorlesung: Matlab, Teil II Mathematik am Computer 7. Vorlesung: Matlab, Teil II Helmut Harbrecht Universität Stuttgart 27. Januar 2011 Helmut Harbrecht (Universität Stuttgart) Mathematik am Computer 27. Januar 2011 1 / 35 Übersicht

Mehr

Klausur zur Vorlesung Höhere Mathematik I

Klausur zur Vorlesung Höhere Mathematik I Name: 30. Januar 200,.00-3.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 20 min, 2 Zeitstunden Skript, Vorlesungsmitschrift Schreiben Sie bitte auf dieses Deckblatt oben rechts

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Iterationsverfahren: Konvergenzanalyse und Anwendungen Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester 2007 U. Rüde,

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm Hintergrundinformationen zur Vorlesung GRUNDLAGEN DER INFORMATIK I Studiengang Elektrotechnik WS 02/03 AG Betriebssysteme FB3 Kirsten Berkenkötter 1 Vom Problem zum Programm Aufgabenstellung analysieren

Mehr

ProKu Sommersemester 2015 Aufgabenblatt 4

ProKu Sommersemester 2015 Aufgabenblatt 4 ProKu Sommersemester 2015 Aufgabenblatt 4 Raphael Münster Jordi Paul Adam Kosik Dirk Ribbrock Peter Zajac March 16, 2015 Aufgabe 19: Verbesserte Numerische Lineare Algebra, Speicherverwaltung a) Analysieren

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Taylorentwicklung der k ten Dimension

Taylorentwicklung der k ten Dimension Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

M. Graefenhan 2000-12-07. Übungen zu C. Blatt 3. Musterlösung

M. Graefenhan 2000-12-07. Übungen zu C. Blatt 3. Musterlösung M. Graefenhan 2000-12-07 Aufgabe Lösungsweg Übungen zu C Blatt 3 Musterlösung Schreiben Sie ein Programm, das die Häufigkeit von Zeichen in einem eingelesenen String feststellt. Benutzen Sie dazu ein zweidimensionales

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus Conrad Donau 8. Oktober 2010 Conrad Donau 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 8. Oktober 2010 1 / 7 18.1 Wiederholung: Ebenen in R 3

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

Übung 4: Einführung in die Programmierung mit MATLAB

Übung 4: Einführung in die Programmierung mit MATLAB Übung 4: Einführung in die Programmierung mit MATLAB AUFGABE 1 Was bewirkt der Strichpunkt? - Der Strichpunkt (Semikola) unterdrück die Anzeige der (Zwischen-) Resultate. Welche Rolle spielt ans? - Wenn

Mehr

Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen.

Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen. Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen. Wir wollen uns heute dem Thema Variablen widmen und uns damit beschäftigen, wie sich

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13 D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys Serie 13 1. Um einen Tisch sitzen 7 Zwerge. Vor jedem steht ein Becher mit Milch. Einer der Zwerge verteilt seine Milch gleichmässig auf alle

Mehr

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: andreasa@sbox.tu-graz.ac.at. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

R-Tutorial. R bietet zahlreiche Hilfe-Funktionen an. Informiere Dich über die Funktion log():

R-Tutorial. R bietet zahlreiche Hilfe-Funktionen an. Informiere Dich über die Funktion log(): Statistik für Bioinformatiker SoSe 2005 R-Tutorial Aufgabe 1: Hilfe. Logge Dich ein. Username und Passwort stehen auf dem Aufkleber am jeweiligen Bildschirm. Öffne eine Shell und starte R mit dem Befehl

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 5. Praktikum Auswertung 6. Einführung in das Gruppenprojekt Stefan Hickel Vergleich y+=1 zu y+=10 Ergebnisse y+=1 y+=10 Ergebnisse y+=1 y+=10 Ergebnisse Ergebnisse y+=1 y+=10

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Dominik Desmaretz Universität Trier

Dominik Desmaretz Universität Trier Dominik Desmaretz Universität Trier 25.11.2010 Inhaltsverzeichnis 1. Kurze Wiederholung/Einleitung 2. Die Lax-Friedrichs Methode 3. Die Richtmyer Zwei-Schritt Lax-Wendroff Methode 4. Upwind Methoden 5.

Mehr

Protokoll 1. 1. Frage (Aufgabentyp 1 Allgemeine Frage):

Protokoll 1. 1. Frage (Aufgabentyp 1 Allgemeine Frage): Protokoll 1 a) Beschreiben Sie den allgemeinen Ablauf einer Simulationsaufgabe! b) Wie implementieren Sie eine Einlass- Randbedingung (Ohne Turbulenz!) in OpenFOAM? Geben Sie eine typische Wahl für U und

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen ERCOFTAC-Technologietag, Stuttgart 2005 p. 1 Ein für aeroakustische Simulationen bei kleinen Machzahlen Achim Gordner und Prof. Gabriel Wittum Technische Simulation Universiät Heidelberg ERCOFTAC-Technologietag,

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Excel-Anleitung zur Übung 1. Formeln in Excel (Auszug aus der MS Excel Hilfe)

Excel-Anleitung zur Übung 1. Formeln in Excel (Auszug aus der MS Excel Hilfe) Excel-Anleitung zur Übung 1 Diese Unterlage bezieht sich auf Excel 2003 (auf Deutsch), die Version, die auch im PC-Labor des WWZ zur Verfügung steht. Die Benutzeroberfläche kann in anderen Versionen der

Mehr

Konsolidieren von Daten in EXCEL

Konsolidieren von Daten in EXCEL Konsolidieren von Daten in EXCEL Der Begriff der (auch Konsolidation) besitzt in den einzelnen Fachbereichen (Finanzmathematik, Geologie, Medizin usw.) unterschiedliche Bedeutung. Im Sinne dieses Beitrages

Mehr

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Matrixzugriff Wir wollen nun unsere Einführung in die Arbeit mit Vektoren und Matrizen in MATLAB

Mehr

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS 6.. Prüfungsaufgaben zur Lösbarkeit von LGS Aufgabe : Lösbarkeit von LGS () Berechne mit Hilfe des Gauß-Verfahrens die Lösungsmengen der drei folgenden inhomogenen Gleichungssysteme. Gib außerdem die Lösungsmengen

Mehr

Vorübung 1 Beschriften Sie die Tabelle wie in der Abbildung dargestellt.

Vorübung 1 Beschriften Sie die Tabelle wie in der Abbildung dargestellt. Diese Anleitung führt in einige Grundfunktionen des Tabellenkalkulationsprogramms Microsoft Excel ein. Sie erstellen nach einigen Vorübungen mit Excel ein kleines Programm, das auf der Grundlage der Gesamtpunktzahl

Mehr

CFD * in der Gebäudetechnik

CFD * in der Gebäudetechnik CFD * in der Gebäudetechnik * CFD = Computational Fluid Dynamics Innenraumströmung Systemoptimierung Weitwurfdüsen Anordnung von Weitwurfdüsen in einer Mehrzweckhalle Reinraumtechnik Schadstoffausbreitung

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total

Mehr

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2014/2015 Wirtschaftsingenieur Bachelor 4. Aufgabe Datenstruktur, Dateieingabe und -ausgabe

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2014/2015 Wirtschaftsingenieur Bachelor 4. Aufgabe Datenstruktur, Dateieingabe und -ausgabe Aufgabenstellung Für ein Baumkataster sollen für maximal 500 Bäume Informationen gespeichert werden, die alle nach der gleichen Weise wie folgt strukturiert sind: Nummer Bauminfo Baumart Hoehe Baum Umfang

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Konsolidierung und Neuimplementierung von VIT. Aufgabenbeschreibung für das Software Engineering Praktikum an der TU Darmstadt

Konsolidierung und Neuimplementierung von VIT. Aufgabenbeschreibung für das Software Engineering Praktikum an der TU Darmstadt Konsolidierung und Neuimplementierung von VIT Aufgabenbeschreibung für das Software Engineering Praktikum an der TU Darmstadt Inhaltsverzeichnis 1 Was ist der Kontext?... 1 2 VIT: Ein sehr erfolgreiches

Mehr

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden.

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden. Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr