Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt

Größe: px
Ab Seite anzeigen:

Download "Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt"

Transkript

1 Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dipl.-inform. Oliver Kayser-Herold Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Wir wollen uns jetzt der Implementierung des auf dem letzten Aufgabenblatt beschriebenen Algorithmus zuwenden. Als erstes stellen wir noch einmal die benötigten Problemgrößen und die verwendeten Datenstrukturen zusammen. Weiterhin geben wir noch die Strukturen der Matlab-Funktionen an, die die einzelnen Komponenten des Programms bilden, und behandeln ein erstes Beispiel, das sogenannte Driven-Cavity-Problem. 1 Die Problemgrößen und Datenstrukturen Der auf dem zweiten Aufgabenblatt beschriebene Algorithmus benötigt die folgenden Größen, die zu Beginn in einer Eingabedatei zur Verfügung gestellt werden sollen: Geometriegrößen: imax jmax delx dely Anzahl der inneren Zellen in x-richtung, Anzahl der inneren Zellen in y-richtung, δx, Größe einer Zelle in x-richtung, δy, Größe einer Zelle in y-richtung. Größen für die Zeititeration: T end Endzeit T end, delt δt, Zeitschrittweite. Parameter für die Druckiteration: itermax Maximale Anzahl von Druck-Iterationen pro Zeitschritt, epsi ɛ, Genauigkeitskriterium für die Druckiteration (res < epsi), omg ω, Relaxationsparameter für SOR-Iteration, alpha α, Diskretisationsparameter (vgl. Blatt 2). 1

2 Problemabhängige Größen: U I, V I, P I GX, GY nu Anfangsbelegung der Geschwindigkeiten und des Drucks, g x, g y, äußere Kräfte, z.b. Gravitation, ν, Viskosität (1/Reynoldszahl). Weiter sollen die folgenden Felder (Matrizen) der Dimension (imax + 2) (jmax + 2) als Datenstrukturen verwendet werden: U: Geschwindigkeit in x-richtung, V: Geschwindigkeit in y-richtung, P: Druck, RHS: Rechte Seite f für die Druckiteration, F, G: Hilfsgrößen F und G. In Matlab können Felder wie U, V, P, etc. nur von 1:n+2 und nicht von 0:n+1 indiziert werden. Es muß also eine Indexverschiebung vorgenommen werden. 2 Das Programm und seine Komponenten Das zu erstellende Programm besitzt die folgende Strukturierung: 1. Einlesen der Programmparameter. 2. Initialisierung. 3. T := Solange T T end: (a) Berechne Randwerte von U und V. (b) Berechne F, G und RHS. (c) Löse das LGS für P mit dem SOR-Verfahren. (d) Berechne U und V. (e) T := T + delt. 5. Graphische Ausgabe der Ergebnisse (Visualisierung). Die einzelnen Komponenten des Programms sollen dabei als Matlab-Routinen implementiert werden: 2

3 progpar(): Die Größen imax, jmax, delx, dely, delt, T end, itermax, epsi, omg, nu, GX, GY, U I, V I, P I werden in diesem Skript gesetzt. alpha, [U,V,P] = initgitter(imax,jmax,u I,V I,P I): Die Felder U, V, P werden auf dem ganzen Gebiet mit den konstanten Werten U I, V I und P I als Anfangswerte vorbelegt. [U,V] = randwerte(u,v,imax,jmax): Die Randwerte für die Felder U und V werden gemäß den Formeln von Abschnitt 4.4 auf Blatt 2 gesetzt. [F,G] = berechne FG(U,V,imax,jmax,delt,delx,dely,GX,GY,alpha,nu): Berechnung von F und G, dabei müssen am Rand die Formeln aus Abschnitt 4.4 berücksichtigt werden. RHS = berechne RHS(F,G,imax,jmax,delt,delx,dely): Berechnung der rechten Seite der Druckgleichung. [P,it,res] = SOR(P,RHS,U,V,GX,GY,imax,jmax,delx,dely,epsi,itermax,omg,nu): SOR-Iteration für die Druck-(Poisson-)Gleichung. Die Iteration wird abgebrochen, wenn das Residuum res die Toleranzgrenze epsi unterschreitet oder die maximale Iterationszahl itermax erreicht ist. Nach dem Abbruch wird die Anzahl it der benötigten Iterationen, das Residuum res und die neue Druckmatrix P zurückgegeben. berechne UV(F,G,P,imax,jmax,delt,delx,dely): Die neuen Geschwindigkeiten werden berechnet. visual(u,v,p): Zur Visualisierung der berechneten Werte sollen mit Hilfe des Matlabbefehls mesh die Geschwindigkeitskomponenten U, V und die Druckmatrix P aus dem letzten Zeitschritt dargestellt werden. Dabei ist darauf zu achten, daß die Randwerte künstlich gesetzt wurden und daher das Ergebnis verfälschen. Deshalb sollten diese bei der Visualisierung weggelassen werden. Weiter kann man sich mit dem Befehl quiver das Geschwindigkeitsfeld der Strömung anschauen. Die einzelnen Bilder sollten dabei durch den Befehl pause getrennt werden. Im Hauptprogramm inkompvis soll schließlich der oben angegebene Algorithmus umgesetzt werden. Mit dem Programm weiter soll eine angefangene Simulation bis zu einem neuen Zeitpunkt T end fortgesetzt werden. Für das SOR-Verfahren ergeben sich zwei Möglichkeiten, die Sie auch beide programmieren sollen: 3

4 Als erstes können Sie die SOR-Iteration gitterorientiert durchführen, d.h., Sie gehen punktweise durch das Gitter und berechnen an jedem Gitterpunkt den neuen Druckwert. Dieses können Sie durch mehrere for-schleifen realisieren. Dabei werden in jeder Iteration zunächst die Randwerte für P neu gesetzt, um die Stabilität dieser Variante des Verfahrens zu gewährleisten, d.h. p it+1 0,j = p it 1,j, p it+1 imax+1,j = p it imax,j p it+1 i,0 = p it i,1, p it+1 i,jmax+1 = p it i,jmax für j = 1,..., jmax, für i = 1,..., imax. Die zweite (in Matlab schnellere) Variante besteht darin, ein Gleichungssystem Ax = b aufzustellen, wobei der Vektor x die Komponenten der Druckmatrix P und der Vektor b die rechte Seite der Druck-Poisson-Gleichung und die entsprechenden Druckrandwerte enthalten. Danach können Sie das auf dem ersten Blatt implementierte SOR-Verfahren oder auch das PCG-Verfahren zur Lösung des Gleichungssystems verwenden. 3 Das erste Beispiel: Driven Cavity Als erstes Beispiel soll ein typisches Modellproblem der numerischen Stömungsmechanik, das sogenannte Driven-Cavity-Problem, simuliert werden. Es handelt sich dabei um einen mit einer Flüssigkeit gefüllten Topf, über den ein Band mit konstanter Geschwindigkeit gezogen wird. Dabei werden an allen vier Rändern Haftbedingungen verwendet. Am oberen Rand wird hingegen die Geschwindigkeit in x-richtung u nicht auf 0, sondern auf 1 gesetzt, um das gezogene Band zu simulieren. Im Programm wird das realisiert, indem die oberen Randwerte mittels U(2:imax+1,jmax+2) = 2 - U(2:imax+1,jmax+1) gesetzt werden. Als weitere Parameter, die aus einer Eingabedatei eingelesen werden, sollen verwendet werden: imax = 16 jmax = 16 delx = 0.2 dely = 0.2 delt = 0.02 T end = 0.2 epsi = 0.01 omg = 1.7 alpha = 0.12 itermax = 150 GX = 0 GY = 0 nu = 0.4 U I = 0 V I = 0 P I = 0 4

5 4 Weitere Aufgaben Aufgabe 1 Verwenden Sie zur Lösung des linearen Glecihungssystems Ax = b auch das Verfahren der konjugierten Gradienten. Stellen Sie eine Statistik für die Anzahl der Iterationen und die benötigte Rechenzeit pro Zeitschritt auf und geben Sie diese in geeigneter graphischer Form ab. Aufgabe 2 In Matlab können Sie mit dem Befehl movie kleine Filme erstellen, mit dem Sie die Strömungskomponenten zeitlich darstellen können. Wenn man einen Film erzeugen will, der die zeitliche Entwicklung der Strömung zeigt, so muß man die Visualisierung mit in die Zeitschleife hineinnehmen und in jedem Zeitschritt die Bildersequenzen abspeichern. Außerdem muß man die Achsen geeignet skalieren, um keine Sprünge zwischen den einzelnen Bildern zu haben. Aufgabe 3 Um den Einfluß der Parameter näher kennenzulernen, verändern Sie einige der gegebenen Parameter, und spielen Sie etwas mit dem Beispiel! Abgabe der Aufgaben:

MATLAB Flächendarstellungen

MATLAB Flächendarstellungen MATLAB Flächendarstellungen Einführung in Matlab 3. Semester Wintersemester 2012/2013 3. Themenblock MATLAB - Flächendarstellungen 1 Allgemeines Flächendarstellungen: graphische Darstellung von Flächendaten

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

Informationsverarbeitung im Bauwesen

Informationsverarbeitung im Bauwesen V14 1 / 30 Informationsverarbeitung im Bauwesen Markus Uhlmann Institut für Hydromechanik WS 2009/2010 Bemerkung: Verweise auf zusätzliche Information zum Download erscheinen in dieser Farbe V14 2 / 30

Mehr

Mathematik am Computer 7. Vorlesung: Matlab, Teil II

Mathematik am Computer 7. Vorlesung: Matlab, Teil II Mathematik am Computer 7. Vorlesung: Matlab, Teil II Helmut Harbrecht Universität Stuttgart 27. Januar 2011 Helmut Harbrecht (Universität Stuttgart) Mathematik am Computer 27. Januar 2011 1 / 35 Übersicht

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im Vergleich zu voll besetzten Matrizen. Besetzungsmuster mit spy.

Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im Vergleich zu voll besetzten Matrizen. Besetzungsmuster mit spy. 170 005 Übungen zu Numerische Methoden I Fünfte Übungseinheit 21. März, 22. und 23. April 2013 Inhalt der fünften Übungseinheit: Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Adaptive Finite Elemente Simulationen Software-Entwicklung Anwendung Analyse

Adaptive Finite Elemente Simulationen Software-Entwicklung Anwendung Analyse Software-Entwicklung Anwendung Analyse Institut für Mathematik Universität Augsburg 1. TopMath-Workshop Iffeldorf 6. 9. Januar 2005 Inhalt Einführung in adaptive Finite Elemente Methoden Adaptive Diskretisierungen

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen

Mehr

Einführung in QtiPlot

Einführung in QtiPlot HUWagner und Julia Bek Einführung in QtiPlot 1/11 Einführung in QtiPlot Mit Bezug auf das Liebig-Lab Praktikum an der Ludwig-Maximilians-Universität München Bei Fragen und Fehlern: jubech@cup.lmu.de Inhaltsverzeichnis

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 5. Praktikum Auswertung 6. Einführung in das Gruppenprojekt Stefan Hickel Vergleich y+=1 zu y+=10 Ergebnisse y+=1 y+=10 Ergebnisse y+=1 y+=10 Ergebnisse Ergebnisse y+=1 y+=10

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

3. Übungsblatt zu Computersimulationen WS 2015/2016. Simulation des Ising-Modells

3. Übungsblatt zu Computersimulationen WS 2015/2016. Simulation des Ising-Modells 3. Übungsblatt zu Computersimulationen WS 2015/2016 Abgabe: 19.(20.) November bis 3.(4.) Dezember. Bitte tragen Sie sich in die Liste auf der Webseite der Vorlesung ein. Diese Übungsaufgabe steht exemplarisch

Mehr

Java-Programmierung mit NetBeans

Java-Programmierung mit NetBeans Java-Programmierung mit NetBeans Steuerstrukturen Dr. Henry Herper Otto-von-Guericke-Universität Magdeburg - WS 2012/13 Steuerstrukturen Steuerstrukturen Verzweigungen Alternativen abweisende nichtabweisende

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches

Mehr

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen ERCOFTAC-Technologietag, Stuttgart 2005 p. 1 Ein für aeroakustische Simulationen bei kleinen Machzahlen Achim Gordner und Prof. Gabriel Wittum Technische Simulation Universiät Heidelberg ERCOFTAC-Technologietag,

Mehr

ProKu Sommersemester 2015 Aufgabenblatt 4

ProKu Sommersemester 2015 Aufgabenblatt 4 ProKu Sommersemester 2015 Aufgabenblatt 4 Raphael Münster Jordi Paul Adam Kosik Dirk Ribbrock Peter Zajac March 16, 2015 Aufgabe 19: Verbesserte Numerische Lineare Algebra, Speicherverwaltung a) Analysieren

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Einführung in QtiPlot

Einführung in QtiPlot HUWagner und Julia Bek Einführung in QtiPlot 30. Juni 2011 1/13 Einführung in QtiPlot Mit Bezug auf das Liebig-Lab Praktikum an der Ludwig-Maximilians-Universität München Inhaltsverzeichnis 1 Programmeinführung

Mehr

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2014/2015 Wirtschaftsingenieur Bachelor 4. Aufgabe Datenstruktur, Dateieingabe und -ausgabe

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2014/2015 Wirtschaftsingenieur Bachelor 4. Aufgabe Datenstruktur, Dateieingabe und -ausgabe Aufgabenstellung Für ein Baumkataster sollen für maximal 500 Bäume Informationen gespeichert werden, die alle nach der gleichen Weise wie folgt strukturiert sind: Nummer Bauminfo Baumart Hoehe Baum Umfang

Mehr

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm EXCEL... 1 1.1 Tabellenkalkulation... 1 1.2 Anwendungsgebiete... 1 1.3 Hilfefunktionen... 2 2 Benutzeroberflächen der Versionen

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2015/2016 Wirtschaftsingenieur Bachelor 5. Aufgabe Datenstruktur, Dateieingabe und -ausgabe

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2015/2016 Wirtschaftsingenieur Bachelor 5. Aufgabe Datenstruktur, Dateieingabe und -ausgabe Aufgabenstellung Für eine Hausverwaltung sollen für maximal 500 Wohnungen Informationen gespeichert werden, die alle nach der gleichen Weise wie folgt strukturiert sind: Art Baujahr Wohnung Whnginfo Nebenkosten

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Tag 9: Datenstrukturen

Tag 9: Datenstrukturen Tag 9: Datenstrukturen A) Datenstrukturen B) Cell Arrays C) Anwendungsbeispiel: Stimulation in einem psychophysikalischen Experiment A) Datenstrukturen Wenn man komplizierte Datenmengen verwalten möchte,

Mehr

Modellierung und Simulation

Modellierung und Simulation Prüfung SS 2004 Modellierung und Simulation Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit Namen und Matr.Nr. werden korrigiert. Keine rote Farbe

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Taylorentwicklung der k ten Dimension

Taylorentwicklung der k ten Dimension Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5

Mehr

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54 PHP 5.4 Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012 Grundlagen zur Erstellung dynamischer Webseiten ISBN 978-3-86249-327-2 GPHP54 5 PHP 5.4 - Grundlagen zur Erstellung dynamischer Webseiten

Mehr

Statistisches Programmieren

Statistisches Programmieren Statistisches Programmieren Session 1 1 Was ist R R ist eine interaktive, flexible Software-Umgebung in der statistische Analysen durchgeführt werden können. Zahlreiche statistische Funktionen und Prozeduren

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

Wiederholung C-Programmierung

Wiederholung C-Programmierung P1.1. Gliederung Rechnerpraktikum zu Kapitel 1 Wiederholung C-Programmierung Sicherheitsunterweisung Klausur Ingenieurinformatik 1, WS14/15 Export/Import von Qt-Creator-Projekten Projekte mit mehreren

Mehr

Woche 18/01 26/01 6. Iterative Lösungsverfahren, Speicherformate für Matrizen 1 / 8

Woche 18/01 26/01 6. Iterative Lösungsverfahren, Speicherformate für Matrizen 1 / 8 Woche 18/01 26/01 6. Iterative Lösungsverfahren, Speicherformate für Matrizen 1 / 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Einlesen von Matrizen aus Dateien Übergabe von Funktionen als

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Übung 3. Dipl.-Inf. Domenic Jenz (jenz@hlrs.de) Übungen zur Vorlesung Molekulardynamik und Lattice Boltzmann Methoden. HLRS, Universität Stuttgart

Übung 3. Dipl.-Inf. Domenic Jenz (jenz@hlrs.de) Übungen zur Vorlesung Molekulardynamik und Lattice Boltzmann Methoden. HLRS, Universität Stuttgart Übung 3 Dipl.-Inf. Domenic Jenz (jenz@hlrs.de) HLRS, Universität Stuttgart Übungen zur Vorlesung Molekulardynamik und Lattice Boltzmann Methoden Outline Ein kleines MD Programm Einführung Das Grundgerüst

Mehr

Lösung der zweidimensionalen Wirbeltransportgleichung auf NVIDIA Grafikkarten - Bachelorarbeit -

Lösung der zweidimensionalen Wirbeltransportgleichung auf NVIDIA Grafikkarten - Bachelorarbeit - Lösung der zweidimensionalen Wirbeltransportgleichung auf NVIDIA Grafikkarten - Bachelorarbeit - Seminar des Fachgebiets Optimierung bei partiellen Differentialgleichungen 13. Januar 2011 Gliederung 1

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Schritt 1. Schritt 1. Schritt 3. - Analysieren des Problems und Spezifizierung einer Lösung.

Schritt 1. Schritt 1. Schritt 3. - Analysieren des Problems und Spezifizierung einer Lösung. I. Programmierung ================================================================== Programmierung ist die Planung einer Abfolge von Schritten (Instruktionen), nach denen ein Computer handeln soll. Schritt

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Aufgabe 3: Konto Um Geldbeträge korrekt zu verwalten, sind zwecks Vermeidung von Rundungsfehlern entweder alle Beträge in Cents umzuwandeln und

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

SolidWorks Flow Simulation Kursleiterhandbuch. Präsentator Datum

SolidWorks Flow Simulation Kursleiterhandbuch. Präsentator Datum SolidWorks Flow Simulation Kursleiterhandbuch Präsentator Datum 1 Was ist SolidWorks Flow Simulation? SolidWorks Flow Simulation ist ein Programm zur Fluidströmungsund Wärmeübertragungsanalyse, das nahtlos

Mehr

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom. Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform

Mehr

Umwelt-Campus Birkenfeld Numerik. der Fachhochschule Trier. Prof. Dr.-Ing. T. Preußler. MATLAB-Simulink

Umwelt-Campus Birkenfeld Numerik. der Fachhochschule Trier. Prof. Dr.-Ing. T. Preußler. MATLAB-Simulink MATLAB- 1. Einführung in ist eine MATLAB-Toolbox zur Simulation Dynamischer Systeme mit Hilfe einer grafischen Benutzeroberfläche. Insbesondere eignet sich zur Behandlung linearer und nichtlinerarer zeitabhängiger

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Zur Druckberechnung in der parallelen Version des NIST Fire Dynamics Simulators v5.0

Zur Druckberechnung in der parallelen Version des NIST Fire Dynamics Simulators v5.0 Zur Druckberechnung in der parallelen Version des NIST Fire Dynamics Simulators v5.0 Andreas Brätz Bergische Universität Wuppertal Fachbereich D- Abt. Sicherheitstechnik Gaußstraße 20, 42119 Wuppertal

Mehr

Lattice Boltzmann Simulation bewegter Partikel

Lattice Boltzmann Simulation bewegter Partikel Lattice Boltzmann Simulation bewegter Partikel, Nils Thürey, Hans-Joachim Schmid, Christian Feichtinger Lehrstuhl für Systemsimulation Universität Erlangen/Nürnberg Lehrstuhl für Partikeltechnologie Universität

Mehr

A Vortex Particle Method for Smoke, Fire, and Explosions

A Vortex Particle Method for Smoke, Fire, and Explosions Hauptseminar WS 05/06 Graphische Datenverarbeitung A Vortex Particle Method for Smoke, Fire, and Explosions ( Ein Wirbel-Partikel Ansatz für Rauch, Feuer und Explosionen ) Martin Petrasch Inhalt 1. Überblick

Mehr

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode K.Bräuer: Computersimulation physikalischer Phänomene mit der Finiten-Elemente-Methode 1 Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode Kurt Bräuer Privatdozent am Institut

Mehr

Aufbau eines VR-Systems zur multimodalen Interaktion mit komplexen physikalischen Modellen

Aufbau eines VR-Systems zur multimodalen Interaktion mit komplexen physikalischen Modellen Fazit Aufbau eines s zur multimodalen Interaktion mit komplexen physikalischen Modellen Guido Rasmus Maximilian Klein, Franz-Erich Wolter Leibniz Universität Hannover Institut für Mensch-Maschine-Kommunikation

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Lösung des Kleinste-Quadrate-Problems

Lösung des Kleinste-Quadrate-Problems Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Wasseroberfläche von Wasserwellen. Particle Hydrodynamics (SPH)

Wasseroberfläche von Wasserwellen. Particle Hydrodynamics (SPH) 07. Februar 2008 Die Beschreibung der freien Wasseroberfläche von Wasserwellen mit der Methode der Smoothed Particle Hydrodynamics (SPH) Anwendungen und erste Erfahrungen mit dem Programmpaket Dipl.-Ing.

Mehr

1. Übung zu "Numerik partieller Differentialgleichungen"

1. Übung zu Numerik partieller Differentialgleichungen 1. Übung zu "Numerik partieller Differentialgleichungen" Simon Gawlok, Eva Treiber Engineering Mathematics and Computing Lab 22. Oktober 2014 1 / 15 1 Organisatorisches 2 3 4 2 / 15 Organisatorisches Ort:

Mehr

Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie"

Ergänzungsseminar zu Rechenmethoden für Studierende der Chemie Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" VAK 02-03-2-RM-3 Johannes Ranke Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" p.1/13 Programm 18.4. Überblick über Software

Mehr

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

CFD * in der Gebäudetechnik

CFD * in der Gebäudetechnik CFD * in der Gebäudetechnik * CFD = Computational Fluid Dynamics Innenraumströmung Systemoptimierung Weitwurfdüsen Anordnung von Weitwurfdüsen in einer Mehrzweckhalle Reinraumtechnik Schadstoffausbreitung

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Übungen zur Animation & Simulation. Übungsblatt 1

Übungen zur Animation & Simulation. Übungsblatt 1 Übungen zur Animation & Simulation SS 21 Prof. Dr. Stefan Müller et al. Übungsblatt 1 Aufgabe 1 (Die Newton schen Gesetze) Nennen und erklären Sie die Newton schen Gesetze. Aufgabe 2 (Kräfte und numerische

Mehr

Prinzipien der Softwareentwicklung

Prinzipien der Softwareentwicklung Prinzipien der Softwareentwicklung Programmieren ist eine Kunst, aber es gibt eine Reihe von Regeln, die dabei beachtet werden müssen: Prinzip der Striktheit Prinzip der Strukturierung Prinzip der Abstraktion

Mehr

9. Eine einfache Warteschlangen-Simulation.

9. Eine einfache Warteschlangen-Simulation. SS 2006 Arbeitsblatt 4 / S. 1 von 9 9. Eine einfache Warteschlangen-Simulation. A) Allgemeine Bemerkungen. Die Warteschlange aus 8., wie auch solche mit nur endlich grossem Warteraum, können auf einfache

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

PIWIN 1 Übung Blatt 5

PIWIN 1 Übung Blatt 5 Fakultät für Informatik Wintersemester 2008 André Gronemeier, LS 2, OH 14 Raum 307, andre.gronemeier@cs.uni-dortmund.de PIWIN 1 Übung Blatt 5 Ausgabedatum: 19.12.2008 Übungen: 12.1.2009-22.1.2009 Abgabe:

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,

Mehr

Vergleich der Anwendbarkeit verschiedener CFD Modelle zur Simulation von Brandereignissen Abgrenzung der Anwendungsgebiete von FDS gegenüber CFX

Vergleich der Anwendbarkeit verschiedener CFD Modelle zur Simulation von Brandereignissen Abgrenzung der Anwendungsgebiete von FDS gegenüber CFX Vergleich der Anwendbarkeit verschiedener CFD Modelle zur Simulation von Brandereignissen Abgrenzung der Anwendungsgebiete von FDS gegenüber CFX Wissenschaftliche Arbeit zur Erlangung des Grades Master

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

EXCEL in der Wirtschaftsmathematik

EXCEL in der Wirtschaftsmathematik Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm

Mehr

5. Tutorium zu Programmieren

5. Tutorium zu Programmieren 5. Tutorium zu Programmieren Dennis Ewert Gruppe 6 Universität Karlsruhe Institut für Programmstrukturen und Datenorganisation (IPD) Lehrstuhl Programmierparadigmen WS 2008/2009 c 2008 by IPD Snelting

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

SOFTWARE FÜR PRG-APPLIKATIONEN

SOFTWARE FÜR PRG-APPLIKATIONEN SOFTWARE FÜR PRG-APPLIKATIONEN Autor: Frank Bergmann Letzte Änderung: 04.12.2014 09:09 1 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis... 2 2 Allgemeines... 3 3 Installation und Programmaufruf... 3 4 Einstellungen...

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Benjamin Böhm, Andreas Dreizler. FG Energie- und Kraftwerkstechnik Technische Universität Darmstadt

Benjamin Böhm, Andreas Dreizler. FG Energie- und Kraftwerkstechnik Technische Universität Darmstadt Particle Image Velocimetry Benjamin Böhm, Andreas Dreizler FG Energie- und Kraftwerkstechnik Technische Universität Darmstadt Merkmale Berührungsloses Messverfahren Messung von Geschwindigkeitsfeldern

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Excel Grundlagen. Peter Wies. 1. Ausgabe, Februar 2013

Excel Grundlagen. Peter Wies. 1. Ausgabe, Februar 2013 Excel 2013 Peter Wies 1. Ausgabe, Februar 2013 Grundlagen EX2013 3 Excel 2013 - Grundlagen Die folgende Tabelle zeigt Beispiele für häufige Fehler bei der Eingabe von Formeln: Fehlerbeschreibung Beispiel

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Simulation elektrischer Schaltungen

Simulation elektrischer Schaltungen Simulation elektrischer Schaltungen mittels Modizierter Knotenanalyse Teilnehmer: Artur Stephan Andreas Dietrich Thomas Schoppe Maximilian Gruber Jacob Zschuppe Sven Wittig Gruppenleiter: René Lamour Heinrich-Hertz-Oberschule,

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Klausur Programmieren in C Sommersemester 2007 Dipl. Biol. Franz Schenk 13. April 2007, 11.15-13.00 Uhr Bearbeitungszeit: 105 Minuten

Klausur Programmieren in C Sommersemester 2007 Dipl. Biol. Franz Schenk 13. April 2007, 11.15-13.00 Uhr Bearbeitungszeit: 105 Minuten Klausur Programmieren in C Sommersemester 2007 Dipl. Biol. Franz Schenk 13. April 2007, 11.15-13.00 Uhr Bearbeitungszeit: 105 Minuten Vorname: Nachname: Matrikelnummer: Legen Sie zu Beginn Ihren Studentenausweis

Mehr

Protokoll 1. 1. Frage (Aufgabentyp 1 Allgemeine Frage):

Protokoll 1. 1. Frage (Aufgabentyp 1 Allgemeine Frage): Protokoll 1 a) Beschreiben Sie den allgemeinen Ablauf einer Simulationsaufgabe! b) Wie implementieren Sie eine Einlass- Randbedingung (Ohne Turbulenz!) in OpenFOAM? Geben Sie eine typische Wahl für U und

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Einführung in MATLAB Überblick Was ist MATLAB? Abkürzung für matrix laboratory. Reines Numerikprogramm für das Rechnen mit großen Zahlenfeldern (arrays) bzw. Matrizen.

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Interaktive Strömungssimulation auf Tablet-Computern

Interaktive Strömungssimulation auf Tablet-Computern Bachelorarbeit am Lehrstuhl für Angewandte Mathematik und Numerik der Fakultät für Mathematik an der TU Dortmund Interaktive Strömungssimulation auf Tablet-Computern vorgelegt von Niklas Borg und Patrick

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Übungspaket 19 Programmieren eigener Funktionen

Übungspaket 19 Programmieren eigener Funktionen Übungspaket 19 Programmieren eigener Funktionen Übungsziele: Skript: 1. Implementierung und Kodierung eigener Funktionen 2. Rekapitulation des Stack-Frames 3. Parameterübergabe mittels Stack und Stack-Frame

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr