Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA

Größe: px
Ab Seite anzeigen:

Download "Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA"

Transkript

1 Copyright o p y r i g h t 2012, , SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA

2 Copyright o p y r i g h t 2012, , SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. AGENDA 1 SAS & Hadoop Technologien, Lösungen 2 Demo SAS access to hadoop, SAS Dataloader for hadoop 3 SAS Hadoop Anwendungsszenarien & Ausblick

3 Copyright o p y r i g h t 2012, , SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. SAS FOR HADOOP VISION To be the Analytic and Data Management solution of choice for Hadoop.

4 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. HADOOP GRUNDLAGEN KEINE GEGENSÄTZE ABER OFT NICHT GEMEINSAM BETRACHTET! Wdh. Hadoop als Data Integration Platform Hadoop als Kernkomponente einer next gen BI- und Analytics-Strategie EVALUATE / MONITOR RESULTS IDENTIFY / FORMULATE PROBLEM DATA PREPARATION DEPLOY MODEL DATA EXPLORATION ETL Process VALIDATE MODEL TRANSFORM & SELECT BUILD MODEL ist Baustein einer Transformation der IT Landschaft dient zur Unterstützung neuer Fragestellungen in den Fachbereichen

5 SAS & HADOOP BASIS TECHNOLOGIEN & PRODUKTE SAS/Access to Hadoop Push some SAS processing from Hadoop into SAS Embedded Process - Push SAS data processing to Hadoop with Map Reduce In-Memory Analytics - Use Hadoop for Storage persistence and commodity computing. SAS SAS SAS Hive Impala Score A Code A HPA LASR SAS/Access to Hadoop - Demo SAS/Access to Cloudera Impala SAS DI Server SAS/Scoring Accelerator for Hadoop SAS Code Accelerator for Hadoop * SAS Data Quality Accelerator for Hadoop* SAS Data Loader for Hadoop (*inkludiert) - Demo SAS Visual Analytics SAS Visual Statistics SAS in memory Statistics SAS HPA Produkt bundles Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d.

6 SAS & HADOOP DATENMANAGEMENT FÜR HADOOP MIT SAS Datenmanagement mit SAS PROC HADOOP (Map Reduce + Pig Scripting + HDFS Kommandos) SAS Access to Hadoop Hive, Hive2, Impala Proc Pushdown: FREQ, RANK, REPORT, SORT, SUMMARY/MEANS & TABULATE Hadoop Plugins für SAS Data Integration Studio SAS Data Loader Point & Click Datenmanagement für Hadoop: Einlesen, Transformieren und Bereinigen von Daten in Hadoop Highlights: SQOOP Integration, SAS Profiling und Data Quality Engines, Transfer der Daten zu SAS In- Memory Analytics Cluster HTML-basierendes Interface Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d.

7 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. KURZDEMO SAS ACCESS TO HADOOP ENGINE SAS access to Hadoop Zugriffe - > 3 Möglichkeiten Sas access engine -> Hive library SAS Application Server Access to Hadoop Hadoop Cluster HiveServer2 XML Files JAR Files JDBC Hive Metastore MapReduce (Compute Framework) HDFS File access -> hdfs Fileref Data Files Data Files HDFS Proc hadoop -> pass through proc Hadoop -> passthrough hdfs commands eingebettet in sas code

8 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. SAS DATA INTEGRATION SERVER GUI SUPPORTED HADOOP TRANSFORMATIONEN FROM Hadoop IN Hadoop EP WITH Hadoop EP EP

9 SAS DATA LOADER FOR HADOOP STECKBRIEF Führt SAS DS2 Code, HiveQL und DQ Code auf einem Hadoop Cluster aus Kann Hadoop-Daten in einen vorhandenen LASR Server laden (für weitere Analysen in VA / VS) Zugriff auf externe Datenbanken (2.2) RDBMS SAS Data Loader Hadoop Cluster SAS LASR (VA / VS) Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d.

10 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. KURZDEMO SAS DATALOADER FOR HADOOP 2.2 CONFIG TRIAL EDITION Client PC 1 ACQUIRE DATA DISCOVER DATA 2 TRANSFORM DATA 3 CLEANSE DATA 4 INTEGRATE DATA 5 DELIVER DATA EP SAS Embedded Process + QKB Virt. SAS Data Loader vapp Hadoop Config Hadoop Sandbox EP HDFS Virt. Hadoop Config SAS Embedded Process + QKB Copy Data to Hadoop Profile Data Identification Analysis Query Query Select Columns Apply Filters Map Columns Sort / Order Calculate Columns Transpose data Aggregate Validate Parse Standardize Join Create Match codes Sort & Deduplicate Aggregate Run a SAS program Load SAS LASR Create tables Create views Copy from Hadoop Configuration Directory Hadoop Data Transform data Access data, move it into Hadoop, and assess the data structure and content Select data of interest, manipulate it, and structure it into the data format desired Put data into a consistent format Combine datasets, including data that has no common key, remove duplicate data, and create new data points thru aggregation Load datasets into SAS LASR inmemory analytic server, Create new Hadoop tables, and deliver data to other databases and apps

11 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. SAS DATA LOADER FOR HADOOP EXAMPLE PREPARE AND LOAD CUSTOMER DATA Business Analyst Action Business Analyst Action Use Copy Data to Hadoop Use Transform data in Hadoop I need my Customer data in Hadoop I need to subset and summarize the data Use Cleanse Data in Hadoop Use Load Data to LASR I can see, but I can also fix, the data quality issue I need to Load the data to LASR for visualization

12 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. HADOOP PRAXIS ZUSAMMENFASSUNG Hadoop unterscheidet sich von traditionellen DBMS Systemen Umdenken bei der Datenverarbeitung notwendig Hive & SQL bedarfsgetrieben verwenden Datenhaltung eröffnet neue Möglichkeiten Ordner von Flatfiles werden als Tabelle verwaltet (vergleichbar SPD Server/SPD Engine) Arbeiten mit den Partitionen Nutzen der Transfer-Transformationen Hadoop ist optimiert auf große Tabellen Datenqualitätsfunktionen mit DQ Accelerator optimal für Big Data Dataloader for Hadoop Fachbereichstaugliches point & click Werkzeug für hadoop ( Datentransfer rdms hdfs, LASR Server, DQ, ETL..)

13 SAS DATA LOADER FOR HADOOP WHATS NEW ROADMAP Version 2.3 (9.4M3) Enhancements Profile Threading & Performance Enhancements SAS User Defined Formats Hive 14 Enhancements Distribution Support MapR / PHD (stretch) New Directives: Hive Node, Delete Node LDAP Authentication Future (2.4+) * New Directives : Merge, Score Unstructured Text Processing Major Features Spark Integration Chained Directives Execute in Jobs Parallel Federation Server Integration Automated & Smart Profiling * features are subject to change Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.

14 SAS 9.4M3 WHAT S NEW MapR Support für alle SAS Bausteine PROC SQOOP SAS/Access to Hadoop Verbessert: Performance, Durchreichen von Fehlerbeschreibungen, implicit passthrough (where exists, between) SAS/ACCESS to HAWQ SAS/ACCESS to Impala BASE Proc Pushdown Embedded Process (Accelerators) Zugriff auf Daten über HCatalog (Hive SerDes) Dateiformate verwendbar: Parquet, ORC, Avro, Sequence, RCFILE Code Accelerator: erlaubt multiple Input Data Sources, unterstützt Merge Statement Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d.

15 Copyright o p y r i g h t 2012, , SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. SAS & HADOOP IN-MEMORY TECHNOLOGIE BI & ANALYTIC LASR-based In-Memory Technology SAS Visual Analytics / Visual Statistics Business Analysten und Data Scientists Fokus auf interaktive Analysen SAS In-Memory Statistics Fokus auf Programmierung SAS High-Performance Analytics SAS Prozeduren aus den Bereichen Statistics, Data Mining, Text Analytics, Optimization übertragen auf verteilte In-Memory Technologie Frontend: Enterprise Miner Fokus auf Batch-Processing und Produktiv-Betrieb

16 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. SAS & HADOOP ANWENDUNGS SZENARIEN HADOOP ANALYTICS FÜR SPEZIALTHEMEN UND INPUT / ANREICHERUNG EDW BI and Analytics Operational Data Sources Data Mart Data Mart EDW Analytic Mart Analytic Mart Analytic Mart Data Mart

17 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. SAS & HADOOP ANWENDUNGS SZENARIEN Operational Data Sources HADOOP DATA PLATFORM ALS STAGING LAYER DATA LAKE Beladung HDFS, Auswertestrukturen in Hadoop, data appliances oder RDBMS EDW BI and Analytics Data Mart Data Mart Analytic Mart Analytic Mart

18 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. HADOOP IM EINSATZ ERGEBNISSE EINER UMFRAGE UNTER SAS KUNDEN, DIE BEREITS HADOOP EINSETZEN (EMEA/AP, ) Kunden nach Branchen Eingesetzte Hadoop Distributionen Produkte im Einsatz Einsatzszenarien Fraud 13% "Analytics" 42% Offload EDWH / Cost Reduction 32% "Data Lake" 13%

19 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. SAS ANGEBOT BIG DATA LAB Einsatzfertiges Komplettpaket für die selbständige Entwicklung von Big Data Use Cases zum Fixpreis Software- Lösungen TECHNOLOGIE Bereitstellung On- Premise Cloud Größenskalierung S M L Datenmanagement Data Loader for Hadoop Access to Hadoop Metadatenmanagement Analytics Visual Analytics Visual Statistics In-Memory Statistics Installation Konfiguration Training SERVICE Umsetzung eines beispielhaften Use Cases Zusätzlich buchbare Dienstleistungen: Coaching und Bereitstellung von Experten (Data Scientist, Daten- Management-Experte) Consulting

20 BIG DATA LAB IHRE VORTEILE Sie starten schneller. Sie minimieren das Risiko falscher Investments. Sie sparen Doppelarbeit und Doppelinvestitionen. Sie bezahlen genau das, was Sie brauchen. Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d.

21 C o p y r i g h t , S A S In s t i t u t e In c. A l l r i g h t s r e s e r ve d. SUMMARY SAS & HADOOP VIELFÄLTIGE UNTERSTÜTZUNG, MORE TO COME! 1. Data Management: SAS optimiert und erleichtert den Zugriff auf Daten in Hadoop 2. In-Memory Analytics: SAS erweitert und beschleunigt Analytik auf Hadoop-Daten. 3. In-Database Processing: SAS verlagert (analytische) SAS Funktionalität in das Hadoop Cluster.

22 Copyright o p y r i g h t 2012, , SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. UNSER ANGEBOT THINK BIG, START NOW! BIG DATA LAB Auf alle Infos zum Nachlesen Kommen Sie ins Gespräch mit uns! PRODUKTE TESTEN SAS Data Loader for Hadoop kostenlos herunterladen und 90 Tage testen: SAS Visual Analytics (Demo) kostenlos ausprobieren:

23 INFORMATIONEN - KONTAKT SAS UND HADOOP INFORMATIONEN: - Interessante White papers: BARC: Big data analytics in der DACH region: Webinare: Big Data Analytics mit SAS & Hadoop Big data lab Code Beispiele:http://support.sas.com/resources/papers/proceedings14/SAS pdf Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d.

24 THANKS A LOT!! FRAGEN - next steps?? DANKE! Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d.

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases

Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. Fachbereich: Die richtigen Fragen SAS BIG DATA

Mehr

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT DIE DATEN IM ZENTRUM: SAS DATA RAINER STERNECKER SOLUTIONS ARCHITECT SAS INSTITUTE SOFTWARE GMBH Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. NEUE WEGE GEHEN SAS DATA GOVERNANCE & QUALITY

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

What s New in SAS Data Management

What s New in SAS Data Management make connections share ideas be inspired What s New in SAS Data Management Der SAS Enterprise Data Integration Server 4.3 und 4.4: die wichtigsten Neuerungen und ein Ausblick auf 4.5 Hans-Rainer Pauli

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz 2015 SAS Education Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz Anmeldung bei SAS Education Deutschland www.sas.de/education Tel. +49 6221 415-300 education@ger.sas.com Fax

Mehr

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Industrie 4.0 Predictive Maintenance Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Anwendungsfälle Industrie 4.0 Digitales Objektgedächtnis Adaptive Logistik Responsive Manufacturing Intelligenter

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Stratosphere. Next-Generation Big Data Analytics Made in Germany

Stratosphere. Next-Generation Big Data Analytics Made in Germany Stratosphere Next-Generation Big Data Analytics Made in Germany Robert Metzger Stratosphere Core Developer Technische Universität Berlin Ronald Fromm Head of Big Data Science Telekom Innovation Laboratories

Mehr

In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur

In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur In-Database Verarbeitung für alle Komponenten des SAS Business Analytics Frameworks - Vorstellung der gemeinsamen SAS/Teradata Referenzarchitektur Alfred Geers Teradata Solution Architect Agenda SAS/Teradata

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011 High Performance Batches in der Cloud Folie 1 Alles geht in die Cloud Image: Chris Sharp / FreeDigitalPhotos.net Cloud und Batches passen zusammen Batches Cloud Pay-per-Use Nur zeitweise genutzt Hohe Rechenkapazitäten

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Big Data & High-Performance Analytics

Big Data & High-Performance Analytics Big Data & High-Performance Analytics Wolfgang Schwab, Senior Business Advisor Berlin 20.4.2012 PROJECTING THE GROWTH OF BIG DATA Source: IDC Digital Universe Study, sponsored by EMC, May 2010 THRIVING

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

IDRT: Unlocking Research Data Sources with ETL for use in a Structured Research Database

IDRT: Unlocking Research Data Sources with ETL for use in a Structured Research Database First European i2b2 Academic User Meeting IDRT: Unlocking Research Data Sources with ETL for use in a Structured Research Database The IDRT Team (in alphabetical order): Christian Bauer (presenter), Benjamin

Mehr

MSDN Webcast: Team Foundation Server Mehr als nur eine Versionsverwaltung! Visual Studio Team System (Teil 1 von 10) Veröffentlicht: 20.

MSDN Webcast: Team Foundation Server Mehr als nur eine Versionsverwaltung! Visual Studio Team System (Teil 1 von 10) Veröffentlicht: 20. MSDN Webcast: Team Foundation Server Mehr als nur eine Versionsverwaltung! Visual Studio Team System (Teil 1 von 10) Veröffentlicht: 20. Februar 2008 Presenter: Neno Loje, MVP für Team System www.teamsystempro.de

Mehr

90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert.

90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert. QualysoftGruppe Jeden Tag werden 2,5 Trillionen Byte an Daten erstellt. 90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert. Diese Daten stammen aus

Mehr

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS. Carsten Herbe DOAG Konferenz November 2014

Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS. Carsten Herbe DOAG Konferenz November 2014 Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS Carsten Herbe DOAG Konferenz November 2014 Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und

Mehr

Andreas Emhart Geschäftsführer Alegri International Group

Andreas Emhart Geschäftsführer Alegri International Group Andreas Emhart Geschäftsführer Alegri International Group Agenda Vorstellung Alegri International Überblick Microsoft Business Intelligence Sharepoint Standard Business Intelligence Tool Excel Service

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics Vorstellung IBM Cognos 10.2 Oliver Linder Client Technical Professional Business Analytics Agenda IBM Cognos 10.2 Architektur User Interfaces IBM Cognos Workspace IBM Cognos Workspace Advanced IBM Cognos

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

p^db=`oj===pìééçêíáåñçêã~íáçå=

p^db=`oj===pìééçêíáåñçêã~íáçå= p^db=`oj===pìééçêíáåñçêã~íáçå= Error: "Could not connect to the SQL Server Instance" or "Failed to open a connection to the database." When you attempt to launch ACT! by Sage or ACT by Sage Premium for

Mehr

Oracle R zum Anfassen

Oracle R zum Anfassen Oracle R zum Anfassen Alfred Schlaucher Oracle Deutschland (Data Warehouse) Oliver Bracht Andreas Prawitt Oracle Partner eoda Oracle R zum Anfassen: Die Themen 09:30 Begrüßung 09:45 R Zum Anfassen Einführung

Mehr

SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013

SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013 SAS VISUAL ANALYTICS DER EINSTIEG IN (BIG) DATA ANALYTICS JOO-HYUNG MAING, SAS DEUTSCHLAND, 16. APRIL 2013 SAS INSTITUTE EIN UNTERNEHMEN IN ZAHLEN SAS is the first company to call when you need to solve

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Dr. Martin Hebach, Cebit 2015 Senior Solution Architect mhebach@informatica.com Abstract Für Business Intelligence Aufgaben

Mehr

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan 2011 Agenda Was ist arcplan Edge? Komponenten von arcplan Edge arcplan Edge Roadmap Live Demo arcplan

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Persönlichkeiten bei bluehands

Persönlichkeiten bei bluehands Persönlichkeiten bei Technologien bei Skalierbare Anwendungen mit Windows Azure GmbH & co.mmunication KG am@.de; posts..de/am 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Big Data für die Internet Sicherheit

Big Data für die Internet Sicherheit Big Data für die Internet Sicherheit Ralph Kemperdick Hans Wieser Microsoft 1 Mobile-first Data-driven Cloud-first 2 2 3 Messenger Wi nd ow s Liv e 4 5 Anwendung: Das Microsoft Cybercrime Center 6 Betrug

Mehr

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Digitale Transformation - Ihre Innovationsroadmap

Digitale Transformation - Ihre Innovationsroadmap Digitale Transformation - Ihre Innovationsroadmap Anja Schneider Head of Big Data / HANA Enterprise Cloud Platform Solutions Group, Middle & Eastern Europe, SAP User Experience Design Thinking New Devices

Mehr

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Beratung Business Analytics Software Entwicklung Datenmanagement AGENDA Der Kreislauf für die Betrugserkennung

Mehr

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben!

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben! Take aways Mit Power BI wird Excel zum zentralen Tool für Self- Service BI End-End Self-Service Lösungsszenarien werden erstmals möglich Der Information Worker erhält ein flexibles Toolset aus bekannten

Mehr

AnyWeb AG 2008 www.anyweb.ch

AnyWeb AG 2008 www.anyweb.ch OMW 8.1- What s new System- Applikations- und Servicemanagement Agenda Was ist OMW HTTPS Agent Remote Agent Installation User Role Based Service View Custom Message Attributes Maintenace Mode Weitere Erweiterungen

Mehr

Hadoop & SQL Wie Hadoop um SQL erweitert werden kann. Oracle/metafinanz Roadshow 11./18. Februar

Hadoop & SQL Wie Hadoop um SQL erweitert werden kann. Oracle/metafinanz Roadshow 11./18. Februar Hadoop & SQL Wie Hadoop um SQL erweitert werden kann Oracle/metafinanz Roadshow 11./18. Februar Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services

Mehr

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Copyright 2005, SAS Institute Inc. All rights reserved. Ulrich Reincke, SAS Deutschland Agenda Der Neue Enterprise Miner 5.2 Der Neue Text Miner 2.3

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 OSC Smart Integration GmbH SAP Business One GOLD-Partner in Norddeutschland GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 SAP Business One v.9.0 Heiko Szendeleit AGENDA OSC-SI 2013 / SAP Business One

Mehr

JONATHAN JONA WISLER WHD.global

JONATHAN JONA WISLER WHD.global JONATHAN WISLER JONATHAN WISLER WHD.global CLOUD IS THE FUTURE By 2014, the personal cloud will replace the personal computer at the center of users' digital lives Gartner CLOUD TYPES SaaS IaaS PaaS

Mehr

Algorithms for graph visualization

Algorithms for graph visualization Algorithms for graph visualization Project - Orthogonal Grid Layout with Small Area W INTER SEMESTER 2013/2014 Martin No llenburg KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Projektvorgehen. SAP HANA-Implementierung für SAP NetWeaver BW

Projektvorgehen. SAP HANA-Implementierung für SAP NetWeaver BW Projektvorgehen SAP HANA-Implementierung für SAP NetWeaver BW Szenario A: Upgrade der bestehenden Landschaft Arbeitspakete und Projektschritte Ramp-Up Coaching bzw. Projektmanagement BW on HANA- Assessment

Mehr

CAViT - Kurzvorstellung

CAViT - Kurzvorstellung CAViT - Kurzvorstellung Auswertung von Versuchs- und Simulationsdaten Martin Liebscher, März 2015 Copyright SCALE GmbH; Disclosure to third parties only in consultation with SCALE Einordnung / Motivation

Mehr

A central repository for gridded data in the MeteoSwiss Data Warehouse

A central repository for gridded data in the MeteoSwiss Data Warehouse A central repository for gridded data in the MeteoSwiss Data Warehouse, Zürich M2: Data Rescue management, quality and homogenization September 16th, 2010 Data Coordination, MeteoSwiss 1 Agenda Short introduction

Mehr

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt Organisatorisches Datenorientierte Systemanalyse Unit1: Intro and Basics Gerhard Wohlgenannt Inhalt: Datenorientierte Systemanalyse Umfang: 5 units XX.10.2013 XX.11.2013 09:00-13:30 Uhr Room XXX Infos,

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Delivering new, powerful reporting solutions with open source BI Michael Schlenzka, Jaspersoft

Delivering new, powerful reporting solutions with open source BI Michael Schlenzka, Jaspersoft Delivering new, powerful reporting solutions with open source BI Michael Schlenzka, Jaspersoft 2009 Jaspersoft Corp. All rights reserved. 0509JW Agenda Reporting und Rechenzentren Vorstellung Jaspersoft

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

Xcelerate your Business. XCelerate Die nächste Genera1on Anwendungsentwicklung und Bereitstellung der Fuhrparklösung in der Cloud Heute verfügbar

Xcelerate your Business. XCelerate Die nächste Genera1on Anwendungsentwicklung und Bereitstellung der Fuhrparklösung in der Cloud Heute verfügbar Xcelerate your Business XCelerate Die nächste Genera1on Anwendungsentwicklung und Bereitstellung der Fuhrparklösung in der Cloud Heute verfügbar 1 XCelerate in Kürze Ein App-Store für Businessanwendungen

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Herbert Rossgoderer Geschäftsführer Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH ISE

Mehr

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH What is a GEVER??? Office Strategy OXBA How we used SharePoint Geschäft Verwaltung Case Management Manage Dossiers Create and Manage Activities

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT

Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT Neue Technologien effizient nutzen Ehningen, 3. Juli 2014 Rodney Krick rk@aformatik.de aformatik Training & Consulting GmbH & Co. KG

Mehr

Satellite 6. Next Generation System Provisioning, Configuration and Patch Management

Satellite 6. Next Generation System Provisioning, Configuration and Patch Management Peter Mumenthaler Head of System Engineering Senior Systems Architekt Andreas Zuber Senior System Engineer Philipp Gassman System Technician Satellite 6 Next Generation System Provisioning, Configuration

Mehr

Medienbruchfrei analysieren und dabei Karten als Visualisierungselement in BI anbieten

Medienbruchfrei analysieren und dabei Karten als Visualisierungselement in BI anbieten Medienbruchfrei analysieren und dabei Karten als Visualisierungselement in BI anbieten 4 Handeln 1 Überwachen 3 Alternativen modellieren/simulieren 2 Analysieren. Copyright 2012 Oracle and/or its affiliates.

Mehr

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014 SQL PASS Treffen RG KA Überblick Microsoft Power BI Tools Stefan Kirner Karlsruhe, 27.05.2014 Agenda Die wichtigsten Neuerungen in SQL 2012 und Power BI http://office.microsoft.com/en-us/office365-sharepoint-online-enterprise-help/power-bi-for-office-365-overview-andlearning-ha104103581.aspx

Mehr

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Jürgen Boiselle, Managing Partner 16. März 2015 Agenda Guten Tag, mein Name ist Teradata Wozu Analytics

Mehr

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014 Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung

Mehr

SAP HANA ist schnell erklärt. TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag

SAP HANA ist schnell erklärt. TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag SAP HANA ist schnell erklärt TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag Ihr Referent Steckbrief Name: Miroslav Antolovic Jahrgang: 1975 Stationen: SAP, Walldorf 1999-2004 Realtech, Walldorf

Mehr

InspireIT. SAP HANA Sesam öffne dich. Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH. Frankfurt am Main, 11.05.

InspireIT. SAP HANA Sesam öffne dich. Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH. Frankfurt am Main, 11.05. InspireIT SAP HANA Sesam öffne dich Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH Frankfurt am Main, 11.05.2015 OPITZ CONSULTING GmbH 2015 Seite 1 Checker Fragen Ist SAP HANA eine

Mehr

Datenaustausch Hadoop & Oracle DB. DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH

Datenaustausch Hadoop & Oracle DB. DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT.

Mehr

Archive / Backup System für OpenVMS

Archive / Backup System für OpenVMS Archive / Backup System für OpenVMS DECUS Symposium 2002 Bonn Vortrag-Nr. 3C04 Günther Fröhlin Compaq Computer Corporation Colorado Springs, USA 1 Highlights V4.0 Auslieferung Januar 2002 Hauptversion

Mehr

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken Support Technologies based on Bi-Modal Network Analysis H. Agenda 1. Network analysis short introduction 2. Supporting the development of virtual organizations 3. Supporting the development of compentences

Mehr

3A03 Security Löcher schnell und effizient schließen mit HP OpenView Radia

3A03 Security Löcher schnell und effizient schließen mit HP OpenView Radia 3A03 Security Löcher schnell und effizient schließen mit HP OpenView Radia Alexander Meisel HP OpenView 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für SIs und VARs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Oracle s Strategie Engineered Systems Big Data einmal

Mehr

Big Data, small Data und alles dazwischen!

Big Data, small Data und alles dazwischen! Technologische Entwicklung Governance & Compliance Entwicklung 15.05.2015 Big Data, small Data und alles dazwischen! Wien, 20.5.2015 Herbert Stauffer Geschichtliche Entwicklung der Weg zu Big Data 1970

Mehr

Mobile Backend in der

Mobile Backend in der Mobile Backend in der Cloud Azure Mobile Services / Websites / Active Directory / Kontext Auth Back-Office Mobile Users Push Data Website DevOps Social Networks Logic Others TFS online Windows Azure Mobile

Mehr

Matthias Schorer 14 Mai 2013

Matthias Schorer 14 Mai 2013 Die Cloud ist hier was nun? Matthias Schorer 14 Mai 2013 EuroCloud Deutschland Conference 2013 Matthias Schorer Accelerate Advisory Services Leader, CEMEA 29.05.13 2 29.05.13 3 The 1960s Source: http://www.kaeferblog.com/vw-bus-t2-flower-power-hippie-in-esprit-werbung

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich. Herzlich Willkommen!

MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich. Herzlich Willkommen! MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich Herzlich Willkommen! Sharepoint 2010 Voraussetzung: 2 SharePoint 2010 Gesellschaft für Informatik Eike Fiedrich Bechtle GmbH Solingen

Mehr

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Schritt für Schritt in das automatisierte Rechenzentrum Converged Management Michael Dornheim Mein Profil Regional Blade Server Category Manager Einführung Marktentnahme Marktreife Bitte hier eigenes Foto

Mehr

Cross-Channel-Marketing und Customer Journey

Cross-Channel-Marketing und Customer Journey Cross-Channel-Marketing und Customer Journey Wie Sie den Kunden und seine wachsenden Ansprüche besser begleiten können Roland Brezina Manager Center of Excellence D-A-CH SAS Institute Deutschland GmbH

Mehr

Große Datenmengen knacken mit SAS High-Performance Analytics

Große Datenmengen knacken mit SAS High-Performance Analytics make connections share ideas be inspired Große Datenmengen knacken mit SAS High-Performance Analytics Martin Schütz CC Analytics SAS Institute GmbH Agenda Terminologie: SAS High-Performance Analytics SAS

Mehr

Das Beste aus zwei Welten

Das Beste aus zwei Welten : Das Beste aus zwei Welten Das Beste aus zwei Welten Aufruf von R Funktionen mit PROC IML KSFE 2012 08.03.2012 ist IT Dienstleister für Business Intelligence und Datenanalyse gibt es seit über 20 Jahren

Mehr

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 2.800.000.000.000.000.000.000 Bytes Daten im Jahr 2012* * Wenn jedes Byte einem Buchstaben entspricht und wir 1000 Buchstaben auf

Mehr