1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12

Größe: px
Ab Seite anzeigen:

Download "1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12"

Transkript

1 Seite 1 von Einleitung Der Bipolartransistor ist ein Halbleiterbauelement welches aus einer npn bzw pnp Schichtfolge besteht (Er arbeitet mit zwei unterschiedlich gepolten pn Übergängen). Diese Halbleiterschichten werden als Emitter (E), Basis (B) und Kollektor (C) bezeichnet. Der Transistor wird zum Verstärken oder Schalten von Signalen verwendet. Transistoren werden vorwiegend aus Silizium gefertigt. Die früher verwendeten Germaniumtransistoren haben gegenüber Siliziumtransistoren sehr viele Nachteile und werden nur für spezielle Zwecke eingesetzt. Es wird zwischen pnp und npn Transistoren unterschieden. Folgend werde ich mich aber nur auf den npn Transistor konzentrieren. Der pnp Transistor funktioniert analog. Es müssen nur Spannungen und Ströme umgedreht werden. 1.1 Funktionsweise von npn Transistor Der npn Transistor besteht aus 2 n-dotierten Zonen zwischen denen sich eine p-dotierte Zone befindet. Eine der n-zonen nennt man Kollektor und die andere Emitter. Theoretisch könnte man Kollektor und Emitter vertauschen, bringt aber in der Praxis einige Nachteile, da die einzelnen Zonen andere Dotierungen aufweisen und der Großteil der Verlustwärme in der Kollektorzone entsteht. Transistoren werden so gebaut das die Kollektorzone am besten gekühlt ist. npn Vergleich: pnp U BE = 0,7V U CE = 7V U BE = -0,7V U CE = -7V

2 Seite 2 von 12 Legt man zwischen Basis und Emitter eine Spannung U BE an, so beginnen die Elektronen die Löcher aus dem p-material aufzufüllen. Aus der p-schicht wird also praktisch eine n-schichtdie Basis Emitter Diode verschwindet. Die Elektronen diffundieren bis zum Kollektor und werden durch das elektrische Feld in den Kollektor hinübergezogen. Die Elektronen die nicht in den Kollektor diffundieren (ca. 1%) bilden den Basisstrom I B. Der positive Basisstrom I B fließt in die Basis hinein (bei pnp Transistor heraus). Der Basisstrom ist der Steuerstrom. Mit ihm steuert man den Kollektorstrom I C. Man könnte den Transistor mit einem Ventil vergleichen. Je mehr man ein Ventil öffnet desto mehr Luft kann durch. Im Falle des npn Transistors wäre die p-schicht das Ventil. Je mehr Elektronen hineinfließen (je höher der Basisstrom) desto mehr Kollektorstrom kann fließen. Die Voraussetzung ist aber dass zwischen Kollektor und Emitter eine positive Spannung U CE anliegt. Das Verhältnis vom Kollektorstrom I C zum Basisstrom I B bezeichnet man als Gleichstromverstärkung B. B= I C --- I B 1.2 Potentiale, Spannungen & Ströme Der Emitter dient als Bezugsgröße für Potentialangaben. So ist die Spannung zwischen Kollektor und Emitter (U CE ) gleichzeitig das Kollektorpotential. Die Spannung zwischen Basis und Emitter (U BE ) ist somit auch das Basispotential. Der Emitterstrom I E setzt sich aus den Strömen I B und I C zusammen. Es gilt also: I E = I B + I C 2 Kennlinien und Parameter 2.1 Eingangskennlinienfeld Zwischen Basis und Emitter liegt ein pn-übergang, der in Durchlassrichtung geschaltet ist. Die Kennlinie müsste also Ähnlichkeit haben mit der Durchlasskennlinie einer Diode. Das ist auch der Fall. Für Siliziumtransistoren ergibt sich eine Schwellspannung von ca. 0,7V. Der Anstieg der Kennlinie in einem bestimmten Kennlinienpunkt A (Arbeitspunkt) ergibt den differentiellen Eingangswiderstand r BE in diesem Kennlinienpunkt. UBE rbe = (für U CE konstant) I B Der Zusatz für U CE konstant besagt, dass die Tangente an einer für konstante Kollektor- Emitter-Spannung geltenden Kennlinie anliegt. Ändert man die Größe der Kollektor- Emitter- Spannung, so verschiebt sich die Kennlinie etwas.

3 Seite 3 von 12 Ein Verfahren zur Berechnung von Transistorschaltungen baut auf der Vierpoltheorie auf. Man benötigt für Rechnungen nach diesem Verfahren die Vierpolparameter, die das Signalverhalten eines Transistors kennzeichnen. Der Vierpolparameter h 11 entspricht dem differentiellen Eingangswiderstand r BE. h 11 = r BE 2.2 Ausgangskennlinienfeld Ausgangsgrößen sind der Kollektorstrom I C und die Kollektor-Emitter-Spannung U CE. Es gibt den Zusammenhang zwischen Kollektorstrom und Kollektor-Emitter-Spannung bei verschiedenen Basisströmen an. Jede Kennlinie gilt für einen bestimmten Basisstromwert, der während der Aufnahme der Kennlinie konstant gehalten werden muss. Der Anstieg der Kennlinie in einem bestimmten Arbeitspunkt A ergibt den differentiellen Ausgangswiderstand r CE in diesem Arbeitspunkt. UCE rce = (für I B konstant) I C Der differentielle Transistor-Ausgangswiderstand r CE hat ebenfalls wie der differentielle Transistor-Eingangswiderstand eine Entsprechung zu einem Vierpolparameter. Der Vierpolparameter h 22 entspricht dem Kehrwert des Ausgangswiderstandes des Transistors. 1 h 22 = r CE h 22 wird auch differentieller Ausgangsleitwert genannt. 2.3 Stromsteuerungskennlinienfeld Es gibt den Zusammenhang zwischen Kollektorstrom und Basisstrom an. Jede Kennlinie gilt genau nur für eine bestimmte Kollektor-Emitter-Spannung.

4 Seite 4 von 12 Die für einen bestimmten Arbeitspunkt geltende schon erwähnte Gleichstromverstärkung B, auch Kollektorstrom-Basisstrom-Verhältnis genannt, kann aus dem Kennlinienfeld entnommen werden. I C B = I B Der Abstieg der I C -I B -Kennlinie in einem bestimmten Arbeitspunkt A ergibt den differentiellen Stromverstärkungsfaktor ß in diesem Arbeitspunkt. IC β = (für U CE konstant) I B Der differentielle Stromverstärkungsfaktor entspricht dem Vierpolparameter h 21. h 21 = ß 2.4 Rückwirkungskennlinienfeld Eine Vergrößerung der Kollektor-Emitter-Spannung U CE führt zur Vergrößerung der Spannungen U CB und U BE, da U CE = U CB + U BE ist. Die Erhöhung der Ausgangsspannung U CE und selbstverständlich auch ihre Verminderung wirken also auf die Eingangsspannung U BE zurück. Die Rückwirkung vom Ausgang auf den Eingang ist sehr unerwünscht. Der Zusammenhang zwischen U BE und U CE wird durch das Rückwirkungs-Kennlinienfeld gegeben.

5 Seite 5 von 12 Die Kennlinien verlaufen bei modernen Transistoren sehr flach. Das bedeutet, die Rückwirkung von U CE auf U BE ist gering. Ein Maß für die Rückwirkung ist der differentielle Rückwirkungsfaktor D. Der Anstieg der U BE -U CE -Kennlinie in einem bestimmten Arbeitspunkt ergibt den differentiellen Rückwirkungsfaktor D in diesem Arbeitspunkt. U BE D = (für I B konstant) UCE Der differentielle Rückwirkungsfaktor D entspricht dem Vierpolparameter h 12. h 12 = D Steilheit Sie wird anhand der Übertragungskennlinie beschrieben, welche eine Zusammensetzung der Stromsteuerungskennlinie und der Eingangskennlinie ist. I C [ma] ?I C S= ?U BE ?U BE?I C 0,2 0,4 0,6 0,8 U BE [V] Die Steilheit S wird charakterisiert als Änderung des Kollektorstroms IC als Folge einer Änderung der Basis-Emitter Spannung U BE. Aus der Gleichung?I C S=?U BE

6 Seite 6 von 12 folgt die für den Bipolartransistor fundamentale Beziehung durch Differenzieren. I C = I CS *e U BE/U T nach U BE differenzieren S=?I C /?U BE = 1/U T * I CS *e U BE/U T =I C /U T I CS Kollektorsperrstrom U T Temperaturspannung (~27mV) Die Steilheit S ist also abhängig vom Kollektorstrom I C im Arbeitspunkt und unabhängig von den individuellen Eigenschaften des jeweiligen Bipolartransistors. Man benötigt also kein Datenblatt zur Berechnung der Steilheit S. 3 Arbeitspunkteinstellung Die Arbeitspunkteinstellung wird anhand der Emittergrundschaltung durchgeführt. Mithilfe des 4 Quadrantenkennlinienfelds kann man aus den Kennlinien Ströme und Spannungen ablesen. Um den Transistor verwenden zu können benötigt er gewisse Werte für U CE, U BE, I C und I B. Meist wählt man zur Festlegung des Arbeitspunkts die Größen U CE und I B aus. Die

7 Seite 7 von 12 Versorgungsspannung liegt fest, sie sei angenommen U B =12V. Den Lastwiderstand R L wählt man so, dass sich bei dem gewünschten Basisstrom I B die gewählte Basis Emitter Spannung U BE einstellt. Er sei in diesem Beispiel 2k. Somit kann man sich den Kollektorstrom I C berechnen. I C =12V/2k I C =6mA Wie man aus dem Diagramm herauslesen kann, soll der Arbeitspunkt bei einer Spannung von U CE = 6V liegen. Somit kann man im 4 Quadranten Kennlinienfeld die Widerstandsgerade einzeichnen (Gerade von 12V auf der U CE Achse bis 6 ma auf der I C Achse einzeichnen). Zieht man nun eine Gerade parallel zur U CE Achse in das Stromsteuerungskennlinienfeld und von dort eine Gerade parallel zur U BE Achse ins Eingangskennlinienfeld, so kann man die benötigte Basis Emitterspannung U BE ablesen. In der obigen Schaltung sieht man dass R 1 und R 2 einen Spannungsteiler bilden. Somit ist die Spannung U R2 an R 2 gleich der Spannung U BE. Jetzt kann man sich die Werte für die Widerstände R 1 und R 2 berechnen. Aufgrund des Spannungsteilers folgt: R 2 /(R 1 +R 2 )=U BE /U B R 2 /(R 1 +R 2 )=1/12 R 1 =11*R 2 Jetzt weiß man zwar das R 1 11 mal größer als R 2 sein muss, aber den exakten Wert kennt man nicht. Man kann ihn aber aufgrund folgender Definition berechnen. Iq=10*I B Der Strom der durch R 2 fließt ist 9*I B groß. Somit lassen sich die Widerstände berechnen. R 2 = U BE /(9*I B ) I B =30µA 9*30µA=270µA R 2 = 1/270µA R 2 ~ 3,7k R 1 = 11*R 2 -> R 1 = 41k 3.1 Arbeitspunktstabilisierung Ist der Transistor in Betrieb, so verschiebt sich aufgrund des Temperaturanstiegs der Arbeitspunkt. Um dies zu vermeiden wird der Widerstand R E eingeführt. Erwärmt sich der Transistor so wird I C etwas größer. Dadurch steigt der Spannungsabfall am R E. Die konstante Spannung U R2 = U RE + U BE. Da U R2 aber konstant ist und U RE größer wird muss infolge dessen die Spannung U BE kleiner werden. Dadurch ist der Arbeitspunkt annähernd stabil.

8 Seite 8 von Die 3 Grundschaltungen Man unterscheidet zwischen drei Kleinsignalbetriebsarten, also drei Grundschaltungen des Transistors. Diese Schaltungen unterscheiden sich durch ihre Anschlussbelegungen. Das Anschlusspotential gegenüber dem die Eingangs- und Ausgangsspannung gemessen wird nennt man Bezugspotential. Dadurch ergeben sich die Namen der Schaltungen - Emittergrundschaltung, Basisgrundschaltung und Kollektorgrundschaltung. Am häufigsten wird jedoch die Emittergrundschaltung verwendet Die Emittergrundschaltung Die Emittergrundschaltung wird am häufigsten verwendet. Hier ist der Emitter der gemeinsame Pol für den Signalein- und ausgang. Sie besitzt eine hohe Leistungs-,Strom- und Spannungsverstärkung Wechselstromersatzschaltbild der Emitterschaltung

9 Seite 9 von 12 In den eingekreisten Bereichen (um den Arbeitspunkt herum) verhält sich der Transistor linear. In diesen kleinen Bereichen spricht man also von einer so genannten Linearisierung. Da sich der Transistor aber aufgrund der Arbeitspunkteinstellung jetzt wie ein lineares Bauelement verhält kann man ihn als Blackbox, also als einen Vierpol ansehen. Da man die h Parameter kennt und auch weiß wie man diese misst kommt man auf das Wechselstromersatzschaltbild. h Parameter: U 1 = h 11 *I 1 +h 12 *U 2 I 2 = h 21 *I 1 +h 22 *U 2 h 11 = U 1 / I 1 U 2 =0 Dieser h Parameter entspricht dem Eingangswiderstand r BE (siehe 2.1) bei Kurzschluss am Ausgang h 12 = U 1 / U 2 I 1 =0 Dieser h Parameter entspricht dem differentiellen Rückwirkungsfaktor D (siehe 2.4 ) bei Leerlauf am Eingang h 21 = I 2 / I 1 U 2 =0 Dieser h Parameter entspricht der differentiellen Stromverstärkung ß (siehe 2.3 ) bei Kurzschluss am Ausgang. h 22 = I 2 / U 2 I 1 =0 Dieser h Parameter entspricht dem Ausgangsleitwert 1/r CE (siehe 2.2) bei Leerlauf am Eingang Aus den Gleichungen für die h Parameter kann man das Wechselstromersatzschaltbild für den Transistor herauslesen. U 1 = h 11 *I 1 +h 12 *U 2 Hier handelt es sich um eine Spannung (Eingangsspannung U 1 ). Wenn Spannungen addiert werden bedeutet das dass sie in Serie anliegen. Somit lässt sich der Eingang aufzeichnen: I 2 = h 21 *I 1 +h 22 *U 2 Hier handelt es sich um einen Strom (Ausgangsstrom I 2 ). Wenn Ströme addiert werden bedeutet das dass sie parallel liegen. Kombiniert mit der obigen Schaltung kann man das gesamte Wechselstromersatzschaltbild des Transistors aufzeichnen.

10 Seite 10 von 12 Da wir aber wissen welcher h Parameter welche Eigenschaft des Transistors beschreibt (h 11 = Eingangswiderstand r BE.) zeichnet man das Wechselstromersatzschaltbild wie folgend gezeigt wird. In folgender Darstellung wird auch die Arbeitspunktbeschaltung berücksichtigt. Transistor Spannungsverstärkung A = Ua/Ue = - (S*U BE *(r CE //R L ))/U BE r CE >>R L -> A = -S* R L r ein = r BE r aus = r CE //R L = R L Die Kollektorgrundschaltung Die Kollektorgrundschaltung ist durch einen hohen Eingangswiderstand und einen kleinen Ausgangswiderstand gekennzeichnet. Sie wird auch als Impedanzwandler bezeichnet Wechselstromersatzschaltbild der Kollektorgrundschaltung

11 Seite 11 von Die Basisgrundschaltung Sie besitzt einen kleinen Eingangswiderstand und einen hohen Ausgangswiderstand. Man verwendet diese Grundschaltung wenn hohe Frequenzen auftreten Wechselstromersatzschaltbild der Basisschaltung 4. Transistor als Schalter Eine weitere Anwendung findet der Transistor als Schalter. Wird er als Schalter verwendet so fällt die Arbeitspunktbeschaltung weg. Als Beispiel wird hier eine ohmsche Last geschalten.

12 Seite 12 von 12 Im Ausgangskennlinienfeld ist die Schaltgerade eingezeichnet welche den Ast des Basisstroms I B = 70µA schneidet. Das bedeutet es wird ein Basisstrom von I B = 70µA benötigt um den Transistor komplett leitfähig zu machen. Um diesen Schaltvorgang so schnell wie möglich durchführen zu können verwendet man einen Basisstrom der ca. 10 mal so groß ist (also in diesem Fall 700µA). Der Vorteil gegenüber einem mechanischen Schalter ist, dass man mit bis zu 10-20kHz schalten kann. Dieser Schalter ist außerdem prellfrei, es kommt zu keinem Lichtbogen und somit auch zu keinem Verschleiß. Der einzige Nachteil ist dass er nie ganz einschaltet und ausschaltet.

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009 Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2

Mehr

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 1. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Transistoren. David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden.

Transistoren. David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden. Transistoren David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden http://hobbyelektronik.de.tl/der-erste-transistor-der-welt.htm Gliederung Was ist ein Transistor Geschichte Bipolartransistor

Mehr

Der Bipolar-Transistor

Der Bipolar-Transistor Universität Kassel F 16: Elektrotechnik / Informatik FG FSG: Fahrzeugsysteme und Grundlagen der Elektrotechnik Wilhelmshöher Allee 73 D-34121 Kassel Prinzip des Transistors Seite: 2 Aufbau des ipolar-transistors,

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 6. Vorlesung Dr.-Ing. Wolfgang Heenes 25. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. ipolartransistoren 2. Kennlinienfelder

Mehr

0Elementare Transistorschaltungen

0Elementare Transistorschaltungen Teilanfang E1 0Elementare Transistorschaltungen VERSUCH Praktikanten: Rainer Kunz Rolf Paspirgilis Links Versuch E1 Elementare Transistorschaltungen Q In diesem Protokoll: O»Einleitung«auf Seite 3 O»Transistoren«auf

Mehr

Geschrieben von: Volker Lange-Janson Freitag, den 06. März 2015 um 16:26 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:12 Uhr

Geschrieben von: Volker Lange-Janson Freitag, den 06. März 2015 um 16:26 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:12 Uhr Konstantstromquelle mit einem NPN-Transistor Diese Schaltung liefert einen konstanten Strom Ikonst, welcher durch RL fließt. Dabei spielt es in gewissen Grenzen keine Rolle, wie groß RL ist. Der Konstantstrom

Mehr

VORBEREITUNG: TRANSISTOR

VORBEREITUNG: TRANSISTOR VORBEREITUNG: TRANSISTOR FREYA GNAM, GRUPPE 26, DONNERSTAG 1. TRANSISTOR-KENNLINIEN Ein Transistor ist ein elektronisches Halbleiterbauelement, das zum Schalten und zum Verstärken von elektrischen Strömen

Mehr

Praktikum Versuch Bauelemente. Versuch Bauelemente

Praktikum Versuch Bauelemente. Versuch Bauelemente 1 Allgemeines Seite 1 1.1 Grundlagen 1.1.1 db-echnung Da in der Elektrotechnik häufig mit sehr großen oder sehr kleinen Werten gerechnet wird, benutzt man für diese vorzugsweise die logarithmische Darstellung.

Mehr

Wechselstrom-Gegenkopplung

Wechselstrom-Gegenkopplung // Berechnung einer Emitterschaltung mit Wechselstrom-Gegenkopplung Diese Transistor-Schaltung stellt eine Abwandlung der " Emitterschaltung mit Arbeitspunktstabilisierung durch Stromgegenkopplung " dar.

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Geschrieben von: Volker Lange-Janson Donnerstag, den 05. März 2015 um 16:31 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:15 Uhr

Geschrieben von: Volker Lange-Janson Donnerstag, den 05. März 2015 um 16:31 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:15 Uhr // // Konstantstromquelle mit einem pnp-transistor - Berechnung Mit dieser einfachen Schaltung kann am Kollektor des Transistors ein konstanter Strom I gewonnen werden. Das Prinzip ist sehr einfach: An

Mehr

Laborübung, NPN-Transistor Kennlinien

Laborübung, NPN-Transistor Kennlinien 15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später

Mehr

E l e k t r o n i k III

E l e k t r o n i k III Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k III Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig im WS 2003/04 Elektronik III

Mehr

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker Dienstag, 19.5.1998 SS 98 / Platz 1 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Elektronik-Praktikum) zu Versuch 4 Differenzverstärker 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische

Mehr

Transistorkennlinien und -schaltungen

Transistorkennlinien und -schaltungen ELS-44-1 Transistorkennlinien und -schaltungen 1 Vorbereitung 1.1 Grundlagen der Halbleiterphysik Lit.: Anhang zu Versuch 27 1.2 p-n-gleichrichter Lit.: Kittel (14. Auflage), Einführung in die Festkörperphysik

Mehr

U L. Energie kt ist groß gegenüber der Aktivierungs-

U L. Energie kt ist groß gegenüber der Aktivierungs- Probeklausur 'Grundlagen der Elektronik', SS 20. Gegeben ist die nebenstehende Schaltung. R 3 R R L U q 2 U q = 8 V R = 700 Ω =,47 kω R 3 = 680 Ω R L = 900 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen

Mehr

pn-übergang, Diode, npn-transistor, Valenzelektron, Donatoren, Akzeptoren, Ladungsträgerdiffusion, Bändermodell, Ferminiveau

pn-übergang, Diode, npn-transistor, Valenzelektron, Donatoren, Akzeptoren, Ladungsträgerdiffusion, Bändermodell, Ferminiveau Transistor 1. LITERATUR: Berkeley, Physik; Kurs 6; Kap. HE; Vieweg Dorn/Bader und Metzler, Physik; Oberstufenschulbücher Beuth, Elektronik 2; Kap. 7; Vogel 2. STICHWORTE FÜR DIE VORBEREITUNG: pn-übergang,

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.

Mehr

Transistor und einer Z-Diode

Transistor und einer Z-Diode Berechnung einer Spannungs-Stabilisierung mit einem Transistor und einer Z-Diode Mit dieser einfachen Standard-Schaltung kann man eine unstabilisierte, schwankende Eingangsspannung in eine konstante Ausgangsspannung

Mehr

HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe:

HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe: HSD FB E I Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik Bauelemente-Praktikum Bipolartransistoren Datum: WS/SS 201.. Gruppe: Teilnehmer 1 2 3 Name Matr.-Nr. Testat ersuchsaufbau Nr.:

Mehr

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet.

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet. Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 4 Bipolartransistor als Schalter und Verstärker Übung 4: 07.06.2018 A1: Die Aufgabe 1 ist Grundlage

Mehr

6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C)

6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C) 6.1. Funktionsweise NPN-Transistor Kollektor (C) E n-halbleiter p n-halbleiter C Basis (B) B Emitter (E) PNP-Transistor Kollektor (C) E p-halbleiter n p-halbleiter C Basis (B) B Emitter (E) 1 Funktionsweise

Mehr

Fragenkatalog zur Übung Halbleiterschaltungstechnik

Fragenkatalog zur Übung Halbleiterschaltungstechnik Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2018/19 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 NSTTUT FÜR ANGEWANDTE PHYSK Physikalisches Praktikum für Studierende der ngenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Transistorverstärker 1 Ziel Der Transistor ist ein viel verwendetes

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 6 ntersuchungen an einem bipolaren Transistor Teilnehmer: Name orname Matr.-Nr. Datum

Mehr

Übungen zur Elektrodynamik und Optik Übung 1: Der Transistor

Übungen zur Elektrodynamik und Optik Übung 1: Der Transistor Übungen zur Elektrodynamik und Optik Übung 1: Der Transistor Oliver Neumann Sebastian Wilken 3. Mai 2006 Zusammenfassung In dieser Experimentalübung werden wir den Transistor als Spannungsverstärker für

Mehr

C03 Transistor. 2. Zur Vorbereitung: Die Kennlinien des Transistors. 1 Eingangskennlinie Ausgangskennlinie Rückwirkungskennlinie

C03 Transistor. 2. Zur Vorbereitung: Die Kennlinien des Transistors. 1 Eingangskennlinie Ausgangskennlinie Rückwirkungskennlinie C03 Transistor 1 Ziele In diesem Versuch werden Eigenschaften und Anwendungen eines npn-transistors (BD 135) untersucht. Dazu werden Sie Schaltungen aufbauen und ausprobieren und seine Kennlinien nutzen

Mehr

4.3 Der Bipolartransistor

4.3 Der Bipolartransistor 4.3 Der Bipolartransistor Der Transistor wurde 1947 vom Forscherteam Shockley, Bardeen und Brattain erfunden (zunächst als Spitzentransistor, ein Jahr später dann als Flächentransistor). Er war das erste

Mehr

Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung

Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Berechnung einer Emitterschaltung mit Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Diese Schaltung verkörpert eine Emitterschaltung mit Stromgegenkopplung zur Arbeitspunktstabilisierung. Verwendet

Mehr

E l e k t r o n i k I

E l e k t r o n i k I Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k I Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Bipolare Transistoren

Mehr

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Christoph Hansen chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

Fragenkatalog zur Übung Halbleiterschaltungstechnik

Fragenkatalog zur Übung Halbleiterschaltungstechnik Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2017/18 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,

Mehr

Arbeitspunkteinstellung

Arbeitspunkteinstellung Gliederung Arbeitspunkteinstellung Ableitung der NF-Kleinsignal-Ersatzschaltung (KSE) Berechnung der NF-Kleinsignal-Parameter u, r e, r a Bestimmung des Frequenzganges und Berechnung der notwendigen Größe

Mehr

3 Der Bipolartransistor

3 Der Bipolartransistor 3 Der Bipolartransistor 3.1 Einführung Aufbau Ein Bipolartransistor (engl.: Bipolar Junction Transistor, BJT) besteht aus zwei gegeneinander geschalteten pn-übergängen (Dioden) mit einer gemeinsamen, sehr

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: = 18 V R 1 = 150 Ω Für die Z-Diode

Mehr

PROTOKOLL ZUM VERSUCH TRANSISTOR

PROTOKOLL ZUM VERSUCH TRANSISTOR PROTOKOLL ZUM VERSUCH TRANSISTOR CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 2. Versuchsdurchführung 3 2.1. Transistorverstärker (bipolar) 3 2.2. Verstärker

Mehr

Übung zum Elektronikpraktikum

Übung zum Elektronikpraktikum Universität Göttingen Sommersemester 2010 Prof. Dr. Arnulf Quadt Raum D1.119 aquadt@uni-goettingen.de Übung zum Elektronikpraktikum Lösung 2 13. September - 1. Oktober 2010 2: Der Transistoreffekt Ein

Mehr

RC - Breitbandverstärker

RC - Breitbandverstärker Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 5 RC - Breitbandverstärker Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 30.04.1997 Protokoll

Mehr

Kapitel 2. Grundschaltungen. 2.1 Allgemeines

Kapitel 2. Grundschaltungen. 2.1 Allgemeines Kapitel 2 Grundschaltungen 2.1 Allgemeines Die bisherige Beschreibung der Transistoren hatte sich auf den Fall beschränkt, dass die Emitter- bzw. Source-Elektrode die dem Eingang und dem Ausgang gemeinsame

Mehr

Diplomvorprüfung WS 11/12 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 11/12 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 11/12 Fach: Elektronik,

Mehr

Transistor- und Operationsverstärkerschaltungen

Transistor- und Operationsverstärkerschaltungen Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: 18 V R 1 150 Ω Für die Z-Diode

Mehr

Heute werden Elektronenröhren durch moderne Halbleiterbauelemente ersetzt. Röhrendiode Elektronenröhren

Heute werden Elektronenröhren durch moderne Halbleiterbauelemente ersetzt. Röhrendiode Elektronenröhren Heute werden Elektronenröhren durch moderne Halbleiterbauelemente ersetzt. Röhrendiode Elektronenröhren Transistoren Halbleiterdiode Der Transistor Der Transistor ist ein aktives auelement, der über einen

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Eine Stabilisierung für ein Netzteil entsprechend nebenstehender Schaltung soll aufgebaut und dimensioniert werden. Bestimmen Sie: 1. die erforderliche Z-Dioden-Spannung

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der

Mehr

Die wichtigsten Eigenschaften von bipolaren Transistoren.

Die wichtigsten Eigenschaften von bipolaren Transistoren. Elektronik-Kurs Die wichtigsten Eigenschaften von bipolaren Transistoren. Es gibt 2 Arten von bipolaren Transistoren: NPN-Transistoren PNP-Transistoren Diese Bezeichnung entspricht dem inneren Aufbau der

Mehr

Versuch 2: Halbleiterparameterextraktion

Versuch 2: Halbleiterparameterextraktion Labor Elektronische Schaltungen Prof. Dr. P. Stuwe Dipl.-Ing. B. Ahrend Versuch : Halbleiterparameterextraktion Theorie Transistoren bilden die Grundbausteine der elektronischen Schaltungen. Ein Transistor

Mehr

Abschlussprüfung Schaltungstechnik 2

Abschlussprüfung Schaltungstechnik 2 Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer

Mehr

Grundlagen der Technischen Informatik 1 WS 2015/16 Übungsblatt 4

Grundlagen der Technischen Informatik 1 WS 2015/16 Übungsblatt 4 Technische Informatik Prof. Dr. M. Bogdan Institut für Informatik Technischen Informatik 1 WS 2015/16 Übungsblatt 4 Abgabe: bis zum 06.01.2016 im weißen Briefkasten der TI Nähe Raum P 518 1 Hinweise: -

Mehr

Diplomvorprüfung Elektronik SS 2008

Diplomvorprüfung Elektronik SS 2008 Diplomvorprüfung Elektronik Seite 1 von 6 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten Diplomvorprüfung Elektronik SS 2008 Name: Vorname:

Mehr

Operationsverstärker. 24. Mai Martin Albert

Operationsverstärker. 24. Mai Martin Albert Operationsverstärker - Martin Albert - - 24. Mai 2006 - Gliederung Einführung Grundlagen Grundlegende Schaltungen spezielle Typen 2 Gliederung Einführung Begriff OPV Grundlagen Transistor Grundschaltungen

Mehr

7. Aufgabenblatt mit Lösungsvorschlag

7. Aufgabenblatt mit Lösungsvorschlag + - Grundlagen der echnertechnologie Sommersemester 200 Wolfgang Heenes. Aufgabenblatt mit Lösungsvorschlag 0.06.200 Schaltungen mit Bipolartransistoren Aufgabe : Analyse einer Schaltung mit Bipolartransistor

Mehr

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Elektronik,

Mehr

Inhalt. Begriffserklärung. Aufbau. Funktionsprinzip. Kennlinien. Grundschaltungen. Praxiswissen

Inhalt. Begriffserklärung. Aufbau. Funktionsprinzip. Kennlinien. Grundschaltungen. Praxiswissen Von Thomas Jakobi Inhalt Begriffserklärung Aufbau Funktionsprinzip Kennlinien Grundschaltungen Praxiswissen 2 Was sind Transistoren? 3 Begriffserklärung Name engl. transfer resistor veränderbarer Widerstand

Mehr

Elektronik II Grosse Übung zu Foliensatz E2_F5

Elektronik II Grosse Übung zu Foliensatz E2_F5 G. Kemnitz Institut für Informatik, TU Clausthal (E2-GF5) 9. Juni 2017 1/25 Elektronik II Grosse Übung zu Foliensatz E2_F5 G. Kemnitz Institut für Informatik, TU Clausthal (E2-GF5) 9. Juni 2017 G. Kemnitz

Mehr

Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker

Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Oliver Neumann Sebastian Wilken 10. Mai 2006 Inhaltsverzeichnis 1 Eigenschaften des Differenzverstärkers 2 2 Verschiedene Verstärkerschaltungen

Mehr

Übungsserie, Bipolartransistor 1

Übungsserie, Bipolartransistor 1 13. März 2017 Elektronik 1 Martin Weisenhorn Übungsserie, Bipolartransistor 1 Aufgabe 1. Invertierender Verstärker Die Abbildung 1 stellt einen invertierenden Verstärker dar. Es sei = 10 kω und = 1 kω.

Mehr

Transistor. Arbeitspunkteinstellung

Transistor. Arbeitspunkteinstellung niversity of pplied Sciences ologne ampus Gummersbach Dipl.-ng. (FH) Dipl.-Wirt. ng. (FH) rbeitspunkteinstellung T-01 Der ist ein aktives auteil in der Halbleitertechnik. Er wird hauptsächlich in der Verstärkung

Mehr

6. Vorverstärkerschaltungen

6. Vorverstärkerschaltungen 6.1 Transistorkennlinien und Arbeitsbereich 6.1.1 Eingangskennlinie I B =f(u BE ) eines NPN-Transistors Die Eingangskennlinie beschreibt das Verhalten des Transistors zwischen der Basis und dem Emitter.

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters? Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters

Mehr

Sourceschaltung mit selbstleitendem MOSFET

Sourceschaltung mit selbstleitendem MOSFET BEISPIEL 5.5: Sourceschaltung mit selbstleitendem MOSFET R D C R G Versorgungsspannung: U 0 = 12 V Schwellenspannung: U th = 3 V Steuerfaktor: β = 2 ma/v 2 Widerstandswert: R G = 1 MW (a) Dimensionieren

Mehr

Transistor als Analogverstärker: rker: die Emitterschaltung

Transistor als Analogverstärker: rker: die Emitterschaltung Transistor als Analogverstärker: rker: die Emitterschaltung a.) Wahl der Versorgungsspannung b.) Arbeitspunkteinstellung, Wahl des Transistors c.) Temperaturabhängigkeit des Arbeitspunkts d.) Einfügen

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe 18.2.08 PHYSIKALISHES PRAKTIKM FÜR ANFÄNGER LGyGe Versuch: E 8 - Transistor 1. Grundlagen pnp- bzw. npn-übergang; Ströme im und Spannungen am Transistor, insbesondere Strom- und Spannungsverstärkung; Grundschaltungen,

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 1. Klausur Grundlagen der Elektrotechnik I-B 25. Mai 2004 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

Versuch 2 der Bipolartransistor

Versuch 2 der Bipolartransistor PRAKTIKUM ANALOGELEKTRONIK WS 2009/2010 VERSUCH 2 1 Versuch 2 der Bipolartransistor 1. Emitterschaltung Das Aufnehmen vollständiger Kennlinien wäre viel zu zeitaufwendig. Wir beschränken uns deshalb auf

Mehr

Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1

Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1 Kennlinien von Dioden: I / A / V I = I S (e / T ) mit : T = kt / e 6mV I S = Sperrstrom Zusammenfassung Elektronik Dio. Linearisiertes Ersatzschaltbild einer Diode: Anode 00 ma I F r F 00 ma ΔI F Δ F 0,5

Mehr

Versuch 2: Halbleiterparameterextraktion

Versuch 2: Halbleiterparameterextraktion Labor Elektronische Schaltungen Prof. Dr. P. Stuwe Dipl.-Ing. B. Ahrend Versuch 2: Halbleiterparameterextraktion 1 Theorie Transistoren bilden die Grundbausteine der elektronischen Schaltungen. Ein Transistor

Mehr

1. Diode und Transistor

1. Diode und Transistor 1. Diode und Transistor Vergleichen Sie Diode und Transistor aus Bild 1. a) Wie groß sind jeweils die Elektronenströme? b) Wie groß sind jeweils die Löcherströme? E B C 18-3 N = A 17-3 10 cm 16-3 Basislänge

Mehr

Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen

Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski Transistor Eigenschaften einstufiger Transistor-Grundschaltungen Inhaltsverzeichnis 1 Transistorverstärker - Bipolar 3 1.1 Dimensionierung / Einstellung

Mehr

(Operationsverstärker - Grundschaltung)

(Operationsverstärker - Grundschaltung) Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Übung 5 Aufgabe 5.1 ( - Grundschaltung) Im Bild 5.1 ist eine

Mehr

Transistor BJT I. Roland Küng, 2009

Transistor BJT I. Roland Küng, 2009 Transistor BJT I Roland Küng, 2009 Aufbau-Bezeichnungen Typ NPN Typ PNP Aufbau Praktisch Typ NPN B Schicht dünn E Schicht hoch dotiert (viel Phosphor bei n, Bor bei p) B E C Funktionsweise I E hoch dotiert

Mehr

Aufgaben zur Analogen Schaltungstechnik!

Aufgaben zur Analogen Schaltungstechnik! Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt Aufgaben Analoge Schaltungstechnik Prof. Dr. D. Ehrhardt 26.4.2017 Seite 1 Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt

Mehr

Diplomprüfung SS 2010

Diplomprüfung SS 2010 Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Diplomprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Prof. Dr. G. Buch Prof. Dr. T. Küpper Zugelassene Hilfsmittel: alle

Mehr

v p v n Diplomprüfung Elektronik SS 2006 Montag,

v p v n Diplomprüfung Elektronik SS 2006 Montag, FH München FB 3 Maschinenbau Diplomprüfung Elektronik SS 6 Montag, 7.7.6 Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Name: Vorname: Sem.: Dauer der Prüfung: 9 Minuten Homogene

Mehr

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position! FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.

Mehr

NPN C C Abb.1: Schaltsymbol und schematische Darstellung eines NPN-Transistors

NPN C C Abb.1: Schaltsymbol und schematische Darstellung eines NPN-Transistors Theorie Transistor Ein Transistor ist ein, in der modernen Elektronik, unerlässliches Halbleiterbauelement. Es gibt zwei wichtige verschiedene Arten von Transistoren: die bipolaren Transistoren und die

Mehr

O perationsverstärker

O perationsverstärker O perationsverstärker Gliederung: - Was ist ein OPV? - Kurze Geschichte des OPV - Funktionsweise - Aufbau - Grundschaltungen Was ist ein OPV?? Kurzer Abriss über die Funktion - Hat 2 Eingänge, einen Ausgang

Mehr

Unterschrift: Hörsaal: Platz-Nr.:

Unterschrift: Hörsaal: Platz-Nr.: FH München FK 3 Maschinenbau Diplomprüfung Elektronik SS 8 Mittwoch 6.7.8 Prof. Dr. Höcht Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: nterschrift: Hörsaal: Platz-Nr.:

Mehr

Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen

Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen GRUNDLAGENLABOR 1(15) Fachbereich Systems Engineering Grundlagen - Labor Praktikumsübung Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen Versuchsziele: Kennenlernen von

Mehr

4.1 Auswirkung von Gegenkopplung bei Emitter- bzw. Source-Schaltung

4.1 Auswirkung von Gegenkopplung bei Emitter- bzw. Source-Schaltung Kapitel 4 Schaltungselemente 4.1 Auswirkung von Gegenkopplung bei Emitter- bzw. Source-Schaltung Eine gebräuchliche Schaltung mit Gegenkopplung ist in Bild 4.1 dargestellt. Gegengekoppelt wird durch Einfügen

Mehr

Fortgeschrittenen-Praktikum I-U-Kennlinien an Halbleitern

Fortgeschrittenen-Praktikum I-U-Kennlinien an Halbleitern F-Praktikum Versuch 1.8 Diego Semmler, Nils Höres Seite 1/13 Fortgeschrittenen-Praktikum I-U-Kennlinien an Halbleitern Diego Semmler, Nils Höres Inhaltsverzeichnis Motivation...2 Aufgabenstellung...2 Energiebandstruktur...2

Mehr

Vorlesung Elektronik I 1 I 2 U 2

Vorlesung Elektronik I 1 I 2 U 2 UniversitätPOsnabrück Fachbereich Physik Vorlesung Elektronik I Dr. W. Bodenberger Verstärker mit Transistoren Abgeschlossener Vierpol in h - Parameter Darstellung. / C 8 EA HF D 2 = H= A JA H, = HI JA

Mehr

Bericht zum Versuch Transistor

Bericht zum Versuch Transistor Bericht zum Versuch Transistor Anton Haase, Michael Goerz 22. September 2005 GP II Tutor: K. Lenz 1 Einführung Funktionsweise des Transistors Ein Transistor ist ein elektronisches Bauelement, welches auf

Mehr

Diplomvorprüfung SS 2009 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2009 Fach: Elektronik, Dauer: 90 Minuten Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung Elektronik Seite 1 von 8 Diplomvorprüfung SS 2009 Fach: Elektronik,

Mehr

Klausur "Elektronik und Messtechnik" am Teil: Elektronik

Klausur Elektronik und Messtechnik am Teil: Elektronik Name, Vorname: Matr.Nr.: Klausur "Elektronik und Messtechnik" 9115 am 01.10.2004 1. Teil: Elektronik Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 2 h. Zugelassene Hilfsmittel sind: Taschenrechner

Mehr

5 Bipolar- und Feldeffekt-Transistoren

5 Bipolar- und Feldeffekt-Transistoren Fachbereich Physik Elektronikpraktikum 5 Bipolar- und Feldeffekt-Transistoren Stichworte zur Vorbereitung: Aufbau und Funktion, Löcherleitung, Elektronenleitung, Eingangskennlinien, Ausgangskennlinien,

Mehr

Referat Operationsverstärker Wintersemester 2004/2005

Referat Operationsverstärker Wintersemester 2004/2005 Holger Markmann Referat Operationsverstärker Wintersemester 2004/2005... 1 Prinzipieller Aufbau eines OPs... 1 Grundschaltungen eines OPs mit dazugehörigen Kennlinien... 2 Frequenzverhalten eines OPs...

Mehr

Sommersemester Elektronik / Mikroprozessortechnik Dauer: 90 Minuten

Sommersemester Elektronik / Mikroprozessortechnik Dauer: 90 Minuten Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Sommersemester 2013 Elektronik / Mikroprozessortechnik Dauer: 90 Minuten Matr.-Nr.: Name,

Mehr

10-1. Leybold-Heraeus: Grundlagen der Elektronik Tietze-Schenk: Halbleiter-Schaltungstechnik (Springer-Verlag, 1990)

10-1. Leybold-Heraeus: Grundlagen der Elektronik Tietze-Schenk: Halbleiter-Schaltungstechnik (Springer-Verlag, 1990) 10-1 Elektronik Vorbereitung: Halbleiter und deren charakteristische Eigenschaften, einfache Halbleiterbauelemente: Heißleiter NTC, Photowiderstand LDR, Eigenleitung, Störstellenleitung, pn-übergang, Aufbau

Mehr

AfuTUB-Kurs Aufbau. Technik Klasse A 06: Transistor & VerstÃďrker. Amateurfunkgruppe der TU Berlin. https://dk0tu.de.

AfuTUB-Kurs Aufbau. Technik Klasse A 06: Transistor & VerstÃďrker. Amateurfunkgruppe der TU Berlin. https://dk0tu.de. Technik Klasse A 06: Transistor & VerstÃďrker Amateurfunkgruppe der TU Berlin https://dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung

12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung 2. Vorlesung Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung Campus-Version Logix. Vollversion Software und Lizenz Laboringenieur

Mehr

I C. T A p` A p I B U BE U B U CE. 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker

I C. T A p` A p I B U BE U B U CE. 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker Eine Verstärkung von kleinen Gleichspannungssignalen (1-10mV) ist mit einem Transistor nicht möglich, da einerseits die Arbeitspunkteinstellung

Mehr