Sourceschaltung mit selbstleitendem MOSFET

Größe: px
Ab Seite anzeigen:

Download "Sourceschaltung mit selbstleitendem MOSFET"

Transkript

1 BEISPIEL 5.5: Sourceschaltung mit selbstleitendem MOSFET R D C R G Versorgungsspannung: U 0 = 12 V Schwellenspannung: U th = 3 V Steuerfaktor: β = 2 ma/v 2 Widerstandswert: R G = 1 MW (a) Dimensionieren Sie den Widerstand R D so, dass der MOSFET an der Grenze zwischen Ohmschem und Stromquellenbereich arbeitet. (b) Berechnen Sie die Kleinsignal-Spannungsverstärkung v u. (c) Berechnen Sie den Eingangswiderstand r e. (d) Berechnen Sie den Ausgangswiderstand r a.

2 BEISPIEL 5.6: Stromquelle I 0 R L R S r a Schwellenspannung: U th = 4 V Steuerfaktor: β = 1,5 ma/v 2 Early-Spannung: Widerstandswert: dβ dt T K β = 1 β U Y = 20 V R S = 470 W U 0 und R L so, dass sich der MOSFET im Stromquellenbereich bendet. = 0,005 K 1 (a) Berechnen Sie den Stromquellenstrom I 0. (b) Berechnen Sie den Temperaturkoezienten des Stromquellenstroms unter Vernachlässigung der Temperaturabhängigkeit der Schwellspannung. Hinweis: Es ist rechnerisch einfacher, die quadratische Gleichung für I D abzuleiten als die Endformel. Bemerkung : Wenn Sie genauer rechnen wollen, können Sie zusätzlich die Temperaturabhängigkeit der Schwellenspannung berücksichtigen (du th /dt = 2 mv/k). (c) Berechnen sie den Ausgangswiderstand r a. (d) Zeichnen Sie die analoge Stromquelle mit einem p-mosfet.

3 BEISPIEL 5.7: Dierenzverstärker R D T 1 T 2 T 3 R S Versorgungsspannungen: U + = 15 V U = 15 V Schwellenspannung: U th = 3,5 V Steuerfaktor: β = 2,5 ma/v 2 Widerstandswert: Eingangs-Ruhespannung: R D = 2,7 kw 0 = 0 V Spannungsverstärkung: v u = 5 U U (a) Dimensionieren Sie den Widerstand R S so, dass sich die Spannungsverstärkung v u einstellt. Welchen Wert hat dann die Ausgangs-Ruhespannung 0? (b) Wie groÿ muss die Versorgungsspannung U + mindestens gewählt werden, damit der Arbeitspunkt von T 2 im Stromquellenbereich liegt?

4 BEISPIEL 5.8: Dierenzverstärker R D R D U a Versorgungsspannungen: U + = 15 V U = 15 V T T 1 2 Schwellenspannungen: U th1 = U th2 = 2 V U th3 = U th4 = 2 V Steuerfaktor: β = 5 ma/v 2 T 4 R V T 3 Widerstandswert: Ruhespannungen: Stromquellenstrom: T K β = 1 β dβ dt R D = 2 kw 0 = 0 V U DS3,0 = 10 V I D3,0 = 5 ma = 0,005 K 1 R S R S U U (a) Dimensionieren Sie die Widerstände R S und R V der Stromquelle so, dass sich der Drainstrom I D3,0 einstellt. (b) Berechnen Sie die Spannungsverstärkung v u. (c) Bestimmen Sie den Temperaturkoezienten T K vu = 1/v u dv u /dt der Spannungsverstärkung. Hinweis: Die Temperaturabhängigkeit des Stromquellenstroms kann vernachlässigt werden. (d) Überprüfen Sie, dass T 1 und T 2 im Stromquellenbereich arbeiten.

5 BEISPIEL 5.9: Vergleich zweier Sourceschaltungen Schaltung 1 Schaltung 2 T 2 T 1 R L T 1 Versorgungsspannung: U 0 = 12 V Schwellenspannungen: U th1 = U th2 = 1 V Steuerfaktoren: β 1 = 2 ma/v 2 β 2 = 20 µa/v 2 (a) Berechnen Sie die Eingangs-Ruhespannung 0, für die der Transistor T 1 in Schaltung 1 gerade an der Grenze zwischen Ohmschem und Stromquellenbereich arbeitet. (b) Berechnen Sie zu dieser Eingangs-Ruhespannung die Spannungsverstärkung v u. (c) Ersetzen Sie Transistor T 2 durch einen Ohmschen Widerstand R L (Schaltung 2), sodass der oben berechnete Arbeitspunkt von Transistor T 1 und die Spannungsverstärkung v u erhalten bleiben. Dimensionieren Sie den Widerstand R L und die neue erforderliche Versorgungsspannung U 0.

6 BEISPIEL 5.10: Sourcefolger mit pmosfets R L R L T 2 T T T 1) 2) 3) Versorgungsspannung: U 0 = 5 V Generator-Innenwiderstand: R G = 50 W Eingangs-Ruhespannung: 0 = 1 V Lastwiderstand: R L = 800 W Bipolartransistor: MOSFETs: Flussspannung: U f = 0,6 V Schwellenspannung T : U th = 1 V du f = 2 mv/k Steuerfaktor T : β = 2,5 ma/v2 dt Temperaturspannung: U T = 25 mv T K β = 0,005 K 1 Stromverstärkung: B = 100 Schwellspannung T 2 : U th2 = 1 V Restspannung: U ECsat = 0,1 V Steuerfaktor T 2 : T K β2 = 0,005 K 1 Die Early-Leitwerte der Transistoren können vernachlässigt werden. (a) Bestimmen Sie in den Schaltungen 1 und 2 die Ausgangs-Ruhespannung 0. Dimensionieren Sie den Steuerfaktor β 2 von MOSFET T 2 in Schaltung 3 so, dass sich dieselbe Ausgangs- Ruhespannung 0 wie in Schaltung 2 ergibt. (b) Berechnen Sie die Spannungsverstärkung v u. (c) Berechnen Sie den Eingangswiderstand r e. (d) Berechnen Sie den Ausgangswiderstand r a. (e) Bestimmen Sie die Temperaturabhängigkeit der Ausgangs-Ruhespannung d0 /dt. Hinweis zu Schaltung 2 : Es ist rechnerisch einfacher, die quadratische Gleichung für 0 abzuleiten als die Endformel.

7 BEISPIEL 5.11: CMOS-Dierenzverstärker T 3 T 4 I a T 1 T 2 I 0 U Versorgungsspannungen: Stromquellenstrom: U + = 5 V U = 5 V I 0 = 2 ma Schwellenspannungen: U th1 = U th2 = U th3 = U th4 = 1 V Steuerfaktoren: β 1 = β 2 = β 3 = β 4 = 2 ma/v 2 Arbeitspunkt: 0 = 0 V (a) Berechnen Sie den Ausgangs-Ruhestrom I a0. (b) Berechnen Sie die Übertragungssteilheit g md = i a /u e. (c) In welchem Bereich darf sich die Ausgangsspannung bewegen, damit alle Transistoren im Stromquellenbereich arbeiten?

8 BEISPIEL 5.12: CMOS-Verstärker T 2 Versorgungsspannungen: U + = 8 V U = 8 V T 1 R L Schwellenspannungen: U th1 = U th2 = 2 V Steuerfaktoren: β 1 = β 2 = 0,1 ma/v 2 Early-Spannung: U Y = 33,3 V Widerstandswert: R L = 100 kw Arbeitspunkt: 0 = 0 V U (a) Berechnen Sie die Kleinsignal-Verstärkung v u = u a /u e unter Vernachlässigung der Ausgangsleitwerte der Transistoren. (b) Berechnen Sie die Kleinsignal-Verstärkung v u = u a /u e unter Berücksichtigung der Ausgangsleitwerte der Transistoren.

9 BEISPIEL 5.13: CMOS-Inverter mit ungleichen MOSFETs T 2 T 1 Versorgungsspannung: U 0 = 5 V Schwellenspannungen: U th2 = 1 V Steuerfaktoren: β 1 = 0,9 ma/v 2 β 2 = 0,4 ma/v 2 Da die Löcherbeweglichkeit geringer als die Elektronenbeweglichkeit ist, ist der Steuerfaktor des pmosfet bei gleicher Geometrie geringer als jener des nmosfet. In diesem Beispiel soll die Ungleichheit der Steuerfaktoren durch unterschiedliche Schwellenspannungen ausgeglichen werden. (a) Wie muss die Schwellenspannung des nmosfet T 1 eingestellt werden, damit der senkrechte Teil der Übertragungskennlinie bei = U 0 /2 liegt? (b) Zwischen welchen Werten der Ausgangsspannung liegt der senkrechte Teil der Übertragungskennlinie? (c) In welchen Eingangsspannungsbereichen ist = 0 bzw. = U 0? (d) Skizzieren Sie die Übertragungskennlinie ( ). (e) Skizzieren Sie den Querstrom I D1 = I D2 als Funktion der Eingangsspannung. Wie groÿ ist sein Maximalwert I D,max? Hinweis: Unterscheiden Sie die verschiedenen Arbeitsbereiche. Es gibt jeweils zwei Möglichkeiten, den Querstrom zu berechnen (I D1 oder I D2 ). Wählen Sie immer die einfachere. I D [ma] [V] 0,5 5 0,4 4 0,3 3 0,2 2 0,1 1 0,0 0 [V]

10 BEISPIEL 5.14: CMOS-NAND-Gatter T 4 T 3 Versorgungsspannung: U 0 = 5 V T 2 Schwellenspannungen: U th1 = U th2 = U th3 = U th4 = 1 V Steuerfaktoren: β 1 = β 2 = β 3 = β 4 = 0,5 ma/v 2 2 T 1 U e1 (a) Tragen Sie in die nachfolgende Tabelle für die gegebenen Eingangsspannungen ein, in welchem Betriebszustand sich die einzelnen Transistoren benden (S für Sperrbereich, O für Ohmschen Bereich, I für Stromquellenbereich). Geben Sie weiters die Ausgangsspannung an. 1 2 T 1 T 2 T 3 T U U 0 U 0 U 0 (b) Betrachten Sie in diesem und den folgenden Punkten die Übertragungskennlinie (1 ) für 2 = U 0. Bis zu welchem Wert darf 1 von 1 = 0 ausgehend erhöht werden, ohne dass sich die Ausgangsspannung ändert? Bis zu welchem Wert darf 1 von 1 = U 0 ausgehend vermindert werden, ohne dass sich die Ausgangsspannung ändert? (c) Bei welcher Eingangsspannung 1 gibt es einen vertikalen Teil der Übertragungskennlinie (1 )? (d) Zwischen welchen Werten der Ausgangsspannung verläuft der vertikale Teil der Übertragungskennlinie (1 )? Hinweis: Der Transistor T 2 bendet sich in diesem Fall im Ohmschen Bereich. Approximieren Sie die Kennlinie im Ohmschen Bereich durch den linearen Term in U DS. (e) Skizzieren Sie die Übertragungskennlinie (1 ) des CMOS-NOR-Gatters und vergleichen Sie sie mit der Übertragungskennlinie des aus T 1 und T 3 gebildeten CMOS-Inverters.

Schaltungstechnik

Schaltungstechnik KLAUSUR Schaltungstechnik 26.07.2012 Prof. Dr.-Ing. habil. F. Ellinger Dauer: 180 min. Aufgabe 1 2 3 4 5 6 Punkte 15 12 17 13 10 11 78 Modellgleichungen Für die Klausur werden folgende Transistormodelle

Mehr

Aufgabe 1 Bipolare Transistoren

Aufgabe 1 Bipolare Transistoren 2 22 Aufgabe Bipolare Transistoren (22 Punkte) Gegeben sei die folgende Transistor-Schaltung bestehend aus einem pnp- und einem npn-transistor. i b2 i c2 i b T2 i c T i 2 R 2 i a =0 u e u a U 0 i R Bild

Mehr

Fragenkatalog zur Übung Halbleiterschaltungstechnik

Fragenkatalog zur Übung Halbleiterschaltungstechnik Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2017/18 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,

Mehr

Fragenkatalog zur Übung Halbleiterschaltungstechnik

Fragenkatalog zur Übung Halbleiterschaltungstechnik Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2018/19 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,

Mehr

Aufgaben zur Analogen Schaltungstechnik!

Aufgaben zur Analogen Schaltungstechnik! Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt Aufgaben Analoge Schaltungstechnik Prof. Dr. D. Ehrhardt 26.4.2017 Seite 1 Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt

Mehr

LABORÜBUNG Feldeffekttransistor

LABORÜBUNG Feldeffekttransistor LABORÜBUNG Feldeffekttransistor Letzte Änderung: 14.4 2005 Lothar Kerbl Inhaltsverzeichnis Überblick... 2 Messaufgabe 1: Steuerkennlinie n-kanal j-fet... 2 Steuerkennlinien von MOS-FETs... 4 Theoretische

Mehr

Grundlagenorientierungsprüfung für Elektro- und Informationstechnik. Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek

Grundlagenorientierungsprüfung für Elektro- und Informationstechnik. Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 25.02.2005 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal:

Mehr

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters? Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters

Mehr

Transistor- und Operationsverstärkerschaltungen

Transistor- und Operationsverstärkerschaltungen Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild

Mehr

Analoge CMOS-Schaltungen

Analoge CMOS-Schaltungen Analoge CMOS-Schaltungen Von dem Großsignalschaltbild (Transienten-Analyse) zum Kleinsignalersatzschaltbild (AC-Analyse) 2. Vorlesung Schaltungen: analog Schaltungen: analog Analoge (Verstärker-)Schaltungen

Mehr

Elektronik II Grosse Übung zu Foliensatz E2_F5

Elektronik II Grosse Übung zu Foliensatz E2_F5 G. Kemnitz Institut für Informatik, TU Clausthal (E2-GF5) 9. Juni 2017 1/25 Elektronik II Grosse Übung zu Foliensatz E2_F5 G. Kemnitz Institut für Informatik, TU Clausthal (E2-GF5) 9. Juni 2017 G. Kemnitz

Mehr

Einführung in die Elektronik für Physiker

Einführung in die Elektronik für Physiker Hartmut Gemmeke Forschungszentrum Karlsruhe, IPE hartmut.gemmeke@kit.de Tel.: 07247-82-5635 Einführung in die Elektronik für Physiker JFET - MOSFET 11. Feldeffekt-Transistoren Ausgangskennlinie und typische

Mehr

Übung Integrierte Schaltungen 4. Übung: Kapazitäten, Arbeitspunkt, Kleinsignalverhalten

Übung Integrierte Schaltungen 4. Übung: Kapazitäten, Arbeitspunkt, Kleinsignalverhalten Übung Integrierte Schaltungen 4. Übung: Kapazitäten, Arbeitspunkt, Kleinsignalverhalten Organisatorisches Termine: 01.11.2013 15.11.2013 29.11.2013 13.12.2013 10.01.2014 http://www.meis.tu-berlin.de/menue/studium_und_lehre/

Mehr

Schaltungstechnik 1 (Wdh.)

Schaltungstechnik 1 (Wdh.) Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 16.04.2010 9:00 10:30 Uhr Name: Vorname: Matrikel-Nr.:

Mehr

PROTOKOLL ZUM VERSUCH TRANSISTOR

PROTOKOLL ZUM VERSUCH TRANSISTOR PROTOKOLL ZUM VERSUCH TRANSISTOR CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 2. Versuchsdurchführung 3 2.1. Transistorverstärker (bipolar) 3 2.2. Verstärker

Mehr

Aufgaben Elektronik III

Aufgaben Elektronik III Aufgaben Elektronik III 1. Ein Anreicherungs-MOSFET wird durch I D = 1mA { U GS 0,5 V U DS 1 2 U DS im Anlauf beschrieben (λ = 0). a) Bitte finden Sie heraus, ob es sich um einen PMOS oder NMOS Transistor

Mehr

Elektronik I, Foliensatz Schaltungen mit Bipolartransistoren

Elektronik I, Foliensatz Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, Technische Universität Clausthal 19. November 2014 1/54 Elektronik I, Foliensatz 3 1.4 Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, Technische

Mehr

Schaltungstechnik

Schaltungstechnik KLAUSUR Schaltungstechnik 6.07.01 Prof. Dr.-Ing. habil. F. Ellinger Dauer: 180 min. Aufgabe 1 3 4 5 6 Punkte 15 1 17 13 10 11 78 Modellgleichungen Für die Klausur werden folgende Transistormodelle verwendet

Mehr

Elektronik II Grosse Übung zu Foliensatz E2_F2

Elektronik II Grosse Übung zu Foliensatz E2_F2 G. Kemnitz Institut für Informatik, TU Clausthal (E2-GF2) 19. April 2017 1/56 Elektronik II Grosse Übung zu Foliensatz E2_F2 G. Kemnitz Institut für Informatik, TU Clausthal (E2-GF2) 19. April 2017 2.

Mehr

Aufgabe 1 Bipolare Transistoren

Aufgabe 1 Bipolare Transistoren 2 Aufgabe 1 Bipolare Transistoren (22 Punkte) Gegeben sei die folgende Transistor-Schaltung bestehend aus einem pnp- und einem npn-transistor. i b2 i c2 i b1 T2 i c1 T1 i 2 R 2 i a =0 u e u a U 0 i 1 R

Mehr

Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Mittwoch, den Uhr

Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Mittwoch, den Uhr Grundlagenorientierungsprüfung für Elektroingenieure Schaltungstechnik 1 Univ.-Prof. Dr. techn. Josef A. Nossek Mittwoch, den 27.02.2002 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal: Platz-Nr.:

Mehr

Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik,

Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik, Feldeffekttransistoren 1 JFET Sperrschicht - FET (Junction FET) Sperrschicht breitet sich mit Ansteuerung in den Kanal aus und sperrt diesen Es gibt zwei Arten n-kanal, p-kanal 2 JFET Schaltzeichen 3 Das

Mehr

Aufgabe 1: Resistiver Touchscreen (20 Punkte)

Aufgabe 1: Resistiver Touchscreen (20 Punkte) 1 Aufgabe 1: Resistiver Touchscreen (20 Punkte) Gegeben sind zwei Widerstandsfilme aus Indiumzinnoxid, die auf einen Glasträger aufgedampft wurden. Diese sollen zur Realisierung eines berührungsempfindlichen

Mehr

Dipl.-Ing. Peter Zeh VDI Laborübung Analogelektronik HTW Berlin

Dipl.-Ing. Peter Zeh VDI Laborübung Analogelektronik HTW Berlin Name, Vorname Signum Datum: 1. Studiengang: B2ET 2. Gruppe: 3. Anlagenverzeichnis: Note: 1. Lernziele Arbeitspunkteinstellung am, dynamisches Verhalten von Verstärkerstufen, Ursachen für nichtlineare Verzerrungen,

Mehr

Elektronik II Grosse Übung zu Foliensatz E2_F2

Elektronik II Grosse Übung zu Foliensatz E2_F2 Elektronik II Grosse Übung zu Foliensatz E2_F2 G. Kemnitz 31. Mai 2018 2 Arbeitspunkt 2.1 Brückenschaltung Aufgabe 2.1: Untersuchung Widerstandsnetzwerk 1. Geben Sie die Schaltung in LTspice ein. 2. Exportieren

Mehr

Fachprüfung. Schaltungen & Systeme

Fachprüfung. Schaltungen & Systeme Fachprüfung Schaltungen & Systeme 12. September 2006 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7 Summe 1. 2. 3. Punkte

Mehr

Elektronik 1, Foliensatz 3: Schaltungen mit Bipolartransistoren

Elektronik 1, Foliensatz 3: Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, TU-Clausthal (E1F3.pdf) 16. November 2017 1/55 Elektronik 1, Foliensatz 3: Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, TU-Clausthal (E1F3.pdf)

Mehr

1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12

1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12 Seite 1 von 12 1. Einleitung Der Bipolartransistor ist ein Halbleiterbauelement welches aus einer npn bzw pnp Schichtfolge besteht (Er arbeitet mit zwei unterschiedlich gepolten pn Übergängen). Diese Halbleiterschichten

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 9. Vorlesung Dr.-Ing. Wolfgang Heenes 15. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Der Feldeffekt 2. Feldeffekttransistoren

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

Schaltungstechnik I. Übungsklausur, 18/

Schaltungstechnik I. Übungsklausur, 18/ Schaltungstechnik I Übungsklausur, 18/19.01.2010 Es gibt 90 Punkte und 90 Minuten Zeit. Also ein Punkt pro Minute. Erlaubte Hilfsmittel sind: Schreibutensilien und 5 Blätter DIN-A4 Formelsammlung Wir wünschen

Mehr

Elektronik II, Foliensatz 5 Verstärker

Elektronik II, Foliensatz 5 Verstärker G. Kemnitz Institut für Informatik, Technische Universität Clausthal 5. Juli 2013 1/43 Elektronik II, Foliensatz 5 Verstärker G. Kemnitz Institut für Informatik, Technische Universität Clausthal 5. Juli

Mehr

Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Montag, den Uhr

Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Montag, den Uhr Grundlagenorientierungsprüfung für Elektroingenieure Schaltungstechnik 1 Univ.-Prof. Dr. techn. Josef A. Nossek Montag, den 17.02.2003 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal: Platz-Nr.: Dieses

Mehr

Laborübung, NPN-Transistor Kennlinien

Laborübung, NPN-Transistor Kennlinien 15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später

Mehr

Aufgabe 1: Passive Bauelemente (20 Punkte)

Aufgabe 1: Passive Bauelemente (20 Punkte) 1 Aufgabe 1: Passive Bauelemente (20 Punkte) Gegeben ist eine Anordnung, bei dem ein Chip mittels eines dünnen Drahtes (Bonddraht) mit einer Leitung auf einer Platine verbunden ist. Der Bonddraht besteht

Mehr

(Operationsverstärker - Grundschaltung)

(Operationsverstärker - Grundschaltung) Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Übung 5 Aufgabe 5.1 ( - Grundschaltung) Im Bild 5.1 ist eine

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam Versuchsdatum: 10.11.2005 Betreuer: DI Bojarski 16. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................

Mehr

Abschlussprüfung Schaltungstechnik 2

Abschlussprüfung Schaltungstechnik 2 Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer

Mehr

Fachprüfung. Schaltungen & Systeme BA

Fachprüfung. Schaltungen & Systeme BA Fachprüfung Schaltungen & Systeme BA 15. Juli 2004 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name:... Matr.-Nr.:... Unterschrift:... Punkte Aufgabe.1.2.3.4.5.6.7.8.9 Summe 1. 2. 3. 4. 5.

Mehr

Prüfung aus Seite 1 von 7 Analoge Integrierte Schaltungen,

Prüfung aus Seite 1 von 7 Analoge Integrierte Schaltungen, Prüfung aus Seite 1 von 7 Analoge Integrierte Schaltungen, 354.026 29.1.2009 Beispiel 1 (30 %): Schaltung lt. Schaltplan Berechnen Sie den Drainstrom von M1. V DD =1,8V µ n C ox =100µA/V² V TH = 0,5V =0

Mehr

11. Übung Grundlagen der analogen Schaltungstechnik

11. Übung Grundlagen der analogen Schaltungstechnik 11. Übung Grundlagen der analogen Schaltungstechnik 1 Aufgabe (Klausur WS07/08: 40 min, 22 Punkte) - die Killeraufgabe, aber warum? Bootstrapschaltung und Kleinsignal-Transistormodell Gegeben ist die in

Mehr

U L. Energie kt ist groß gegenüber der Aktivierungs-

U L. Energie kt ist groß gegenüber der Aktivierungs- Probeklausur 'Grundlagen der Elektronik', SS 20. Gegeben ist die nebenstehende Schaltung. R 3 R R L U q 2 U q = 8 V R = 700 Ω =,47 kω R 3 = 680 Ω R L = 900 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen

Mehr

Praktikum, Bipolartransistor als Verstärker

Praktikum, Bipolartransistor als Verstärker 18. März 2015 Elektronik 1 Martin Weisenhorn Praktikum, Bipolartransistor als Verstärker Einführung Die Schaltung in Abb. 1 stellt einen Audio Verstärker dar. Damit lassen sich die Signale aus einem Mikrofon

Mehr

Matr. Nr.: Kennzahl: b) Bestimmen Sie den Strom durch beide Dioden durch grafische Netzwerkanalyse. (15 Punkte)

Matr. Nr.: Kennzahl: b) Bestimmen Sie den Strom durch beide Dioden durch grafische Netzwerkanalyse. (15 Punkte) 1. PROBETEST ZU HALBLEITER-SCHALTUNGSTECHNIK, WS 2017/18 DATUM Punktemaximum: 100 Testdauer: 90 min Vorname: Nachname: Matr. Nr.: Kennzahl: Hinweis zum Test: Alle nötigen Zwischenschritte angeben! Ergebnisse

Mehr

Fall 1: Diode D1 sperrt (u D1 < 0), Diode D2 leitet (i D2 > 0) Fall 2: Diode D1 leitet (i D1 > 0), Diode D2 sperrt (u D2 < 0)

Fall 1: Diode D1 sperrt (u D1 < 0), Diode D2 leitet (i D2 > 0) Fall 2: Diode D1 leitet (i D1 > 0), Diode D2 sperrt (u D2 < 0) 2 Aufgabe 1 Operationsverstärker (31 Punkte) Zuerst soll folgende Schaltung mit einem Operationsverstärker, linearen Widerständen und idealen Dioden untersucht werden. R 1 i z =0 R 1 u D2 D2 i D2 u e u

Mehr

Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen

Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski Transistor Eigenschaften einstufiger Transistor-Grundschaltungen Inhaltsverzeichnis 1 Transistorverstärker - Bipolar 3 1.1 Dimensionierung / Einstellung

Mehr

Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden

Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden Aufgabe 1: Kennlinie, Kennwerte, Ersatzschaltbilder und Arbeitspunktbestimmung Gegeben sind die nachfolgende

Mehr

Transistorschaltungen

Transistorschaltungen Transistorschaltungen V DD in Volt 3 2 V Ein - UTh,P V Ein - UTh,N 1-1 0 1 2 3 U Th,P U Th,N V Ein in Volt a) Schaltung b) Übertragungsfunktion Bipolar Transistorschaltung im System I Ein C Ein? V CC I

Mehr

Abschlussprüfung. Elektronische Bauelemente. Mechatronik + Elektrotechnik Bachelor. Name: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Abschlussprüfung. Elektronische Bauelemente. Mechatronik + Elektrotechnik Bachelor. Name: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Name: Abschlussprüfung Elektronische Bauelemente WS2010/11 Mechatronik + Elektrotechnik Bachelor Prüfungstermin: Prüfer: Hilfsmittel: 26.1.2011 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder

Mehr

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet.

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet. Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 4 Bipolartransistor als Schalter und Verstärker Übung 4: 07.06.2018 A1: Die Aufgabe 1 ist Grundlage

Mehr

Fall 1: Diode D1 sperrt (u D1 < 0), Diode D2 leitet (i D2 > 0) Fall 2: Diode D1 leitet (i D1 > 0), Diode D2 sperrt (u D2 < 0)

Fall 1: Diode D1 sperrt (u D1 < 0), Diode D2 leitet (i D2 > 0) Fall 2: Diode D1 leitet (i D1 > 0), Diode D2 sperrt (u D2 < 0) 2 31 Aufgabe 1 Operationsverstärker (31 Punkte) Zuerst soll folgende Schaltung mit einem Operationsverstärker, linearen Widerständen und idealen Dioden untersucht werden. i z =0 u D2 D2 i D2 u e u D1 D1

Mehr

LABORÜBUNG Diodenkennlinie

LABORÜBUNG Diodenkennlinie LABORÜBUNG Diodenkennlinie Letzte Änderung: 30.11.2004 Lothar Kerbl Inhaltsverzeichnis Messaufgabe 1: Kennlinie im Durchlassbereich... 2 Theoretische Kennlinie... 3 Messaufgabe 2 : Kennlinie einer Zenerdiode...

Mehr

Schaltungstechnik 1 (Wdh.)

Schaltungstechnik 1 (Wdh.) Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Donnerstag, den 9.04.009 13:00 14:30 Uhr Musterlösung Name: Vorname:

Mehr

Dotierter Halbleiter

Dotierter Halbleiter FH München FK 03 Maschinenbau Diplomprüfung Elektronik SS 007 Freitag, 0.7.007 Prof. Dr. Höcht (Prof. Dr. Kortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten 1 Homogene Halbleiter

Mehr

Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten.

Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten. 1. Beispiel: Kleinsignalschalter/Diodenarbeitspunkt (33Punkte) Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten. Gegeben: Boltzmann-Konstante: k=1.38*10-23 J/K

Mehr

7. Meßverstärker Springer-Verlag Berlin Heidelberg 1996, 2005, 2006, 2007, 2010, 2012

7. Meßverstärker Springer-Verlag Berlin Heidelberg 1996, 2005, 2006, 2007, 2010, 2012 7. Meßverstärker Schaltsymbole für elektronische Meßverstärker Abb. 7.1. Ausgangsspannung 7.1 Operationsverstärker 7.1.1 Idealer Operationsverstärker (7.1) Eingangsstrom (7.2) Eingangswiderstand (7.3)

Mehr

Prüfung aus Seite 1 Analoge Integrierte Schaltungen,

Prüfung aus Seite 1 Analoge Integrierte Schaltungen, Prüfung aus Seite 1 Analoge Integrierte Schaltungen, 354.026 29.12.2010 Beispiel 1: (30%) Eine integrierte Schaltung verwendet sowohl eine Sourcfolger (SF) als auch eine Sourceschaltung (CS), siehe Skizze.

Mehr

Kapitel 2. Grundschaltungen. 2.1 Allgemeines

Kapitel 2. Grundschaltungen. 2.1 Allgemeines Kapitel 2 Grundschaltungen 2.1 Allgemeines Die bisherige Beschreibung der Transistoren hatte sich auf den Fall beschränkt, dass die Emitter- bzw. Source-Elektrode die dem Eingang und dem Ausgang gemeinsame

Mehr

I C. T A p` A p I B U BE U B U CE. 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker

I C. T A p` A p I B U BE U B U CE. 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker 1. Schaltungsgrundlagen für gleichspannungsgekoppelte Transistorverstärker Eine Verstärkung von kleinen Gleichspannungssignalen (1-10mV) ist mit einem Transistor nicht möglich, da einerseits die Arbeitspunkteinstellung

Mehr

Ü - 15 U REF U M. x 11 5 V X D. 20 ms. Aufgabe 7.1

Ü - 15 U REF U M. x 11 5 V X D. 20 ms. Aufgabe 7.1 Aufgabe 7. Geben Sie für einen n-bit-adu mit n = 4,6,8,,,4,6 an, wie groß jeweils U LSB für unipolare und bipolare Betriebsweise ist, wenn U FS = V gewählt wird. (n=4: unip. U LSB =,65 V, bip. U LSB =,5

Mehr

Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen

Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen GRUNDLAGENLABOR 1(15) Fachbereich Systems Engineering Grundlagen - Labor Praktikumsübung Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen Versuchsziele: Kennenlernen von

Mehr

Angewandte Elektrotechnik. Übungen

Angewandte Elektrotechnik. Übungen Angewandte Elektrotechnik Übungen Sönke Carstens-Behrens Wintersemester 2009/2010 RheinAhrCampus 1 Übungen Angewandte Elektrotechnik, WS 2009/2010 2 RheinAhrCampus, S. Carstens-Behrens Angewandte Elektrotechnik,

Mehr

4.1 Auswirkung von Gegenkopplung bei Emitter- bzw. Source-Schaltung

4.1 Auswirkung von Gegenkopplung bei Emitter- bzw. Source-Schaltung Kapitel 4 Schaltungselemente 4.1 Auswirkung von Gegenkopplung bei Emitter- bzw. Source-Schaltung Eine gebräuchliche Schaltung mit Gegenkopplung ist in Bild 4.1 dargestellt. Gegengekoppelt wird durch Einfügen

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

ELEKTRONIK 2 SCHALTUNGSTECHNIK P4-1/5 Prof. Dr.-Ing. Johann Siegl. P4 Praktikum zum Feldeffekttransistor. P4 Praktikum zum Feldeffekttransistor

ELEKTRONIK 2 SCHALTUNGSTECHNIK P4-1/5 Prof. Dr.-Ing. Johann Siegl. P4 Praktikum zum Feldeffekttransistor. P4 Praktikum zum Feldeffekttransistor 1 von 5 15.03.2008 11:47 ELEKTRONIK 2 SCHALTUNGSTECHNIK P4-1/5 a) Der Feldeffekttransistor findet vielfältige Anwendung in Elektroniksystemen. Die wichtigsten Anwendungen sind der Feldeffekttransistor

Mehr

Übungsaufgaben EBG für Mechatroniker

Übungsaufgaben EBG für Mechatroniker Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:

Mehr

Analoge CMOS-Schaltungen. Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil. Roland Pfeiffer 7. Vorlesung

Analoge CMOS-Schaltungen. Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil. Roland Pfeiffer 7. Vorlesung Analoge CMOS-Schaltungen Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil 7. Vorlesung Operational Transconductance Amplifier OTA Rückblick: Differenzverstärker OTA (genau: OTA mit NMOS-Eingangsstufe

Mehr

Vorbereitung Operationsverstärker

Vorbereitung Operationsverstärker Vorbereitung Operationsverstärker Marcel Köpke & Axel Müller 30.05.2012 Inhaltsverzeichnis 1 Emitterschaltung eines Transistors 4 1.1 Einstuger, gleichstromgegengekoppelter Transistorverstärker.......

Mehr

Probeklausur Elektronik (B06)

Probeklausur Elektronik (B06) Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Montag, den Uhr

Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Montag, den Uhr Grundlagenorientierungsprüfung für Elektroingenieure Schaltungstechnik 1 Univ.-Prof. Dr. techn. Josef A. Nossek Montag, den 17.02.2003 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal: Platz-Nr.: Dieses

Mehr

Dipl.-Ing. Peter Zeh VDI Laborübung Analogelektronik HTW Berlin

Dipl.-Ing. Peter Zeh VDI Laborübung Analogelektronik HTW Berlin Name, Vorname Signum Datum: 1. Studiengang: B2ET 2. Gruppe: 3. Anlagenverzeichnis: Note: 1. Lernziele Umgang mit n, Grundschaltungen, Offsetkompensation, Rechenschaltungen. Für die Versuchsdurchführung

Mehr

Spannungen und Ströme

Spannungen und Ströme niversität Koblenz Landau Name:..... Institut für Physik orname:..... Hardwarepraktikum für Informatiker Matr. Nr.:..... Spannungen und Ströme ersuch Nr. 1 orkenntnisse: Stromkreis, Knotenregel, Maschenregel,

Mehr

Schaltungstechnik 1 (Wdh.)

Schaltungstechnik 1 (Wdh.) Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 04.04.2003 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.:

Mehr

Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren

Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren PraktikantIn 1 Matrikelnr: PraktikantIn 2 Matrikelnr: Datum: Aufgabe 2 durchgeführt: Aufgabe 3 durchgeführt: Aufgabe 4a durchgeführt: Aufgabe 4b durchgeführt: Aufgabe 4c durchgeführt: Aufgabe 4d durchgeführt:

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: = 18 V R 1 = 150 Ω Für die Z-Diode

Mehr

ELEKTRONIK 2 SCHALTUNGSTECHNIK L10-1/18 Prof. Dr.-Ing. Johann Siegl. L10 Kleinsignalanalyse von Transistorschaltungen

ELEKTRONIK 2 SCHALTUNGSTECHNIK L10-1/18 Prof. Dr.-Ing. Johann Siegl. L10 Kleinsignalanalyse von Transistorschaltungen 1 von 18 15.03.2008 11:42 ELEKTRONIK 2 SCHALTUNGSTECHNIK L10-1/18 a) b) Zur Verstärkung kleiner Signale (im allgemeinen < ca. 10mV) werden Bipolartransistoren oder Feldeffekttransistoren verwendet. Damit

Mehr

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Elektronik,

Mehr

Elektronik II 2. Groÿe Übung

Elektronik II 2. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 4. Mai 2015 1/31 Elektronik II 2. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 4. Mai 2015 1. Brückengleichrichter

Mehr

Aufgabe 1: Passive Bauelemente (20 Punkte)

Aufgabe 1: Passive Bauelemente (20 Punkte) 1 Aufgabe 1: Passive Bauelemente (0 Punkte) Kondensatoren erfüllen in elektronischen Schaltungen eine Vielzahl von Aufgaben. Im Folgenden sollen daher verschiedene Realisierungen von Kondensatoren untersucht

Mehr

v p v n Diplomprüfung Elektronik SS 2006 Montag,

v p v n Diplomprüfung Elektronik SS 2006 Montag, FH München FB 3 Maschinenbau Diplomprüfung Elektronik SS 6 Montag, 7.7.6 Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Name: Vorname: Sem.: Dauer der Prüfung: 9 Minuten Homogene

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

Aufgabe 1: Integrierte Hochfrequenzspule (20 Punkte)

Aufgabe 1: Integrierte Hochfrequenzspule (20 Punkte) Aufgabe : Integrierte Hochfrequenzspule (20 Punkte) Im Folgenden soll die Realisierung einer integrierten Spule zur Anwendung in einem Oszillator für ein 77 GHz KFZ-Radar betrachtet werden. Bei diesen

Mehr

Elektronik I, Foliensatz Schaltungen mit Bipolartransistoren

Elektronik I, Foliensatz Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, Technische Universität Clausthal 25. Dezember 2013 1/55 Elektronik I, Foliensatz 3 1.4 Schaltungen mit Bipolartransistoren G. Kemnitz Institut für Informatik, Technische

Mehr

Diplomprüfung SS 2010

Diplomprüfung SS 2010 Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Diplomprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Prof. Dr. G. Buch Prof. Dr. T. Küpper Zugelassene Hilfsmittel: alle

Mehr

Differenzverstärker. 9.1 Einleitung

Differenzverstärker. 9.1 Einleitung 9 Differenzverstärker 9.1 Einleitung Im letzten Abschnitt haben wir eine Möglichkeit zur elektronischen Temperaturmessung kennen gelernt. Temperaturen können auch mit Hilfe von Thermoelementen gemessen

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung Elektronische Bauelemente SS2013 Mechatronik + Elektrotechnik Bachelor Prüfungstermin: Prüfer: Hilfsmittel: 17.7.2013 (90 Minuten) Prof. Dr.-Ing. Großmann,

Mehr

Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1

Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1 Kennlinien von Dioden: I / A / V I = I S (e / T ) mit : T = kt / e 6mV I S = Sperrstrom Zusammenfassung Elektronik Dio. Linearisiertes Ersatzschaltbild einer Diode: Anode 00 ma I F r F 00 ma ΔI F Δ F 0,5

Mehr

Operationsverstärker. 24. Mai Martin Albert

Operationsverstärker. 24. Mai Martin Albert Operationsverstärker - Martin Albert - - 24. Mai 2006 - Gliederung Einführung Grundlagen Grundlegende Schaltungen spezielle Typen 2 Gliederung Einführung Begriff OPV Grundlagen Transistor Grundschaltungen

Mehr

Proseminar Statische CMOS- Schaltungen. Thema: CMOS-NOR-Gatter Gehalten von: Björn Fröhlich Prof. Dr. Zehendner SS05 - FSU Jena

Proseminar Statische CMOS- Schaltungen. Thema: CMOS-NOR-Gatter Gehalten von: Björn Fröhlich Prof. Dr. Zehendner SS05 - FSU Jena Statische CMOS- Schaltungen Thema: CMOS-NOR-Gatter Gehalten von: Björn Fröhlich Prof. Dr. Zehendner SS05 - FSU Jena Inhaltsübersicht 1. allgemeiner Aufbau 2. Gleichstrom Transfer Charakteristik 3. Transiente

Mehr

PSpice 2. Versuch 10 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik

PSpice 2. Versuch 10 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro- und Nanoelektronik Fachgebiet Elektronische Schaltungen und Systeme PSpice Versuch 10 im Informationselektronischen Praktikum Studiengang

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der

Mehr

Lösung zu Aufgabe 5.1

Lösung zu Aufgabe 5.1 Michael Reisch, Halbleiter-Bauelemente,.A., Springer 007 Lösung zu Aufgabe 5.1 Der Ausgangsleitwert eines MOSFET im Widerstandsbereich ist im LEVEL1-Modell λ = 0) im Grenzfall kleiner Werte von V DS gegeben

Mehr