2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben"

Transkript

1 Algorithmen und Algorithmisierung von Aufgaben 2-1

2 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung von Algorithmen: 1. Flussdiagramme 2. Struktogramme 3. Metasprachen 4. Höhere Programmiersprachen 2-2

3 Computerverarbeitung als Black-Box: Eingabedaten Ausgabedaten Verarbeitungsverfahren (Algorithmus) Wann die Verarbeitungsverfahren die Eigenschaften der Algorithmen haben? 2-3

4 A L G O R I T H M E N Zum intuitiven Algorithmusbegriff sind folgende Fragestellungen zu beantworten: Gibt es zu einem Problem einen Algorithmus, der es läßt? Stellt eine Verfahrensbeschreibung einen Algorithmus dar? Gibt es zu einem Problem einen Algorithmus, der es in einer bestimmten Zeit läßt? 2-4

5 Merkmale von Algorithmen Wir betrachten Verfahrensvorschriften zur Lösung eines Problems als Algorithmen, wenn sie die folgenden (Markov sche) Merkmale besitzen: sie bestehen aus endlich vielen Verarbeitungsvorschriften ; die für den Verfahrenablauf notwendigen Informationen liegen vollständig zu Beginn der Verarbeitung vor ; sie spezifizieren eindeutig eine Folge elementarer, eindeutig definierter Operationen ; für jeden Satz von Eingabedaten kommt das Verfahren nach endlich vielen Schritten zu einem Ergebnis; die Anzahl der Schritte muß dabei nicht von vornherein abschätzbar sein. 2-5

6 Bei jedem Algorithmus unterscheiden wir zwischen dem Algorithmus als dem maschinenunabhängigen Verfahrensvorschrift und der Implementierung dieser Vorschrift, z. B. als Programm in einer Programmiersprache. Komplexität von Algorithmen Drei unterschiedliche Hauptkriterien sind zu berücksichtigen: die Komplexität der Methode (die algoritmische Komplexität), der Speicherplatzbedarf des Verfahrens (die Speicherkomplexität), die Laufzeit des Verfahrens (die Zeitkomplexität). 2-6

7 Komplexitätsmaße die Anzahl zeitkritischer Elementaroperationen (Vertauschungen, Multiplikationen,...), die Anzahl der Durchläufe innerer Schleifen, die Anzahl von Vergleichsoperationen, die Anzahl der belegten Speicherplätze, Records, Sektoren Anmerkung: Jedes der oben angeführten Komplexitätsmaße wird ausgewertet: im ungünstigsten Fall (für die schlimmste Kombination von Eingabedaten), im mittleren Fall (für die übliche Kombination von Eingabedaten). 2-7

8 Die häufigsten Arten der Komplexität: konstant (eins) logarithmische lineare linearithmische quadratische kubische (dritter Ordnung) exponentielle Anmerkungen: Die Komplexität aller praktisch brauchbaren Verfahren ist höchstens polynomial, d. h. von einer Ordnung Methoden mit exponentieller Komplexität, sind in der Regel zu aufwendig für einen praktischen Einsatz. 2-8

9 Entwicklung von Algorithmen Dekomposition der Aufgabe Zerlegung von komplexen Aktionen (Verarbeitungsphasen, Teilaufgaben) auf die einfachere... auf elementare Abstraktion Vereinfachung des komplexen Problems durch Ignorieren von unwichtigen Details Formalismen für die Algorithmenentwicklung. 2-9

10 1. Flussdiagramme Symbole von speziell definierten Blöcken, verbundene mit Pfeilen. Symbol Bedeutung Anweisung Verarbeitungsschritt (Berechnung, Zuweisung,...) Bedingung Verzweigung (Test) Ein- / Ausgabeoperation (Einlesen, Druck,...) START 5 Anfang / Ende Verbindungsmarke 2-10

11 Beispiel: Zuweisung z = max ( x, y ) 2-11

12 2. Struktogramme Symbolische Darstellung: logischer Ausdruck ja nein Anweisung 1 Anweisung 2 Beispiel: Zuweisung z = max ( x, y ) x > y ja nein z x z y 2-12

13 Komplett: Eingabe von x und y x > y ja nein z x z y Ausgabe von z 2-13

14 2-14

15 Beispiel: Lösung der quadratischen Gleichung 2-15

16 Struktogramm: 2-16

17 3. Metasprachen Darstellung von Algorithmen in speziell entwickelten Sprachen, z.b.: Beispiel: Summe von N Ganzzahlen: EINGABE (N); S = 0; FOR I = 1 TO N S = S + I; AUSGABE (S); END; 2-17

18 4. Höhere Programmiersprachen Darstellung von Algorithmen in problemorientierten Programmiersprachen der höchsten Abstraktionsebene, z.b. in der Programmiersprache PASCAL: Read (N); S := 0; for I:=1 to N do S := S + I; Write (S);

Flussdiagramm / Programmablaufplan (PAP)

Flussdiagramm / Programmablaufplan (PAP) Flussdiagramm / Programmablaufplan (PAP) Basissysmbole Grenzstelle (Anfang, Zwischenhalt oder Ende des Programms/Algorithmus) Verbindung Zur Verdeutlichung der Ablaufrichtung werden Linien mit einer Pfeilspitze

Mehr

Grundlagen der Informatik I (Studiengang Medieninformatik)

Grundlagen der Informatik I (Studiengang Medieninformatik) Grundlagen der Informatik I (Studiengang Medieninformatik) Thema: 3. Datentypen, Datenstrukturen und imperative Programme Prof. Dr. S. Kühn Fachbereich Informatik/Mathematik Email: skuehn@informatik.htw-dresden.de

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen 1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Die O-Notation Analyse von Algorithmen Die O-Notation Prof. Dr. Margarita Esponda Freie Universität Berlin ALP II: Margarita Esponda, 5. Vorlesung, 26.4.2012 1 Die O-Notation Analyse von Algorithmen Korrektheit

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

Informatik 1. Teil 1 - Wintersemester 2012/2013. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik

Informatik 1. Teil 1 - Wintersemester 2012/2013. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Informatik 1 Teil 1 - Wintersemester 2012/2013 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen 0. Rechner und Programmierung

Mehr

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn Ideen und Konzepte der Informatik Programme und Algorithmen Kurt Mehlhorn November 2016 Algorithmen und Programme Algorithmus = Schritt-für-Schritt Vorschrift zur Lösung eines Problems. Formuliert man

Mehr

2. Algorithmenbegriff

2. Algorithmenbegriff 2. Algorithmenbegriff Keine Algorithmen: Anleitungen, Kochrezepte, Wegbeschreibungen,... Algorithmus: Berechnungsvorschrift, die angibt, wie durch Ausführung bestimmter Elementaroperationen aus Eingabegrößen

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen 11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv

Mehr

Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik

Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Informatik Teil 1 Wintersemester 2011/2012 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen Inhalt 1. Algorithmen -

Mehr

4.Grundsätzliche Programmentwicklungsmethoden

4.Grundsätzliche Programmentwicklungsmethoden 4.Grundsätzliche Programmentwicklungsmethoden 1.1 Grundlage strukturierter und objektorientierter Programmierung Begriff Software Engineering - umfaßt den gezielten Einsatz von Beschreibungsmitteln, Methoden

Mehr

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele. 1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Einführende Beispiele 2. Algorithmen Täglich werden Verarbeitungsvorschriften

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer

Mehr

Einführung in die Informatik Algorithms

Einführung in die Informatik Algorithms Einführung in die Informatik Algorithms Vom Problem zum Algorithmus und zum Programm Wolfram Burgard Cyrill Stachniss 1.1 Motivation und Einleitung In der Informatik sucht man im Normalfall nach Verfahren

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung

Mehr

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte Elementare Schritte Ein elementarer Berechnungsschritt eines Algorithmus ändert im Allgemeinen den Wert von Variablen Zuweisungsoperation von fundamentaler Bedeutung Zuweisungsoperator In Pascal := In

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

4. Einfache Programmstrukturen in C Einfache Programmstrukturen in C

4. Einfache Programmstrukturen in C Einfache Programmstrukturen in C Einfache Programmstrukturen in C 4-1 Welche einfache Programmstrukturen sind zu unterscheiden? Arithmetische und logische Ausdrücke und Zuweisungen Verzweigungen Unvollständige bedingte Anweisungen Vollständige

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Labor Software-Entwicklung 1

Labor Software-Entwicklung 1 Labor Software-Entwicklung 1 Übereinkunft zu Programmablaufplänen PAP - Grundlagen Wintersemester 2015/2016 Seite 1 von 9 Inhalt DIN 66 001: Sinnbilder für Programmablaufplan... 3 Grenzstelle... 3 Ablauflinie...

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Mathematische Grundlagen

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

Abstrakte Algorithmen und Sprachkonzepte

Abstrakte Algorithmen und Sprachkonzepte Abstrakte Algorithmen und Sprachkonzepte Thomas Röfer Begriff des Algorithmus Algorithmenaufbau Programmiersprachliche Grundkonzepte Interative und rekursive Algorithmen Rückblick Aufbau und Funktionsweise

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 2. Spezifikation Schrittweise Verfeinerung

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 2. Spezifikation Schrittweise Verfeinerung UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 2 Spezifikation Schrittweise Verfeinerung Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69,

Mehr

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Ziel Angabe der Effizienz eines Algorithmus unabhängig von Rechner, Programmiersprache, Compiler. Page 1 Eingabegröße n n Integer, charakterisiert die Größe einer Eingabe, die

Mehr

T (n) = max. g(x)=n t(n) S(n) = max. g(x)=n s(n)

T (n) = max. g(x)=n t(n) S(n) = max. g(x)=n s(n) Beim Logarithmischen Kostenmaß wird, im Gegensatz zum EKM, die Stelligkeit der Werte berücksichtigt und mit in die Laufzeit eingerechnet. Beispiel: R1 := R2 (R3), wobei R2 den Wert 5, R3 den Wert 10 und

Mehr

Ausgewählte Algorithmen: Sortieren von Listen

Ausgewählte Algorithmen: Sortieren von Listen Kapitel 11: Ausgewählte Algorithmen: Sortieren von Listen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Analyse von Algorithmen: Zeitkomplexität Elementare Sortierverfahren

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

3 Numerisches Rechnen

3 Numerisches Rechnen E Luik: Numerisches Rechnen 65 3 Numerisches Rechnen 31 Zahlen und ihre Darstellung Grundlage der Analysis bilden die reellen Zahlen Wir sind heute daran gewöhnt, eine reelle Zahl im Dezimalsystem als

Mehr

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen Willkommen zur Vorlesung Algorithmen und Datenstrukturen Mein Name: Andreas Berndt Zum Dozenten Diplom-Informatiker (TU Darmstadt) Derzeit Software-Entwickler für Web- Applikationen Derzeitige Sprachen:

Mehr

Algorithmen & Programmierung. Steuerstrukturen im Detail Selektion und Iteration

Algorithmen & Programmierung. Steuerstrukturen im Detail Selektion und Iteration Algorithmen & Programmierung Steuerstrukturen im Detail Selektion und Iteration Selektion Selektion Vollständige einfache Selektion Wir kennen schon eine Möglichkeit, Selektionen in C zu formulieren: if

Mehr

3.3.1 Digitale Filter

3.3.1 Digitale Filter Leseprobe Digitale Signalverarbeitung Abschnitt aus Algorithmische Bausteine 3.3.1 Digitale Filter In den folgenden Abschnitten sollen die digitalen Filter im Gegensatz zum Abschnitt Grundlagen der DSV

Mehr

5. Elementare Befehle und Struktogramme

5. Elementare Befehle und Struktogramme 5. Elementare Befehle und Struktogramme Programmablauf Beschreibung des Programmablaufs mittel grafischer Symbole Beispiel : Flussdiagramme ja nein Besser : Struktogramme Dr. Norbert Spangler / Grundlagen

Mehr

Informatik I Komplexität von Algorithmen

Informatik I Komplexität von Algorithmen Leistungsverhalten von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz

Mehr

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass f O g und auch g O f. Wähle zum Beispiel und G. Zachmann Informatik

Mehr

Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung

Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung Teil I Einführung Überblick 1 Vorbemerkungen 2 Algorithmen 3 4 Historischer Überblick Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 1 1 Vorbemerkungen Was ist Informatik? Informatik

Mehr

Effizienz von Algorithmen

Effizienz von Algorithmen Effizienz von Algorithmen Letzte Bearbeitung: Jan 211 Ein wichtiger Aspekt bei Algorithmen sind seine "Kosten". Wir wollen uns hier ausschließlich mit der Laufzeit des gewählten Algorithmus beschäftigen.

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4

Mehr

Steuerung von Programmabläufen. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Steuerung von Programmabläufen. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Steuerung von Programmabläufen Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 7. und 14. Mai 2009 For-Schleifen Bisher: Matlab -Kommandos

Mehr

Algorithmen und Datenstrukturen Laufzeitabschätzung

Algorithmen und Datenstrukturen Laufzeitabschätzung Algorithmen und Datenstrukturen Laufzeitabschätzung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren, Suchen,

Mehr

... direkte Umsetzung in Scheme. Prozeduren und von ihnen erzeugte Prozesse Gültigkeitsbereiche und Rekursion

... direkte Umsetzung in Scheme. Prozeduren und von ihnen erzeugte Prozesse Gültigkeitsbereiche und Rekursion Prozeduren und von ihnen erzeugte Prozesse Gültigkeitsbereiche und Rekursion Stand: Wir kennen Elementare ( primitive ) Operationen Kombination dieser Operationen Abstraktion zusammengesetzter Operationen

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr. Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet

Mehr

Grundlagen der Informatik Algorithmen und Komplexität

Grundlagen der Informatik Algorithmen und Komplexität Grundlagen der Informatik Algorithmen und Komplexität Prof. Dr. Bernhard Schiefer (basierend auf Unterlagen von Prof. Dr. Duque-Antón) bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Inhalt Einleitung

Mehr

Algorithmen und deren Beschreibung

Algorithmen und deren Beschreibung Grundlagen der Informatik 2. Vorlesung Algorithmen und deren Beschreibung Prof. Dr.-Ing. Thomas Wiedemann Fachgebiet Informatik / Mathematik Überblick zur 2. Vorlesung Vorgehensweise zur Entwicklung von

Mehr

Einführung in die Informatik I (autip)

Einführung in die Informatik I (autip) Einführung in die Informatik I (autip) Dr. Stefan Lewandowski Fakultät 5: Informatik, Elektrotechnik und Informationstechnik Abteilung Formale Konzepte Universität Stuttgart 24. Oktober 2007 Was Sie bis

Mehr

Algorithmen für schwierige Probleme

Algorithmen für schwierige Probleme Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 30. November 2011 Wiederholung Baumzerlegung G = (V, E) Eine Baumzerlegung von G ist ein Paar {X i i V T }, T, wobei T Baum mit Knotenmenge

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen 3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen Sortierproblem Eingabe: Folge von n natürlichen Zahlen a 1, a 2,, a n, die Folge

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: otto@theory.informatik.uni-kassel.de

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen.

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen. Ziele sind das Arbeiten mit Funktionen und dem Aufzählungstyp (enum), sowie - einfache Verzweigung (if else) - Alternativen switch case - einfache Schleifen (while oder do while) Aufgabe 3: Diese Aufgabe

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 2007 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 5 Votierung in der Woche vom 04.06.0708.06.07 Aufgabe 12 Manuelle Sortierung

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

System.out.println("TEXT");

System.out.println(TEXT); Inhaltsübersicht - Erstes Beispiel - Datentypen - Ausdrücke und Operatoren - Schleifen / Bedinungen - Struktogramme - Grundgerüst eines Programms in JAVA - Einlesen von Daten Erstes Beispiel public class

Mehr

Programmierkurs Python I

Programmierkurs Python I Programmierkurs Python I Michaela Regneri 2009-11-05 (Folien basieren auf dem gemeinsamen Kurs mit Stefan Thater) Übersicht Variablen Datentypen Werte Operatoren und Ausdrücke Kontrollstrukturen: if, while

Mehr

12. September 2012 Kompexität. Analyse von Algorithmen (Ziele) Empirische Analyse Beispiel Schlussfolgerungen

12. September 2012 Kompexität. Analyse von Algorithmen (Ziele) Empirische Analyse Beispiel Schlussfolgerungen Komplexität von Algorithmen Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 12. September 2012 ODE/FHTBM Komplexität von Algorithmen 12. September 2012 1/41 (Ziele)

Mehr

Algorithmen und Datenstrukturen 1-1. Seminar -

Algorithmen und Datenstrukturen 1-1. Seminar - Algorithmen und Datenstrukturen 1-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Inhalt der ersten beiden Vorlesungen Algorithmenbegriff Komplexität, Asymptotik

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

3. Ziel der Vorlesung

3. Ziel der Vorlesung 3. Ziel der Vorlesung Der Zweck der Vorlesung ist das Studium fundamentaler Konzepte in der Algorithmentheorie. Es werden relevante Maschinenmodelle, grundlegende und höhere Datenstrukturen sowie der Entwurf

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Schleifenanweisungen

Schleifenanweisungen Schleifenanweisungen Bisher: sequentielle Abarbeitung von Befehlen (von oben nach unten) Nun: Befehle mehrfach ausführen (= Programmschleife): for-anweisung - wenn feststeht, wie oft z.b.: eine Berechnung

Mehr

Theoretische Informatik Kap 2: Berechnungstheorie

Theoretische Informatik Kap 2: Berechnungstheorie Gliederung der Vorlesung 0. Grundbegriffe 1. Formale Sprachen/Automatentheorie 1.1. Grammatiken 1.2. Reguläre Sprachen 1.3. Kontextfreie Sprachen 2. Berechnungstheorie 2.1. Berechenbarkeitsmodelle 2.2.

Mehr

Algorithmen Ein erster Überblick

Algorithmen Ein erster Überblick Ein Beispiel zum Nachdenken Algorithmen Ein erster Überblick Vielleicht haben Sie schon einmal davon gehört oder sogar selbst erfahren, vor welchen Problemen sich reine Software- Anwender gelegentlich

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache Agenda für heute, 4. März, 2010 Zusammengesetzte if-then-else-anweisungen Datentypen Pascal ist eine streng typisierte Programmiersprache Für jeden Speicherplatz muss ein Datentyp t (Datenformat) t) definiert

Mehr

Fragen? Wie komme ich effizient zu einem Programm? Wie beschreibe/dokumentiere ich meine Idee?

Fragen? Wie komme ich effizient zu einem Programm? Wie beschreibe/dokumentiere ich meine Idee? Fragen? Wie komme ich effizient zu einem Programm? Wie beschreibe/dokumentiere ich meine Idee? Schritte beim Programmieren Idee, was der Roboter tun soll? EVA-Prinzip E: Eingabe Welche Daten werden über

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Dr. Tom Kamphans 1. Vorlesung 12.10.2016 1 Organisatorisches Vorlesung: Mittwochs 14:00 15:30, Raum F 201 Übung: Mittwochs 15:45 19:00, Raum F 225 Übung: alle zwei Wochen

Mehr

Kontrollstrukturen - Universität Köln

Kontrollstrukturen - Universität Köln Kontrollstrukturen - Universität Köln Mario Manno Kontrollstrukturen - Universität Köln p. 1 Was sind Sprachen Auszeichnungssprachen HTML, XML Programmiersprachen ASM, Basic, C, C++, Haskell, Java, Pascal,

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Hans Benker - Wirtschaftsmathematik Problemlösungen mit EXCEL Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Mit 138 Abbildungen vieweg TEIL I: EXCEL 1 EXCEL: Einführung 1 1.1 Grundlagen 1 1.1.1 Tabellenkalkulation

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

Datenstrukturen, Algorithmen und Programmierung 2

Datenstrukturen, Algorithmen und Programmierung 2 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS 2009 14. April 2009 Petra Mutzel Kurzvorstellung

Mehr

C++ Teil 2. Sven Groß. 16. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 22

C++ Teil 2. Sven Groß. 16. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 22 C++ Teil 2 Sven Groß IGPM, RWTH Aachen 16. Apr 2015 Sven Groß (IGPM, RWTH Aachen) C++ Teil 2 16. Apr 2015 1 / 22 Themen der letzten Vorlesung Hallo Welt Elementare Datentypen Ein-/Ausgabe Operatoren Sven

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

6. Iteration (Schleifenanweisungen)

6. Iteration (Schleifenanweisungen) 6. Iteration (Schleifenanweisungen) Java-Beispiel: TemperatureTable.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 9. Nov. 2015 2 Schwerpunkte While-Anweisung: "abweisende"

Mehr

Grundlagen der Fortran Sprache

Grundlagen der Fortran Sprache Kapitel 1 Grundlagen der Fortran Sprache Programmieren bezeichnet das Verfahren, in einer bestimmten Sprache (Syntax) Anweisungen (sog. Quellcode) für den Computer zu schreiben. Dieser Programmcode wird

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Einführung in die Programmierung Als Programmierung bezeichnet man die Tätigkeit Computerprogramme (software) zu erstellen. Konzeptioneller Entwurf Umsetzung des Entwurfs in Programmcode (Implementation):

Mehr

Kontrollstrukturen Blöcke / Schleifen / Bedingungen

Kontrollstrukturen Blöcke / Schleifen / Bedingungen Kontrollstrukturen Blöcke / Schleifen / Bedingungen 1 Einfache Anweisungen und Blöcke einfache Anweisung abgeschlossen mit Semikolon ; typische Fälle: o Deklaration, Zuweisung, Funktionsaufruf Sonderfall

Mehr

EINI LW/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 14/15

EINI LW/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 14/15 EINI LW/ Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 14/15 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-dortmund.de

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: otto@theory.informatik.uni-kassel.de

Mehr

Grundlagen der Modellierung und Programmierung, Übung

Grundlagen der Modellierung und Programmierung, Übung Grundlagen der Modellierung und Programmierung Übung Prof. Wolfram Amme LS Softwaretechnik Prof. Klaus Küspert LS Datenbanksysteme Prof. Birgitta König-Ries LS Verteilte Systeme Prof. Dr. Wilhelm Rossak

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.de Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

Klausur zur Wirtschaftsinformatik II im Grundstudium

Klausur zur Wirtschaftsinformatik II im Grundstudium Prof. Dr. R. Gabriel Sommersemester 2005 Wirtschaftsinformatik 19. August 2005 Ruhr-Universität Bochum Klausur zur Wirtschaftsinformatik II im Grundstudium - Die Bearbeitungszeit der Klausur beträgt 90

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 14: Der Begriff des Algorithmus (einige grundlegende Aspekte) Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen nwendung der Rekursion 11. Rekursion, Komplexität von lgorithmen Teil 2 Java-eispiele: Power1.java Hanoi.java Rekursiv definierte Funktionen - Fibonacci-Funktion - Fakultät, Potenz -... Rekursiver ufbau

Mehr

Programmiersprache 1 (C++) Prof. Dr. Stefan Enderle NTA Isny

Programmiersprache 1 (C++) Prof. Dr. Stefan Enderle NTA Isny Programmiersprache 1 (C++) Prof. Dr. Stefan Enderle NTA Isny 5. Kontrollstrukturen Allgemein Kontrollstrukturen dienen zur Steuerung des Programmablaufs. (Bemerkung: C und C++ besitzen die selben Kontrollstrukturen.)

Mehr