Heute nur MIPS-Praxis (4 Aufgaben)

Größe: px
Ab Seite anzeigen:

Download "Heute nur MIPS-Praxis (4 Aufgaben)"

Transkript

1 Themen heute Heute nur MIPS-Praxis (4 Aufgaben) Hinweis: Diese Aufgaben findet ihr auf den Übungsblättern zu den Tutorien (bei Aufgabe 4 wurde eine Teilaufgabe und im Tutorium #6 bereits geklärte Wissensfragen entfernt)

2 1. Aufgabe Welche Funktion hat die Unterroutine ab subroutine? subroutine berechnet den ganzzahligen Betrag des dreidimensionalen Vektors, der von $a0 referenziert wird Welche Ausgabe hat das Programm? floor(sqrt( )) = floor(sqrt(59)) = 7.data x:.word 3 Y:.word 1, 3, 7.text marke2: jr $ra addi $a0, $a0, 4 addi, $t3, $t3, 1 b marke1 # Aufruf eines Unterprogramms, welches die # Quadratwurzel einer Integerzahl in $v0 berechnet. # Das Ergebnis steht in $v0 subroutine: li $v0, 0 li $t3, 0 marke1: bge $t3, $a1, marke2 lw $t0, 0($a0) mul $t1, $t0, $t0 add $v0, $v0, $t1 main:.globl main la $a0, Y lw $a1, x jal subroutine move $a0, $v0 li $v0, 1 Syscall li $v0, 10 syscall jr $ra

3 1. Aufgabe (2) Gesucht sind die realen MIPS-Instruktionen, auf die die folgenden Pseudobefehle abgebildet werden (was machen die Befehle?) b [marke] Funktion: Unbedinger Branch zur Zielmarke Umsetzung: bgez $zero, [marke] neg $s3, $s2 Funktion: Negation von $s2 nach $s3 schreiben Umsetzung: sub $s3, $zero, $s2

4 1. Aufgabe (3) Was macht die Assemblerdirektive.align 3? Der Assemblierer richtet die darauf folgenden Daten im Speicher an einer Adresse aus, die ein Vielfaches von 8 (2 3 ) beträgt (Alignment) Warum dürfen bei Arithmetikoperationen mit doppelter Genauigkeit (welcher Datentyp also?) nur die Register mit gerader Nummer verwendet werden? Die Gleitkommaregister haben eine Breite von 32 Bit (4 Byte), ein Double-Wert jedoch 64 Bit (8 Byte). Deshalb werden zu dessen Speicherung zwei aufeinanderfolgende Gleitkommaregister verwendet.

5 1. Aufgabe (4) Gesucht: Adressen von A, B, C und D im folgenden Code.data 0x align 3 A:.byte 6, 5 B:.word 7, 4 C:.double D:.float Lösung: A: 0x B: 0x C C: 0x D: 0x

6 1. Aufgabe (5) Welche Gründe machen die Programmierung der MIPS- Architektur schwierig? Verzögertes Laden und Verzweigen (entsteht durch Nichtanhalten der Pipeline, weswegen der Folgebefehl schon ausgeführt wird) Einschränkungen im Befehlssatz und Befehlsformat Wenige Adressierungsarten Ein Assemblierer kann durch Reordering der Instruktionen (1. Punkt) und das Anbieten von Pseudobefehlen ( Punkt) diese Schwierigkeiten mindern

7 2. Aufgabe Gesucht: MIPS-Code für folgende Kontrollstruktur (Tafel) Erlaubte Instruktionen: slt und bne (was machen sie?) a sei in $t4, b in $s0, $at darf als Hilfsregister verwendet werden if (a <= b) { } marke1:

8 2. Aufgabe (2) Gesucht: MIPS-Code für folgende Kontrollstruktur (Tafel) Erlaubte Instruktionen: slt und bne (was machen sie?) a sei in $t4, b in $s0, $at darf als Hilfsregister verwendet werden if (a >= b) { } marke2:

9 2. Aufgabe (3) do { Gesucht: MIPS-Code für folgende Kontrollstruktur (Tafel) Erlaubte Instruktionen: slt und bne (was machen sie?) a sei in $t4, b in $s0, $at darf als Hilfsregister verwendet werden marke3: } while (a!= b);

10 2. Aufgabe (4) Was ist der Unterschied zwischen statischer und dynamischer Speicherverwaltung? Statisch: Speicher wird während der Assemblierung durch Assemblerdirektiven reserviert und steht danach während der kompletten Laufzeit zur Verfügung, seine Größe ist fest Dynamisch: Das Programm kann je nach Bedarf zur Laufzeit durch Syscalls so viel Speicher auf dem Heap allokieren, wie es benötigt; beim SPIM verwendet man hierzu den sbrk-syscall

11 3. Aufgabe Gesucht: MIPS-Code für folgende Kontrollstruktur (Tafel) a, b, c, d, i seien in $t0, $t1, $t2, $t3, $s0 a = b = c = 0; if (i < 5) { a = 1; b = 2; c = 3; } d = 5;

12 3. Aufgabe (2) Gesucht: MIPS-Code für folgende Kontrollstruktur (Tafel) a, b, c, d, i seien in $t0, $t1, $t2, $t3, $s0 a = b = c = 0; if (i < 5) { } a = 1; b = 2; c = 3; else { } a = 4; b = 5; c = 6; d = 5;

13 3. Aufgabe (3) Gesucht: MIPS-Code für folgende Kontrollstruktur (Tafel) a, b, c, d, i seien in $t0, $t1, $t2, $t3, $s0 int a[100];... sum = 0; for (i = 0; i < 100; i++) sum = sum + a [i];

14 3. Aufgabe (4) Gesucht: Was machen die folgenden MIPS-Befehle? addu $t3, $t2, $t1 $t3 = $t2 + $t1 Bei einem Überlauf wird kein Trap ausgelöst ( add unsigned, vgl. Tutfolien #6) andi $t3, $t2, 0x2000 $t3 = $t2 & 0x2000 (logisches UND) slt $t3, $t2, $t1 $t3 = ($t2 < $t1)? 1 : 0 lui $t3, 0x2000 Läd 0x2000 (16 Bit) in den höherwertigen Teil von $t3

15 3. Aufgabe (5) Wo wird beim Subroutinen-Aufruf (jal-befehl) die Rücksprungadresse gespeichert? Im Register $ra Bonusfrage: Was ist die Rücksprungadresse (bei SPIM) und warum? Die Rücksprungadresse zeigt auf die Instruktion zwei (!) Instruktionen hinter dem Sprungbefehl, also 8 Bytes danach Denn die Instruktion direkt nach dem Sprungbefehl wird nach Neuordnung der Instruktionen durch den Assemblierer als immer ausgeführter branch delay slot verwendet!

16 4. Aufgabe Was steht nach den folgenden MIPS-Befehlen jeweils im Zielregister (hexadezimale Schreibweise)? ori $s1, $zero, 20 0x14 sll $s2, $s1, 3 0xA0 slti $s3, $s2, 100 0x0 sub $s4, $s3, $s2 0xFFFFFF60 lui $s5, -7 0xFFF90000

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 6 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 5 am 25.05.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Besprechung des 4. Übungsblattes Was ist MIPS? SPIM-Simulator MIPS-Befehlsformate MIPS-Befehle Assemblerdirektiven Syscalls in MIPS

Besprechung des 4. Übungsblattes Was ist MIPS? SPIM-Simulator MIPS-Befehlsformate MIPS-Befehle Assemblerdirektiven Syscalls in MIPS Organisatorisches Es gibt kein Übungsblatt zur heutigen Abgabe, da sich durch ausfallende Vorlesungstermine entsprechende Verschiebungen ergeben haben Das jetzige Übungsblatt ist abzugeben bis zum nächsten

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Musterlösung zu Übung 3 Datum : 25.-26. Oktober 2018 Aufgabe 1: Wurzelverfahren nach Heron Das

Mehr

Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018

Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018 Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018 Aufgabe 1: Taktrate / Latenz Einzeltakt-Architektur Pipelining-Architektur Pipelining-Architektur 15 15 120 ps 15

Mehr

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining Einzeltakt-Architektur TI1 - Übung 6: Pipelining Pipelining-Architektur

Mehr

Musterlösung zur Klausur

Musterlösung zur Klausur Koblenz am 25. Februar 25 Uhr c.t., Hörsaal MD 28 Studiengang Informatik/Computervisualistik Musterlösung zur Klausur TECHNISCHE INFORMATIK B Prof. Dr. Ch. Steigner Name: Vorname: Matrikel-Nr.: Vergessen

Mehr

Programmiersprachen Einführung in C

Programmiersprachen Einführung in C Programmiersprachen Einführung in C Teil 1: Von der Maschinensprache zu C Prof. Dr. Maschinensprache: MIPS R2000 Was bewirkt folgendes Programm: 00100111101111011111111111100000 10101111101111110000000000010100

Mehr

Lösungsvorschlag zur 3. Übung

Lösungsvorschlag zur 3. Übung Prof Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik Wintersemester 09/10 1 Präsenzübungen 11 Schnelltest Lösungsvorschlag zur Übung a) Welche der folgenden Aussagen entsprechen

Mehr

28. März Name:. Vorname. Matr.-Nr:. Studiengang

28. März Name:. Vorname. Matr.-Nr:. Studiengang Klausur 28. März 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

Klausur Mikroprozessortechnik 29. März 2010

Klausur Mikroprozessortechnik 29. März 2010 Klausur Mikroprozessortechnik 29. März 2010 Name:... Vorname:... Matr.-Nr:... Studiengang:... Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 9. Juli 2015 Der MIPS-Prozessor MIPS R2000, von iamretro.gr Kurze Geschichte der MIPS-Architektur

Mehr

5.BMaschinensprache und Assembler

5.BMaschinensprache und Assembler Die Maschinenprogrammebene eines Rechners Jörg Roth 268 5.BMaschinensprache und Assembler Die vom Prozessor ausführbaren Befehle liegen im Binärformat vor. Nur solche Befehle sind direkt ausführbar. So

Mehr

Zusammenfassung: Grundlagen der Informatik Zahlensysteme, b-adische Darstellung, Umrechnung Beispiel: Umrechnung von ( ) 10 ins Dualsystem

Zusammenfassung: Grundlagen der Informatik Zahlensysteme, b-adische Darstellung, Umrechnung Beispiel: Umrechnung von ( ) 10 ins Dualsystem Zusammenfassung: Grundlagen der Informatik - Seite von 6 Zusammenfassung: Grundlagen der Informatik Zahlensysteme, b-adische Darstellung, Umrechnung Beispiel: Umrechnung von (69.59375) 0 ins Dualsystem

Mehr

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester 2016 Lorenz Schauer Mobile & Verteilte Systeme 12. Juli 2016 Agenda heute Grundlagen: Unterprogramme I Call-by-Value (CBV) vs. Call-by-Reference

Mehr

Unterstützung von Jump Tables

Unterstützung von Jump Tables Unterstützung von Jump Tables Assembler Code: Label_ 1: Label_2: Label_n: Maschinen Code: 0x05342120: 1011010110 0x05443004: 0001011101 0x06756900: 0000111000 Jump Table Nr Label Adresse 0 Label_1 0x05342120

Mehr

Technische Informatik I Übung 3: Assembler

Technische Informatik I Übung 3: Assembler Technische Informatik I Übung 3: Assembler Roman Trüb Computer Engineering Group, ETH Zürich 1 Lernziele Übung 3 Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Assembler Codeanalyse Aufgabe 2

Mehr

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 24. Februar 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten

Mehr

Vorlesung Rechnerarchitektur

Vorlesung Rechnerarchitektur Vorlesung Rechnerarchitektur Sommersemester 2017 Carsten Hahn 8. Juni 2017 Agenda Grundlagen: Wiederholung Kontroll-Strukturen Stack-Speicher Unterprogramme I Unterprogramme II Call-by-Value (CBV) vs.

Mehr

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33 Weitere Arithmetik Grundlagen der Rechnerarchitektur Assembler 33 Die speziellen Register lo und hi Erinnerung: ganzzahliges Produkt von zwei n Bit Zahlen benötigt bis zu 2n Bits Eine MIPS Instruktion

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM. Die MARS Umgebung

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM. Die MARS Umgebung Die MARS Umgebung MARS ist ein Simulationswerkzeug für MIPS Prozessoren Es enthält einen Assembler und eine Laufzeitumgebung Da das Wirtsystem (z.b. Windows) auf einem anderen Prozessor basiert, werden

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

5.GTypische Anwendungsfälle

5.GTypische Anwendungsfälle Die Maschinenprogrammebene eines Rechners Jörg Roth 337 5.GTypische Anwendungsfälle Wir betrachten im Folgenden typische Fälle aus dem Bereich imperativer Programmiersprachen und beschreiben, wie diese

Mehr

Einführung in die Systemprogrammierung 01

Einführung in die Systemprogrammierung 01 Einführung in die Systemprogrammierung 01 Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 24. April 2013 Administrativa Ab nächster Woche bitte Laptops in Übungen mitbringen OLAT-Paßwort

Mehr

Technische Informatik II Rechnerarchitektur

Technische Informatik II Rechnerarchitektur Technische Informatik II Rechnerarchitektur MMIX-Crashkurs Matthias Dräger, Markus Rudolph E-Mail: mdraeger@mi.fu-berlin.de rudolph@mi.fu-berlin.de www: tinyurl.com/mmix2010 www.matthias-draeger.info/lehre/sose2010ti2/mmix.php

Mehr

Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer

Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer Ziele der Übung Aufgabe 1 Ein lauffähiges Assembler-Programm Umgang mit dem Debugger Aufgabe 2 (Zusatzaufgabe) Lesen und Analysieren

Mehr

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache Assembler Programmierung Motivation Informatik II SS 2004 Teil 4: Assembler Programmierung Was ist ein Programm? Eine Reihe von Befehlen, die der Ausführung einer Aufgabe dient Dazu wird das Programm sequentiell

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Unterprogramme. Unterprogramme

Unterprogramme. Unterprogramme Unterprogramme Unterprogramme wichtiges Hilfsmittel für mehrfach benötigte Programmabschnitte spielen in höheren Programmiersprachen eine wesentliche Rolle in Assembler sind bestimmte Konventionen nötig

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de pascal.libuschewski [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2016 Übungsblatt 10 (Block C 2) (16

Mehr

Mikroprozessortechnik. 03. April 2012

Mikroprozessortechnik. 03. April 2012 Klausur 03. April 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten Blättern.

Mehr

Notwendigkeit für andere Instruktionsformate

Notwendigkeit für andere Instruktionsformate Notwendigkeit für andere Instruktionsformate add $t0, $s1, $s2 op rs rt rd shamt funct 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit R Typ? lw $t0, 32($s3) I Typ Opcode 6 Bit Source 5 Bit Dest 5 Bit Konstante oder

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Befehlssatz und Assembler-Sprache Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 21. Februar 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Der Binder Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 28. Mai 2015 Herausforderungen durch große Programme Große Programme: die meisten

Mehr

Die Maschinenprogrammebene eines Rechners Jörg Roth 294

Die Maschinenprogrammebene eines Rechners Jörg Roth 294 Die Maschinenprogrammebene eines Rechners Jörg Roth 294 5.E Die SPIM-Umgebung SPIM ist ein Simulationswerkzeug für MIPS-Prozessoren Es enthält einen Assembler und eine Laufzeitumgebung Da das Wirtsystem

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 8 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Aufgabe 1 : Assembler

Aufgabe 1 : Assembler Winter 2015/16 Technische Informatik I Lösungsvorschlag Seite 2 Aufgabe 1 : Assembler (maximal 21 Punkte) 1.1: Verständnisfragen (maximal 4 Punkte) (a) (1 Punkt) Kreuzen Sie an, welche der folgenden Statements

Mehr

Beispiel: A[300] = h + A[300]

Beispiel: A[300] = h + A[300] Beispiel: A[300] = h + A[300] $t1 sei Basisadresse von A und h in $s2 gespeichert. Assembler Code? Maschinen Code (der Einfachheit halber mit Dezimalzahlen)? op rs rt rd adr/shamt funct Instruktion Format

Mehr

Kap 5. 5 Die Maschinenprogrammebene eines Rechners. int a=1, b=2; a = a+2*b; Höhere Programmiersprache. Assembler und Maschinenprogramm

Kap 5. 5 Die Maschinenprogrammebene eines Rechners. int a=1, b=2; a = a+2*b; Höhere Programmiersprache. Assembler und Maschinenprogramm 5 Die Maschinenprogrammebene eines Rechners Höhere Programmiersprache Assembler und Maschinenprogramm Register und Mikroprogramm int a=1, b=2; a = a+2*b; lw $t0, a lw $t1, b add $t0, $t0, $t1 add $t0,

Mehr

Allgemeine Lösung mittels Hazard Detection Unit

Allgemeine Lösung mittels Hazard Detection Unit Allgemeine Lösung mittels Hazard Detection Unit Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 83

Mehr

Computersysteme. Stacks Anwendung in der Assembler-Programmierung

Computersysteme. Stacks Anwendung in der Assembler-Programmierung Computersysteme Stacks Anwendung in der Assembler-Programmierung 1 Unterprogramme Betrachten wir zunächst folgendes Programm m_mod_n : /Berechne m modulo n für positive Integerwerte m und n. /Beim Programmstart

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

1. Teilklausur zur Vorlesung Grundlagen der Rechnerarchitektur

1. Teilklausur zur Vorlesung Grundlagen der Rechnerarchitektur Universität Koblenz-Landau Montag, 6. Mai 2. Teilklausur zur Vorlesung Grundlagen der Rechnerarchitektur Sommersemester 2 Prof. Dr. Ch. Steigner Name Vorname Mat.-Nr. Studiengang Musterlösung Punkte :

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de marco.duerr [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2018 Übungsblatt 10 (Block C 2) (16 Punkte)

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Die Programmiersprache C Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 14. Mai 2015 Hallo, Welt! main() { printf("hallo, Welt!\n"); } main:

Mehr

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer Übung RA, Kapitel 1.5 1. Beantworten Sie bitte folgende Repetitionsfragen 1. Beschreiben Sie in eigenen Worten und mit einer Skizze die Schichtung einer Multilevel Maschine. Folie 5, rechte Seite 2. Welche

Mehr

Lösungsvorschlag zur 2. Übung

Lösungsvorschlag zur 2. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zur 2. Übung 1 Präsenzübungen 1.1 Schnelltest a) Der Instruktionssatz in der Assembler-Programmierung

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

Systemprogrammierung (37-023)

Systemprogrammierung (37-023) Systemprogrammierung (37-023) Assemblerprogrammierung Betriebssystemgrundlagen Maschinenmodelle Dozenten: Thomas Stricker Roman Geus WebSite: www.cs.inf.ethz.ch/37-023 Begleit-/Textbuch: R. Paul: SPARC

Mehr

Computersysteme. Serie 11

Computersysteme. Serie 11 Christian-Albrechts-Universität zu Kiel Institut für Informatik Lehrstuhl für Technische Informatik Prof.Dr. Manfred Schimmler Dr.-Ing. Christoph Starke M.Sc. Vasco Grossmann Dipl.-Inf. Johannes Brünger

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44 Aufgabe 33 a) Der Pseudobefehl move $rd,$rs wird als addu $rd,$0,$rs übersetzt. Dabei macht sich SPIM zunutze, dass das Register $0 immer Null ist. Somit wird das Register $rd ersetzt durch $rd=0+$rs=$rs,

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 20.03.09 4-1 Heutige große Übung Ankündigung

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Einführung. Saalübung Informatik II SS Einführung. Einführung

Einführung. Saalübung Informatik II SS Einführung. Einführung Saalübung Informatik II SS 2006 SPIM-Assembler Teil 1 Einführung Übung zur SPIM-Assemblerprogrammierung Assembler ist die elementare Sprache eines Prozessors Assemblerbefehle repräsentieren die Basisoperationen

Mehr

DLX-Assembler-Programmierung Kutil, 2010

DLX-Assembler-Programmierung Kutil, 2010 DLX-Assembler-Programmierung Kutil, 200 Es gibt mehrere Simulatoren für den DLX-Prozessor. Erstens WinDLX, ein altes 6-Bit-Windows-Programm mit GUI und Dokumentation. Zweitens dlxsim, ein Unix-Programm

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Dynamische Programmbibliotheken Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 28. Mai 2015 Dynamische Programmbibliotheken Idee: Programm

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag. Übung Technische Grundlagen der Informatik II Sommersemester 29 Aufgabe.: MIPS-Kontrollsignale Für die 5 Befehlstypen a) R-Format

Mehr

MIPS-Programmierung in der WebSPIM-Umgebung (0.3)

MIPS-Programmierung in der WebSPIM-Umgebung (0.3) MIPS-Programmierung in der WebSPIM-Umgebung (0.3) C. Reichenbach, mailto:reichenbach@cs.uni-frankfurt.de 12. Mai 2013 1 Einführung WebSPIM ist ein Web-basierter MIPS32-Simulator, dessen MIPS-Funktionalität

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Übung 7 Datum : 22.-23. November 2018 Pipelining Aufgabe 1: Taktrate / Latenz In dieser Aufgabe

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining Implementierung

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 6 Datum: 24. 25. 11. 2016 Pipelining 1 Taktrate / Latenz In dieser

Mehr

Informatik II SS Assembler Programmierung Motivation. Assembler vs. Maschinensprache. Assembler Allgemein Befehle (Maschinensprache)

Informatik II SS Assembler Programmierung Motivation. Assembler vs. Maschinensprache. Assembler Allgemein Befehle (Maschinensprache) Assembler Programmierung Motivation Informatik II SS 2006 Kapitel 4: Assembler Programmierung Dr. Michael Ebner Dr. René Soltwisch Lehrstuhl für Telematik Institut für Informatik Was ist ein Programm?

Mehr

Informatik II SS 2004 Teil 4-1: Assembler Programmierung

Informatik II SS 2004 Teil 4-1: Assembler Programmierung Assembler Programmierung Motivation Informatik II SS 2004 Teil 4-1: Assembler Programmierung Prof. Dr. Dieter Hogrefe Dipl.-Inform. Michael Ebner Lehrstuhl für Telematik Institut für Informatik Was ist

Mehr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr Praktikum zur Vorlesung Prozessorarchitektur SS 2017 Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch 21.06.2017, 14:00 Uhr 1.1. Einführung Programmsteuerbefehle

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen Aufgabenstellung: - das beigefügte Assembler-Programm schrittweise ausführen - sich mit der Handhabung der Entwicklungswerkzeuge

Mehr

DLX-Assembler für Anfänger Kutil, 2004

DLX-Assembler für Anfänger Kutil, 2004 DLX-Assembler für Anfänger Kutil, 200 Hiermit können Sie die ersten Schritte in die Assemblerprogrammierung am Beispiel des virtuellen DLX-Prozessors machen. Dieses Dokument erklärt aber nicht die Befehle

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 8 Musterlösung zu Übung 5 Datum : 8.-9. November 8 Aufgabe : MIPS Architektur Das auf der nächsten

Mehr

3. Sprachkonzepte und ihre Übersetzungen

3. Sprachkonzepte und ihre Übersetzungen Übersetzung von Wertzuweisungen: Funktion coder x p codel x p; ind T coder c p ldc T c coder (e1 = e2) p coder e1 p; coder e2 p; equ T coder (e1 / e2) p coder e1 p; coder e2 p; div N coder(-e) p coder

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Technische Informatik II Rechnerarchitektur

Technische Informatik II Rechnerarchitektur Technische Informatik II Rechnerarchitektur 3.Unterprogramme in MMIX Matthias Dräger E-Mail: www: mdraeger@mi.fu-berlin.de www.matthias-draeger.info/lehre/sose2010ti2/ tinyurl.com/sose2010ti2 Zuletzt bearbeitet:

Mehr

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer Rechnerarchitektur Marián Vajteršic und Helmut A. Mayer Fachbereich Computerwissenschaften Universität Salzburg marian@cosy.sbg.ac.at und helmut@cosy.sbg.ac.at Tel.: 8044-6344 und 8044-6315 3. Mai 2017

Mehr

Programmieren in C. Speicher anfordern, Unions und Bitfelder. Prof. Dr. Nikolaus Wulff

Programmieren in C. Speicher anfordern, Unions und Bitfelder. Prof. Dr. Nikolaus Wulff Programmieren in C Speicher anfordern, Unions und Bitfelder Prof. Dr. Nikolaus Wulff Vergleich: Felder und Strukturen Felder müssen Elemente vom selben Typ enthalten. Strukturen können Elemente unterschiedlichen

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung 5. Vorlesung 06.11.2018 1 Zahlendarstellungen 2 Speicherinhalte: Bits Hardware Spannung Ladung Magnetisierung Codierung 0V ungeladen unmagnetisiert 0 5V geladen magnetisiert

Mehr

Aufgabe 1 : Assembler

Aufgabe 1 : Assembler Sommer 2016 Technische Informatik I Lösungsvorschlag Seite 2 Aufgabe 1 : Assembler (maximal 23 Punkte) Hinweis: Auf der letzten Seite des Prüfungsbogens finden Sie eine Übersicht von Assemblerbefehlen.

Mehr

Einführung in AVR Assembler

Einführung in AVR Assembler Einführung in AVR Assembler Dennis Fassbender Institut für Technik Autonomer Systeme (LRT8) Universität der Bundeswehr München 09042014 Was ist Assembler? Low-level-Programmiersprache Erlaubt direkten

Mehr

Adressierungsarten des 6809 (Forts.)

Adressierungsarten des 6809 (Forts.) Adressierungsarten des 6809 (Forts.) Zusammenfassung zur indizierten Adressierung: 19 Beispiel-Programm 1 für 6809 6809-Assemblerprogramm zur Suche nach Leerzeichen (space, tab, return) in einem String:

Mehr

Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013

Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013 Donnerstag, den 18. Juli 2013, Prof. Dr. Hannes Frey Die Bearbeitungszeit

Mehr

Befehle zur Verarbeitung von Daten ( data processing ):

Befehle zur Verarbeitung von Daten ( data processing ): ARM: Befehlssatz Befehle zur Verarbeitung von Daten ( data processing ): Register/Register-Befehle: ,, (Achtung! Andere Interpretation: ) Transport-Befehl: MOV ,

Mehr

Kodieren von Anweisungen im Binärformat für Maschinen quasi natürlich, zumindest effizient. Für Menschen hingegen ist Binärformat schwierig

Kodieren von Anweisungen im Binärformat für Maschinen quasi natürlich, zumindest effizient. Für Menschen hingegen ist Binärformat schwierig 2.1 Einleitung Kodieren von Anweisungen im Binärformat für Maschinen quasi natürlich, zumindest effizient Hinsichtlich Zuverlässigkeit (digital vorteilhafter als analog) Für Menschen hingegen ist Binärformat

Mehr