Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013

Größe: px
Ab Seite anzeigen:

Download "Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013"

Transkript

1 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013 Donnerstag, den 18. Juli 2013, Prof. Dr. Hannes Frey Die Bearbeitungszeit beträgt 90 Minuten. Es sind alle 8 Aufgaben zu bearbeiten. Bitte kontrollieren Sie, ob Ihr Klausurexemplar vollständig (alle 8 Aufgaben vorhanden) ist. Schreiben Sie auf das Deckblatt Ihren Namen, Ihren Vornamen, Ihre Matrikelnummer und Ihren Studiengang. Schreiben Sie auf jedes Aufgabenblatt Ihren Namen und Ihren Vornamen. Verwenden Sie zur Lösung der Aufgabenblätter einen dokumentenechten Stift und schreiben Sie bitte leserlich. Schreiben Sie bitte die Lösungen auf die Aufgabenblätter. Sie können auch die Rückseiten der Aufgabenblätter verwenden. Weiteres Schreibpapier kann angefordert werden. Die Verwendung eines Taschenrechners und anderer Hilfsmittel sind nicht erlaubt. Aufgabe Gesamt Punkte erreicht

2 1 Name: Punkte: 12 Wissen im Fachgebiet Rechnerarchitektur a) (3 Punkte) Erläutern Sie kurz die Prinzipien der räumlichen und zeitlichen Lokalität, was unter Speicherhierarchie verstanden wird und wieso diese Prinzipien die Verwendung einer Speicherhierarchie ermöglichen. b) (4 Punkte) Gegeben seien die folgenden arithmetischen Verknüpfungen, die mit Gleitkommazahlen durchzuführen sind und in unterschiedlicher Abfolge ausgeführt werden. Welche dieser Verknüpfungen können als problematisch, bzw. unproblematisch, angesehen werden. problematisch unproblematisch a + b = b + a o o (a + b) + c = a + (b + c) o o (a + b) c = a c + b c o o a b = b a o o c) (5 Punkte) Gegeben ist die folgende 8-Bit Darstellung einer Zahl im Zweierkomplement: ) Wandeln Sie die Zahl in die entsprechende Dezimal-Darstellung um. 2) Welche 8-Bit Zahl entsteht, wenn die Zweierkomplementzahl um 2 Bit arithmetisch nach rechts geshiftet wird? Welcher Dezimalzahl entspricht die Darstellung nach dem arithmetischen Rechts-Shift? Tritt ein Overflow auf? 3) Welche 8-Bit Zahl entsteht, wenn die Zweierkomplementzahl um 2 Bit logisch nach links geshiftet wird? Welcher Dezimalzahl entspricht die Darstellung nach dem logischen Links-Shift? Tritt ein Overflow auf?

3 2 Name: Punkte: 10 Amdahls Gesetz 1 Speedup overall = (1 fraction enhanced )+ fraction enhanced a) (2 Punkte) Speedup enhanced Erläutern Sie mit eigenen Worten die Aussage des Amdahl'schen Gesetzes! b) (3 Punkte) Erläutern Sie die Variablen Speedup overall, Speedup enhanced und fraction enhanced Formel des Amdahl'schen Gesetzes. aus der c) (5 Punkte) Ein Computersystem soll durch den Austausch des Prozessors beschleunigt werden. Eine Analyse der Programmausführung zeigt, dass in 60% der Zeit Integerberechnungen und in 30% der Zeit Gleitkommaoperationen durchgeführt werden. Innerhalb der restlichen 10% der Zeit werden andere Instruktionen durchgeführt. Es stehen nun zwei unterschiedlich optimierte Prozessoren zur Auswahl. Prozessor A beschleunigt nur die Bearbeitung der Integeroperationen um den Faktor 2. Prozessor B optimiert nur die Bearbeitung der Gleitkommaoperationen um den Faktor 3. Berechnen Sie, ob Prozessor A oder B eine höhere Beschleunigung des gesamten Computersystems erreicht. Welcher Prozessor sollte Ihrer Berechnung nach verbaut werden. (Geben Sie auch ihren Berechnungsweg an.) Prozessor A: Prozessor B:

4 3 Name: Punkte: 10 Minimierung nach Karnaugh-Veitsch Gegeben ist die folgende Schaltfunktion mit der zugehörigen Wahrheitstabelle und der kanonischen Disjunktiven Normalform (DNF)! Y =(a b c)+ (a b c)+ (a b c)+ (a b c)+ (a b c) a) (4 Punkte) Vervollständigen Sie die Wertetabelle. a b c Y b) (2 Punkte) Geben Sie die zugehörige Konjunktive Normalform an (KNF)! c) (2 Punkte) Führen Sie die Minimierung mittels Karnaugh-Veitsch-Diagramm durch! a b a b a b a b c c minimierte Gleichung: y = d) (2 Punkte) Zeichnen Sie die minimierte Schaltfunktion hier auf!

5 4 Name: Punkte: 10 IEEE 754 Gleitkommazahlen a) (4 Punkte) Die unten angegebene Abbildung zeigt die Bitanordnung einer single-precision Gleitkommazahl nach IEEE-754 wobei ein Bias (Adjustment) von 127 verwendet wird. Der dargestellte Wert lässt sich dann über die folgende Formel ermitteln: ( 1) sign (1+ Fraction) 2 Exponent Bias Rechnen Sie die folgende single-precision Gleitkommazahl 0xc14c0000 schrittweise in Dezimaldarstellung um: Hexadezimal c 1 4 c Binär Beschreibung S Exponent Fraction Bitposition b) (6 Punkte) Multiplizieren Sie zur Gleitkommazahl aus Aufgabe a) a=0xc14c0000 schrittweise die Gleitkommazahl b=0x , d.h. führen Sie den Algorithmus für die Multiplikation von Gleitkommazahlen durch. Hexadezimal Binär Beschreibung S Exponent Fraction Beantworten Sie auf dem Weg zur Lösung die folgenden Fragen! 1) Zeigen Sie, wie die Exponenten für die Multiplikation behandelt werden müssen! (2 Punkte)

6 4 Fortführung Name: Punkte: 2) Zeigen Sie, was mit den Mantissen gemacht werden muss? (2 Punkte) 3) Was ist also das Endergebnis der Multiplikation, dargestellt im IEEE 754-Format? Geben Sie den Binär- und Hexidezimalwert an. (1 Punkt) Hexadezimal Binär Beschreibung S Exponent Fraction 4) Welchem Dezimalwert entspricht das Ergebnis? (1 Punkt)

7 5 Name: Punkte: 8 MIPS-Assember + Speichern auf Stacks Gegeben ist das folgende MIPS-Assembler Programm. 1:.text 2:.globl main 3: main: 4: li $s0,4 # load first integer 4 5: li $s1,5 # load second integer 5 6: move $a1,$s0 # save first int in $a1 7: move $a2,$s1 # save second int in $a2 8: jal subroutine1 # jump to subroutine1 9: add $s0,$zero,$v0 # save result in $s0 10: li $v0,10 11: syscall # program exit 12: subroutine1: 13: move $v0,$a1 14: loop: blt $a2,1,end 15: jal subroutine2 16: addi $a2,$a2,-1 17: b loop 18: end: 19: jr $ra 20: subroutine2: 21: addi $v0,$v0,1 22: jr $ra a) (4 Punkte) Das Programm terminiert nicht. Es fehlen wichtige Code-Zeilen. Ergänzen Sie die fehlenden Code-Zeilen innerhalb der entsprechenden Markierungen in obigem Assembler- Code. b) (4 Punkte) Was wird durch das obige Assembler-Programm berechnet? Beschreiben Sie kurz, wie das Programm dabei vorgeht!

8 6 Name: Punkte: 8 Exceptions und Interrupts a) (3 Punkte) Nennen Sie den Unterschied zwischen externen Interrupts und Exceptions. Nennen Sie je ein Beispiel. b) (5 Punkte) Die folgenden MIPS-Assemblercodezeilen sind im Exception-Handler zu finden und werden nach der Abarbeitung einer Exception und vor dem Rücksprung ins Hauptprogramm ausgeführt. mfc0 $k0, $14 # $k0 = EPC addi $k0, $k0, 4 # $k0 = EPC+4 mtc0 $k0, $14 # EPC = $k0 eret # Rücksprung 1. Erläutern Sie die obigen Assembler-Codezeilen. Was passiert in diesem Abschnitt? (3 Punkte) 2. Erläutern Sie, warum die obigen Assembler-Codezeilen nach der Abarbeitung eines Interrupts nicht ausgeführt werden sollten? (2 Punkte).

9 7 Name: Punkte: 12 MIPS-Pingelig (1) (2) (3) (4) (5) a) (5 Punkte) Nennen Sie die fünf Pipeline Stufen der MIPS-Pipeline der Reihe nach ((1)-(5) siehe Abbildung) und benennen Sie kurz deren wichtigste Funktion. b) (4 Punkte) Nennen Sie zwei Klassen von Konflikten die beim MIPS-Pipeline Rechnern auftreten können. Geben Sie zu jeder Klasse eine Zeile beispielhaften Assembler-Code an, welche den Konflikt auslösen könnte. c) (3 Punkte) Gegeben sei folgende Befehlsfolge, die für die Berechnung in einem Pipeline-Rechner vorbereitet wurde (Bypassing/Forwarding sei aktiv): lw $t1, 0($t0) lw $t2, 4($t0) nop add $t3, $t1, $t2 sw $t3, 12($t0) lw $t4, 8($t0) nop add $t5, $t1, $t4 sw $t5, 12($t0) lw $t6, 16($t0) nop add $t2, $t6, $t5 sw $t2, 4($t0) Beseitigen Sie die nop-befehle, indem Sie von der Datenabhängigkeitsanalyse Gebrauch machen. Verändern Sie die Befehlsfolge dabei so wenig wie möglich.

10 8 Name: Punkte: 12 Multiple-Choice Diese Aufgabe umfasst 3 Multiple-Choice Cluster mit je 4 Ankreuzfragen. Für jedes Cluster gilt: Wenn alle 4 Kreuze an der richtigen Stelle stehen, gibt es 4 Punkte für das Cluster. Ein falsches Kreuz gibt einen Punkt Abzug. Ein nicht gesetztes Kreuz gibt keinen Punkt und auch keinen Punkt Abzug. Wer 2 richtige und 2 falsche Kreuze in einem Cluster macht, erhält =0 Punkte. Es gibt keine negativen Gesamtpunktzahlen. Jedes Cluster bringt 0 bis 4 Punkte. Ja Nein Aussagen a) Gleitkommazahlen 1. o o Double Precision Gleitkommazahlen belegen 2 Register. 2. o o Gleitkommazahlen können nicht auf dem Stack gespeichert werden. 3. o o 4. o o b) Caches 1. o o Gleitkommaarithmetik und Integerarithmetik benutzen unterschiedliche Instruktionen zur Berechnung. Gleitkommaoperationen werden bei MIPS-Architekturen wie Integeroperationen direkt von der CPU ausgeführt Die Miss-Penalty wird von der Geschwindigkeit des Busses und der Speicherorganisation beeinflusst. 2. o o Die Miss-Penality ist der Kehrwert der Hit-Rate. 3. o o 4. o o c) Verschiedenes 1. o o Die Anzahl an virtuellen Adressen ist immer gleich der Anzahl an vorhandenen physikalischen Adressen im Speicher. Bei der Write-Back Strategie werden Änderungen nur dann in den Speicher zurückgeschrieben, wenn der Cache-Block ersetzt wird. MIPS Pseudo-Instruktionen werden vom MIPS-Prozessor schneller bearbeitet als normale Instruktionen. 2. o o MIPS Exceptions werden direkt von der CPU behandelt. 3. o o Die Laufzeit eines n-stelligen Carry-Lookahead-Adders ist O(n). 4. o o Bei CPUs ohne Superskalarität liegt der CPI-Wert unter 1.

Schriftliche Prüfung. Aufgaben OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK. Technische Informatik II. am:

Schriftliche Prüfung. Aufgaben OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK. Technische Informatik II. am: OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Studiengang: Technische Informatik II Informatik am: 11. 02. 2005 Bearbeitungszeit: 180 min zugelassene Hilfsmittel:

Mehr

N Bit Darstellung von Gleitkommazahlen

N Bit Darstellung von Gleitkommazahlen N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für )

Mehr

Der Zahlenformatstandard IEEE 754

Der Zahlenformatstandard IEEE 754 Der Zahlenformatstandard IEEE 754 Single Precision Double Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Bit Aufteilungen

Mehr

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023)

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023) IEEE 754 Encoding Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Single Precision (Bias=127) Double Precision (Bias=1023) Dargestelltes Objekt Exponent

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Grundlagen der Informatik Studiengang: Bachelor (CV / CSE / IF / WIF) am: 19. Juli 2008 Bearbeitungszeit:

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2010 / 2011

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2010 / 2011 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2010 / 2011 Montag, den 21. Februar 2011, 14:15 Uhr 15:45 Uhr Prof. Dr.

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Musterlösung zu Übung 3 Datum : 25.-26. Oktober 2018 Aufgabe 1: Wurzelverfahren nach Heron Das

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Abschlussklausur Informatik, SS 2012

Abschlussklausur Informatik, SS 2012 Abschlussklausur Informatik, SS 202 09.07.202 Name, Vorname: Matr.-Nr.: Unterschrift: Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO VON GUERICKE UNIVERSITÄT MAGOEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Informatik I Studiengang: B (PF IF/IngIF;WPF CV/WIF), M (WPF DigiEng) am: Bearbeitungszeit: 24.

Mehr

Nachklausur Bitte in Druckschrift leserlich ausfüllen!

Nachklausur Bitte in Druckschrift leserlich ausfüllen! Übungen zur Vorlesung Informatik für Informationsmanager WS 2005/2006 Universität Koblenz-Landau Institut für Informatik Prof. Dr. Bernhard Beckert Dr. Manfred Jackel Nachklausur 24.04.2006 Bitte in Druckschrift

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Computational Engineering I

Computational Engineering I DEPARTMENT INFORMATIK Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 01.02.2017 Probeklausur zu Computational Engineering

Mehr

Computational Engineering I

Computational Engineering I DEPARTMENT INFORMATIK Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 25.01.2016 Probeklausur zu Computational Engineering

Mehr

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 21. Februar 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

Das Verfahren in Hardware

Das Verfahren in Hardware Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = 110110 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt

Mehr

Auswertung. Hinweise. Einführung in die Technische Informatik WS 2006/2007 Probeklausur. Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4

Auswertung. Hinweise. Einführung in die Technische Informatik WS 2006/2007 Probeklausur. Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4 Professor Dr.-Ing. Stefan Kowalewski Dipl.-Inform. Andreas Polzer Dipl.-Inform. Ralf Mitsching LEHRSTUHL INFORMATIK XI SOFTWARE FÜR EINGEBETTETE SYSTEME Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4 Einführung

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Rechnersysteme Studiengang: Bachelor (PF CSE / IF; WPF CV / WIF) am: 30. Juli 2008 Bearbeitungszeit: 120 Minuten

Mehr

Rechnerarchitektur im Sommersemester 2018 Übungsblatt 13

Rechnerarchitektur im Sommersemester 2018 Übungsblatt 13 Ludwig-Maximilians-Universität München Institut für Informatik Lehrstuhl für Mobile und Verteilte Systeme Prof. Dr. laudia Linnhoff-Popien esprechung: Rechnerarchitektur im Sommersemester 28 Übungsblatt

Mehr

Abschlussklausur. Lösung

Abschlussklausur. Lösung Übungen zur Vorlesung Informatik für Informationsmanager WS 2005/2006 Universität Koblenz-Landau Institut für Informatik Prof. Dr. Bernhard Beckert Dr. Manfred Jackel Abschlussklausur 02.03.2006 Lösung

Mehr

Lehrveranstaltung: Praktikum: Rechnerorganisation Thomas Aichholzer

Lehrveranstaltung: Praktikum: Rechnerorganisation Thomas Aichholzer 1.1 Geben Sie die Hexadezimal- und Binärform der folgenden Dezimal Zahlen an. Benützen Sie dazu die Zweierkomplementdarstellung in 16-Bit. a) 1 b) 125 c) 31456 ad a) Dezimalschreibweise Binärdarstellung

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren der beiden Registerwerte $t1 und $t2 in einem Zielregister

Mehr

Übungen zur Vorlesung Grundlagen der Rechnerarchitektur

Übungen zur Vorlesung Grundlagen der Rechnerarchitektur Übungen zur Vorlesung Grundlagen der Rechnerarchitektur im Sommersemester 2 Frank Bohdanowicz Besprechung des 2. Übungsblattes - Termine 2. Teilklausur: Montag, 2.6.2, 8 Uhr, in D28 + E - Anmeldung über

Mehr

Zwischenklausur Informatik, WS 2014/15

Zwischenklausur Informatik, WS 2014/15 Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Computerarithmetik (15b)

Computerarithmetik (15b) Computerarithmetik (15b) Dazugehöriges Beispiel: Schleife Schritt Multiplikator Multiplikand Produkt 0 Anfangswerte 0011 0000 0010 0000 0000 1 1a: 1 -> Prod. = Prod. + Mcand 0011 0000 0010 0000 0010 2:

Mehr

Klausur "Informationstechnische Grundlagen" SS 2013

Klausur Informationstechnische Grundlagen SS 2013 PD Dr. J. Reischer 16.07.2013 Klausur "Informationstechnische Grundlagen" SS 2013 Nachname, Vorname Abschluss (BA, MA, FKN etc.) Matrikelnummer, Semester Versuch (1/2/3) Bitte füllen Sie zuerst den Kopf

Mehr

Nachklausur LÖSUNG. Bitte in Druckschrift leserlich ausfüllen!

Nachklausur LÖSUNG. Bitte in Druckschrift leserlich ausfüllen! Informatik für Informationsmanger I WS 2005/6 Universität Koblenz-Landau Institut für Informatik Jun.Prof. Dr. Bernhard Beckert Dr. Manfred Jackel Nachklausur 28.02.2007 LÖSUNG Bitte in Druckschrift leserlich

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de pascal.libuschewski [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2016 Übungsblatt 10 (Block C 2) (16

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer Aufgabe 8.1 Ausnahmen (Exceptions) a. Erklären Sie den Begriff Exception. b. Welche Arten von Exceptions kennen Sie? Wie werden sie ausgelöst und welche Auswirkungen auf den ablaufenden Code ergeben sich

Mehr

Klausur Grundlagen der Informatik SS 2013

Klausur Grundlagen der Informatik SS 2013 Technische Hochschule Mittelhessen Prof. Dr.-Ing. A. Christidis Fachbereich Mathematik, Naturwissenschaften und Informatik 16. Juli 2013 Klausur Grundlagen der Informatik SS 2013 Personalien: Name, Vorname:...

Mehr

Notwendigkeit für andere Instruktionsformate

Notwendigkeit für andere Instruktionsformate Notwendigkeit für andere Instruktionsformate add $t0, $s1, $s2 op rs rt rd shamt funct 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit R Typ? lw $t0, 32($s3) I Typ Opcode 6 Bit Source 5 Bit Dest 5 Bit Konstante oder

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Klausur. Betriebssysteme SS 2007

Klausur. Betriebssysteme SS 2007 Matrikelnummer: 9999999 Klausur FB Informatik und Mathematik Prof. R. Brause Betriebssysteme SS 2007 Vorname: Nachname: Matrikelnummer: Geburtsdatum: Studiengang: Bitte tragen Sie auf jeder Seite Ihre

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 6 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Klausur "Informationstechnische Grundlagen" SS 2012

Klausur Informationstechnische Grundlagen SS 2012 PD Dr. J. Reischer 23.07.2012 Klausur "Informationstechnische Grundlagen" SS 2012 Nachname, Vorname Abschluss (BA, MA, FKN etc.) Matrikelnummer, Semester Versuch (1/2/3) (60 Punkte) Bitte füllen Sie zuerst

Mehr

Beispiel: A[300] = h + A[300]

Beispiel: A[300] = h + A[300] Beispiel: A[300] = h + A[300] $t1 sei Basisadresse von A und h in $s2 gespeichert. Assembler Code? Maschinen Code (der Einfachheit halber mit Dezimalzahlen)? op rs rt rd adr/shamt funct Instruktion Format

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Klausur Informatik II. Sommersemester 2006

Klausur Informatik II. Sommersemester 2006 Klausur Informatik II Sommersemester 2006 Bearbeitungszeit 120 Minuten Name: Vorname: Matrikelnummer: Meine Note soll nicht veröffentlicht werden. Ich erfahre die Note dann aus Munopag/Wopag bzw. im Informatik-Prüfungsamt.

Mehr

Klausur "Informatik I" vom Teil "Rechnerstrukturen"

Klausur Informatik I vom Teil Rechnerstrukturen Seite 1 von 6 Seiten Klausur "Informatik I" vom 20.2.2001 Teil "Rechnerstrukturen" Aufgabe 1: Binäre Informationsdarstellung (18 Punkte) 1.1 Gleitkommazahlen: Gegeben sei eine 8-bit Gleitkommazahl-Darstellung

Mehr

Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003

Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003 Name:........................................ Vorname:..................................... Matrikelnummer:.............................. Bitte Studiengang ankreuzen: Computervisualistik Informatik Hauptklausur

Mehr

1. Teilklausur zur Vorlesung Grundlagen der Rechnerarchitektur

1. Teilklausur zur Vorlesung Grundlagen der Rechnerarchitektur Universität Koblenz-Landau Montag, 6. Mai 2. Teilklausur zur Vorlesung Grundlagen der Rechnerarchitektur Sommersemester 2 Prof. Dr. Ch. Steigner Name Vorname Mat.-Nr. Studiengang Musterlösung Punkte :

Mehr

Lösungsvorschlag zur 3. Übung

Lösungsvorschlag zur 3. Übung Prof Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik Wintersemester 09/10 1 Präsenzübungen 11 Schnelltest Lösungsvorschlag zur Übung a) Welche der folgenden Aussagen entsprechen

Mehr

Rechnen in B. Ralf Dorn. 3. September Heinrich-Hertz-Gymnasium. R. Dorn (H 2 O) Informatik LK 3. September / 6

Rechnen in B. Ralf Dorn. 3. September Heinrich-Hertz-Gymnasium. R. Dorn (H 2 O) Informatik LK 3. September / 6 Rechnen in B Ralf Dorn 3. September 2018 R. Dorn (H 2 O) Informatik LK 3. September 2018 1 / 6 Festkommazahlen Wie werden Kommazahlen dargestellt? R. Dorn (H 2 O) Informatik LK 3. September 2018 2 / 6

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33 Weitere Arithmetik Grundlagen der Rechnerarchitektur Assembler 33 Die speziellen Register lo und hi Erinnerung: ganzzahliges Produkt von zwei n Bit Zahlen benötigt bis zu 2n Bits Eine MIPS Instruktion

Mehr

1. räumliche Lokalität - Nach dem Zugriff auf eine bestimmte Adresse erfolgt in naher Zukunft ein erneuter Zugriff auf ein dazu benachbartes Datum.

1. räumliche Lokalität - Nach dem Zugriff auf eine bestimmte Adresse erfolgt in naher Zukunft ein erneuter Zugriff auf ein dazu benachbartes Datum. Aufgabe 1 a) Warum besitzen nahezu alle modernen Prozessoren einen Cache? Zur Überbrückung der Prozessor-Speicher-Lücke. Geschwindigkeit des Arbeitsspeichers ist nicht in gleichem Maße gestiegen wie die

Mehr

Klausur Grundlagen der Informatik SS Lösungshilfe

Klausur Grundlagen der Informatik SS Lösungshilfe Technische Hochschule Mittelhessen Prof. Dr.-Ing. A. Christidis Fachbereich Mathematik, Naturwissenschaften und Informatik 16. Juli 2013 Personalien: Klausur Grundlagen der Informatik SS 2013 Lösungshilfe

Mehr

Anmerkungen zu den Aufgabenstellungen, Lösungen und Bewertungen. Beachten Sie also bei Ihrer Lösung unbedingt

Anmerkungen zu den Aufgabenstellungen, Lösungen und Bewertungen. Beachten Sie also bei Ihrer Lösung unbedingt Klausurdauer: 90 Minuten Probeklausur Grundlagen der Technischen Informatik Seite: 1 von 11 Anmerkungen zu den Aufgabenstellungen, Lösungen und Bewertungen Dies ist eine Klausur im Multiple-Choice Verfahren,

Mehr

Prüfungsklausur 1608/1609 SS 2013 Aufgabenteil 1608

Prüfungsklausur 1608/1609 SS 2013 Aufgabenteil 1608 Prüfungsklausur 1608/1609 SS 2013 Aufgabenteil 1608 Prof. Dr. W. Schimann, Prof. Dr. J. Keller 14.09.2013 1 FernUniversität Hagen Prüfungsklausur Computersysteme 14.09.2013 Seite 2 Inhaltsverzeichnis 1

Mehr

Carry Lookahead Adder

Carry Lookahead Adder Carry Lookahead Adder Mittels der Generate und Propagate Ausdrücke lässt ich dann für jede Stelle i der Carry (Übertrag) für die Stelle i+1 definieren: Für einen 4 Stelligen Addierer ergibt sich damit:

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer Übung RA, Kapitel 1.5 1. Beantworten Sie bitte folgende Repetitionsfragen 1. Beschreiben Sie in eigenen Worten und mit einer Skizze die Schichtung einer Multilevel Maschine. Folie 5, rechte Seite 2. Welche

Mehr

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller SS 2004 VAK 18.004 Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller Aufgabenblatt 2.5 Lösung 2.5.1 Befehlszähler (Program Counter, PC) enthält Adresse des nächsten auszuführenden

Mehr

Prüfungsklausur SS 14

Prüfungsklausur SS 14 Prüfungsklausur 31231 SS 14 Prof. Dr. J. Keller 23.08.2014 1 FernUniversität Hagen Prüfungsklausur 31231 23.08.2014 Seite 2 Inhaltsverzeichnis 1 Codierungsverfahren 3 2 Speichermedien und Peripheriegeräte

Mehr

"Organisation und Technologie von Rechensystemen 4"

Organisation und Technologie von Rechensystemen 4 Klausur OTRS-4, 29.09.2004 Seite 1 (12) INSTITUT FÜR INFORMATIK Lehrstuhl für Rechnerarchitektur (Informatik 3) Universität Erlangen-Nürnberg Martensstr. 3, 91058 Erlangen 29.09.2004 Klausur zu "Organisation

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Aufgabe 1 (12 Punkte)

Aufgabe 1 (12 Punkte) Aufgabe 1 (12 Punkte) Schreiben Sie eine Klasse public class ZinsesZins, die zu einem gegebenen Anfangskapital von 100,00 die Kapitalentwicklung bei einer jährlichen nachschüssigen Verzinsung in Höhe von

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Übung RA, Kapitel 1.2

Übung RA, Kapitel 1.2 Übung RA, Kapitel 1.2 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 Immer durch 2 teilen, der Rest ergibt das Bit. Jeweils mit

Mehr

Klausur Betriebssysteme

Klausur Betriebssysteme Prof. Dr. Michael Jäger FB MNI Klausur Betriebssysteme 5.2.2016 Die Dauer der Klausur beträgt 90 Minuten. Es sind keine Unterlagen und Hilfsmittel erlaubt. Bitte bearbeiten Sie die Aufgaben soweit wie

Mehr

Computersysteme. Fragestunde

Computersysteme. Fragestunde Computersysteme Fragestunde 1 Dr.-Ing. Christoph Starke Institut für Informatik Christian Albrechts Universität zu Kiel Tel.: 8805337 E-Mail: chst@informatik.uni-kiel.de 2 Kurze Besprechung von Serie 12,

Mehr

Prüfungsklausur 1608 WS 2013/2014

Prüfungsklausur 1608 WS 2013/2014 Prüfungsklausur 1608 WS 2013/2014 Prof. Dr. J. Keller 22.03.2014 FernUniversität Hagen Prüfungsklausur Computersysteme 22.03.2014 Seite I- 1 Bewertungsschema Aufgabe a b c d e total I-1 3 4 1 2 2 12 I-2

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Aufgabe 1: Sie haben in der Vorlesung einen hypothetischen Prozessor kennen

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2012/2013

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2012/2013 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2012/2013 Dienstag, den 05. Februar 2013 Prof. Dr. Hannes Frey, Dipl.

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Klausur Mikroprozessortechnik 29. März 2010

Klausur Mikroprozessortechnik 29. März 2010 Klausur Mikroprozessortechnik 29. März 2010 Name:... Vorname:... Matr.-Nr:... Studiengang:... Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de marco.duerr [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2018 Übungsblatt 10 (Block C 2) (16 Punkte)

Mehr

Universität zu Lübeck Institut für Telematik. Prof. Dr. Stefan Fischer

Universität zu Lübeck Institut für Telematik. Prof. Dr. Stefan Fischer Universität zu Lübeck Institut für Telematik Prof. Dr. Stefan Fischer Probeklausur im Fach Programmieren Hinweise zur Bearbeitung: Es sind keinerlei Hilfsmittel zugelassen. Diese Klausur umfasst 18 Seiten.

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Computational Engineering I

Computational Engineering I DEPARTMENT INFORMATIK Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 12.02.2014 Klausur zu Computational Engineering I............

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 5 am 25.05.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme SS 2012

Klausur zur Vorlesung Grundlagen der Betriebssysteme SS 2012 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Betriebssysteme SS - Musterlösung - Freitag, den. April, 9: Uhr : Uhr Prof. Dr. D. Zöbel,

Mehr

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5 Philipps-Universität Marburg Fachbereich Mathematik und Informatik AG Verteilte Systeme http://ds.informatik.uni-marburg.de Prof. Dr. Helmut Dohmann Prof. Dr. Bernd Freisleben Klausur zur Vorlesung Technische

Mehr

Technischen Informatik I, WS 2004/05

Technischen Informatik I, WS 2004/05 PHILIPPS-UNIVERSITÄT MARBURG Fachbereich Mathematik und Informatik Prof Dr R Loogen, Dipl-Inform J Beringer D-3532 Marburg Hans-Meerwein-Straße Lahnberge Klausur zur Technischen Informatik I, WS 24/5 3

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Musterlösung zu Übung 6 Datum : 15.-16. November 2018 Aufgabe 1: Bit-Test Zum Überprüfen des Status

Mehr