Technische Informatik - Eine Einführung

Größe: px
Ab Seite anzeigen:

Download "Technische Informatik - Eine Einführung"

Transkript

1 Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe 1 (0 Punkte) Der Intel 8086-Prozessor erlaubt es, bis zu 2 20 Byte zu adressieren. Wieviele 16-Bit-Wörter können in einen entsprechenden Speicher abgelegt werden? Geben Sie die Zahl in dezimaler Schreibweise an! Aufgabe 2 (0 Punkte) Hinweis: Ein typischer Maschinenbefehl (z. B. Addition) ist eine Verknüpfung von zwei Operanden. Das Ergebnis dieser Operation wird in einem dritten Operanden abgelegt. Deshalb müsste ein Maschinenbefehl neben dem Operationscode in der Regel drei Operandenadressen enthalten. Da so konstruierte Befehle zu lang sind und der Speicherzugriff für alle drei Operanden zu langsam wird, sollten nach Möglichkeit die Operanden prozessornah in Registern gehalten weden. Bei einer Ein-Adress-Maschine gibt es ein spezielles Register, welches stets den zweiten Operanden enthält und in welches auch das Ergebnis geschrieben wird. Dieses Register heißt auch Akkumulator. Im Maschinenbefehl selbst wird neben dem Operationscode somit lediglich die Adresse eines Operanden angegeben. Gegeben ist eine Ein-Adress-Maschine mit einem Akkumulator. Weiterhin ist ein Speicher mit folgenden Belegungen gegeben: Adresse Inhalt Welche Werte werden bei Ausführung der folgenden Befehle jeweils in den Akkumulator geladen. a) LOAD_IMMEDIATE 20 b) LOAD_DIRECT 30 c) LOAD_INDIRECT 20 1

2 Aufgabe 3 (0 Punkte) Gegeben ist ein Prozessor mit 32 Registern sowie einem festen Index- und einem festen Basis- Register. Der Prozessor beherrscht alle in der Vorlesung vorgestellten Adressierungsarten. Die Wortbreite beträgt 2 Byte und damit werden z. B. bei jedem Ladebefehl auch 2 Byte gelesen. Das höherwertige Byte steht an der kleineren Adresse. (z. B. steht an Adresse 1036 der Wert 4500). Alle Werte sind hexadezimal. In der nachfolgenden Tabelle sind die Belegungen der Register und des Speichers ausschnittsweise dargestellt. Registerbelegung Register Inhalt Indexregister 0001 Basisregister 102c Befehlszähler 1032 Register Speicherbelegung Speicheradresse Inhalt 1039 ae f d c b a a Benennen Sie die verschiedenen Adressierungsarten, die in der Vorlesung vorgestellt wurden, und geben Sie den dezimalen Wert an, der für den Befehl Lade 8 jeweils geladen wird. Aufgabe 4 (0 Punkte) Nehmen Sie an, dass ein Prozessor einen Systemtakt von 100MHz hat. Wie lange dauert ein Taktzyklus? Geben Sie die Dauer eines Taktzyklus in Nanosekunden an! Aufgabe 5 (0 Punkte) In einem Prozessor wurde die Ausführungszeit einiger Operationen um den Faktor 3 beschleunigt. a) Wieviel Zeit benötigt ein Programm nach der Verbesserung, wenn es vorher 100 Sekunden zur Ausführung brauchte? Gehen Sie davon aus, dass 50 % der ausgeführten Befehle des Programms durch die Verbesserung beschleunigt werden und alle ausgeführten Befehle die gleiche Zeit benötigen. 2

3 b) Stellen Sie den bereits genutzten Zusammenhang zwischen Ausführungszeit t neu des Programms nach Verbesserung, Ausführungszeit t beeinflusst beeinflusst von der Verbesserung, Ausführungszeit t unbeeinflusst unbeeinflusst von der Verbesserung und Beschleunigung α der verbesserten Operationen in einer Formel dar. (Bemerkung: Es handelt sich hierbei um die Erste Version von Amdahls Gesetz.) Aufgabe 6 (0 Punkte) Das Amdahls Gesetz ist eine andere Darstellung für den Speedup, also der Beschleunigung. Der Speedup selbst gibt das Verhältnis zwischen Leistung vor Verbesserung und Leistung nach Verbesserung bzw. zwischen Ausführungszeit nach Verbesserung und Ausführungszeit vor Verbesserung an. Dabei soll eine Leistungssteigerung durch einen Speedup echt größer als 1 ersichtlich sein. a) Stellen Sie die Formel für den Speedup auf. b) Gesucht ist ein Benchmark-Programm, welches für die Verbesserung aus der vorigen Aufgabe einen Speedup von 2 anzeigt. Dabei nehmen wir an, dass das Benchmark vor der Verbesserung 100 Sekunden auf dem alten Prozessor läuft. Wieviel der anfänglichen Ausführungszeit muss durch die Verbesserung beeinflusst werden, um einen Speedup von 2 in diesen Benchmark zu erhalten? Aufgabe 7 (0 Punkte) Native MIPS steht für Native Millionen Instruction per Second und ist ein Maß für die Ausführungsgeschwindigkeit eines bestimmten Prozessors. Für ein bestimmtes Programm gilt: MIP S = Instructions ExecutionT ime 10 6 wobei die ExecutionT ime die Laufzeit dieses Programms und Instructions die Anzahl der für das Programm benötigten Befehle darstellen. CPI steht für Clock cycles per Instruction und gibt die benötigte Anzahl von Takten zur Ausführung eines bestimmten Befehles an. a) Stellen Sie den Zusammenhang zwischen MIPS, Clock Rate (Taktrate) und CPI rechnerisch dar. b) Für drei verschiedene Prozessoren seien für drei verschiedene Klassen von Befehlen folgende CPI-Werte gegeben: Klasse CPI CPI CPI Proz. 1 Proz. 2 Proz. 3 A B C

4 Zwei Compiler mit unterschiedlichen Optimierungen erzeugen für diese Prozessoren und den gegebenen Befehlsklassen folgenden Code: Anzahl der Befehle Klasse A Klasse B Klasse C Compiler Compiler Weiter sei eine Taktfrequenz von 100 MHz gegeben. Welcher Compiler erzeugt für Prozessor 1 den schnelleren Code bzgl. MIPS und welcher bzgl. der tatsächlichen Ausführungszeit? Erklären Sie den Grund für diesen Unterschied. Aufgabe 8 (0 Punkte) CP I (clock cycles per instruction) bezeichnet die Anzahl der benötigten Takte pro Befehl. Für mehrere Befehle läßt sich eine durchschnittliche CPI-Rate bestimmen. Ein Prozessor hat 3 Klassen von Befehlen C 1, C 2 und C 3 mit CP I C1 = 1, CP I C2 = 2, CP I C3 = 4 und arbeitet mit einer Taktfrequenz von 1 GHz. Nehmen Sie an, dass ein Algorithmus, der auf dem Prozessor ausgeführt wird, aus Instruktionen der Klasse C 1, Instruktionen der Klasse C 2 und Instruktionen der Klasse C 3 zusammensetzt. a) Welche Zeit benötigt das Programm auf dem Prozessor? b) Wie ist der Zusammenhang zwischen MIPS (Native Million Instruction per Second) und CPI? Stellen Sie dies in einer Formel dar! c) Wie ändert sich der Wert bei Beschleunigung von CP I C3 auf 3? Aufgabe 9 (0 Punkte) Mit CPI (Clock cycles per Instruction) bezeichnet man die Anzahl der durchschnittlichen Taktzyklen für eine Klasse von Befehlen eines Prozessors. Für drei verschiedene Prozessoren seien für drei verschiedene Klassen A, B, C von Befehlen folgende CPI-Werte gegeben: Klasse CPI CPI CPI Proz. 1 Proz. 2 Proz. 3 A B C Mittels verschiedener Optimierungen kann ein Compiler aus einem gegebenen Programm drei verschiedene Codesequenzen X, Y, Z mit folgender Anzahl von Befehlen einer Klasse erzeugen: 4

5 Sequenz Klasse A Klasse B Klasse C X Y Z a) Für welche Codesequenz sollte sich der Compiler bei jedem einzelnen Prozessor entscheiden? b) Eine Maschine mit Prozessor 2 koste Euro und eine Maschine mit Prozessor 3 koste Euro. Welchen prozentualen Mindestanteil am Gesamtprogramm müsste die jeweils vom Compiler gewählte Codesequenz haben, d. h. wie oft muss die Codesequenz laufen, um Prozessor 3 gegenüber Prozessor 2 vorzuziehen? Gehen Sie dabei von folgenden Eckdaten aus: das Restprogramm wird auf allen Prozessoren mit 2 CPI ausgeführt geplante Nutzungsdauer sei 3 Jahre (jeweils 365 Tage) Bewertung von 1 Milliarde zusätzlichen ausgeführten Befehlen mit 1 Cent die Prozessoren arbeiten mit einer Taktfrequenz von 400 MHz Aufgabe 10 (0 Punkte) Es sollen 1000 Briefumschläge mit jeweils 4 Dokumentseiten an die Mitglieder einer Organisation verschickt werden. Im einzelnen werden folgende Arbeitsschritte in einem vierstufigen Fließband durchgeführt: Kopieren Heften In den Stempeln, mit einem = und = Umschlag = Adressieren, Kopiergerät Falten stecken Frankieren T 1 = 10 s T 2 = 5 s T 3 = 5 s T 4 = 15 s a) In welchen Zeitabständen wird ein neuer Brief fertiggestellt? b) Nach welcher Zeit sind 1000 Briefe fertiggestellt? c) Wieviel Zeit wäre ohne Fließbandverarbeitung notwendig gewesen? d) Welche Beschleunigung wurde durch die Fließbandverarbeitung erzielt? Aufgabe 11 (0 Punkte) Probleme beim Pipelining Ein fiktiver Prozessor mit fünf Registern 1,..., 5 besitzt einen Datenpfad, unterteilt in die fünf Phasen einer Pipeline: Instruction Fetch Instruction Decode / Register File Read Execute / Address Calculation 5

6 Memory Access Write Back Jede dieser Stufen hat eine Ausführungszeit von 5 ns. Gegeben sei für diesen Prozessor (in SPIM-Syntax) der Programmcode.data var0:.word 0 var1:.word 1 abbruch:.word 5.text main: lw $1, var0 lw $2, var1 lw $4, abbruch add $3, $2, $1 loop: sll $2, $1, 1 add $3, $2, $3 ble $2, $4, loop a) Was berechnet dieses Programm? b) Geben Sie an, wie die Pipeline des Prozessors nach jedem Takt belegt ist. c) Welche Ausführungzeit hat das Programm im günstigsten Fall? Aufgabe 12 (0 Punkte) Gegeben sei folgendes Programm in MIPS-Assembler. # # Fibonacci # Berechnung Kaninchenpaare nach 12 Monaten #.text main: countloop: li $t4, 1 # Schleifenzaehler li $s1, 12 # Ende nach 12 Monaten li $t2, 0 # F(n) = 0 li $t3, 1 # F(n+1) = 1 # Schleife move $t1, $t2 # F(n) => F(n-1) move $t2, $t3 # F(n+1) => F(n) add $t3, $t1, $t2 # F(n+1) = F(n) + F(n-1) addi $t4, $t4, 1 # Zaehler++ ble $t4, $s1, countloop # bis Zaehler >= Ende 6

7 # Ausgabe # Ende li $v0, 1 # print_int F(n+1) move $a0, $t3 syscall li $v0, 10 # end syscall Welche Daten- bzw. Control-Hazards werden von diesem Programm verursacht, wenn man eine Pipeline des MIPS R2000-Prozessors voraussetzt, und kein Bypassing (d. h. keine Forwarding-Unit) genutzt werden kann. Wie könnten Sie das Programm verändern, um Hazards zu vermeiden. Stellen Sie es entsprechend um, wieder unter der Annahme, dass Bypassing nicht möglich ist. Aufgabe 13 (0 Punkte) a) Was bedeuten die beiden Abkürzungen CISC und RISC? b) Nennen Sie vier Unterschiede zwischen CISC- und RISC-Rechnern. c) Geben sie an, welche der folgenden Rechner CISC- bzw. RISC-Rechner sind? Rechner Power PC x86 SPARC Pentium 4 Hersteller Motorola, Appel, IBM Intel SUN Intel Aufgabe 14 (0 Punkte) Gegeben sei ein RISC-Prozessor mit 32 Bit Instruktionswortlänge, 256 verschiedenen ALU- Befehlen sowie einer Drei-Adress-Architektur, d. h. alle Maschinenbefehle können bis zu drei Operanden (Registeradressen) enthalten. Wieviele Register kann der Registersatz maximal enthalten, damit alle vorhandenen Register in allen ALU-Befehlen adressiert werden können? Aufgabe 15 (0 Punkte) Beantworten Sie folgende Verständnisfragen: a) Warum werden Cache-Speicher verwendet und wo werden diese im Rechner eingesetzt? b) Was sind charakteristische Eigenschaften einer RISC-Architektur? c) Warum benötigen RISC-Rechner mehr Register als CISC-Rechner? 7

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining Einzeltakt-Architektur TI1 - Übung 6: Pipelining Pipelining-Architektur

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining

Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining Themen heute Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining Organisatorisches Wie schon in den vorhergehenden Tutorien erwähnt, ist Mehrfachabgabe, außer bei Programmieraufgaben,

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Speedup: Grundlagen der Performanz Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 30. April 2015 Eine Aufgabe aus der Praxis Gegeben ein

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 8 Datum: 30. 11. 1. 12. 2017 In dieser Übung soll mit Hilfe des Simulators WinMIPS64 die

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 6 Datum: 24. 25. 11. 2016 Pipelining 1 Taktrate / Latenz In dieser

Mehr

3. Grundlagen der Rechnerarchitektur

3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und Adressierungstechniken 3.4 Beispiel: der Prozessor

Mehr

9. Assembler: Der Prozessor Motorola 68000

9. Assembler: Der Prozessor Motorola 68000 9.1 Architektur des Prozessors M 68000 9.2 Adressierungsarten des M 68000 9-1 9.1 Beschreibung des Prozessors M 68000 Charakteristische Daten des 56 Maschinenbefehle 14 Adressierungsarten Zweiadressmaschine

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

ARM: Befehlssatz (Forts.)

ARM: Befehlssatz (Forts.) ARM: Befehlssatz (Forts.) Befehl SWI zum Auslösen eines Software-Interrupts: Instruktionsformat: Ausführung von SWI überführt CPU in den supervisor mode (nach Retten des PC in r14_svc und des CPSR in SPSR_svc)

Mehr

Lösungsvorschlag zur 4. Übung

Lösungsvorschlag zur 4. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zur 4. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche Aussagen zu Bewertungskriterien

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

DIGITALE SCHALTUNGEN II

DIGITALE SCHALTUNGEN II DIGITALE SCHALTUNGEN II 3. Sequentielle Schaltkreise 3.1 Vergleich kombinatorische sequentielle Schaltkreise 3.2 Binäre Speicherelemente 3.2.1 RS Flipflop 3.2.2 Getaktetes RS Flipflop 3.2.3 D Flipflop

Mehr

Neue Prozessor-Architekturen für Desktop-PC

Neue Prozessor-Architekturen für Desktop-PC Neue Prozessor-Architekturen für Desktop-PC Bernd Däne Technische Universität Ilmenau Fakultät I/A - Institut TTI Postfach 100565, D-98684 Ilmenau Tel. 0-3677-69-1433 bdaene@theoinf.tu-ilmenau.de http://www.theoinf.tu-ilmenau.de/ra1/

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation RISC 1 Übersicht Motivation RISC-Merkmale RISC-Instruktionsformat Pipelining Sparc, MIPS, Arm, PowerPC 2 Motivation Warum RISC Compiler nutzen komplexe CISC-Instruktionen kaum Nur 80% der Instruktionen

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Systeme 1: Architektur

Systeme 1: Architektur slide 1 Vorlesung Systeme 1: Architektur Prof. Dr. Ulrich Ultes-Nitsche Forschungsgruppe Departement für Informatik Universität Freiburg slide 2 Prüfung 18. Februar 2004 8h00-11h40 13h00-18h20 20 Minuten

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Computational Engineering I

Computational Engineering I DEPARTMENT INFORMATIK Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 25.01.2016 Probeklausur zu Computational Engineering

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de pascal.libuschewski [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2016 Übungsblatt 10 (Block C 2) (16

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

H E F B G D. C. DLX Rechnerkern

H E F B G D. C. DLX Rechnerkern C. DLX Rechnerkern C.1. Einordnung DLX Architektur und Konzepte: Einfache "Gesamtzyklus"-DLX Maschine (non-pipelined), Verarbeitungsschritte einer Instruktion, Taktverhalten im Rechner, RISC & CISC...

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 7 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

, WS2013 Übungsgruppen: Di., Fr.,

, WS2013 Übungsgruppen: Di., Fr., VU Technische Grundlagen der Informatik Übung : Stack, Pipelining., WS20 Übungsgruppen: Di., 0.01. Fr.,.01.201 Aufgabe 1: Stack - Funktionsweise Erläutern Sie die Funktionsweise eines Stacks bzw. Kellerspeichers

Mehr

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 14/15 1. J. Kaiser, IVS-EOS

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 14/15 1. J. Kaiser, IVS-EOS RISC: Reduced Instruction Set Computer 1 The CMOS Generations: Speedup through Miniaturization 10-fache Leistungssteigerung 2 Was ist ein Reduced Instruction Set Computer (RISC*)? * Der Begriff RISC wurde

Mehr

Von-Neumann-Architektur

Von-Neumann-Architektur Von-Neumann-Architektur Bisher wichtig: Konstruktionsprinzip des Rechenwerkes und Leitwerkes. Neu: Größerer Arbeitsspeicher Ein- und Ausgabewerk (Peripherie) Rechenwerk (ALU) Steuerwerk (CU) Speicher...ppppp...dddddd..

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast Quantitative Prinzipien im Hardwareentwurf 1. Small is fast Kleine Hardwareeinheiten schalten in der Regel schneller als größere. Kleine Transistoren bilden an ihren Gates kleinere Kapazitäten die Source-Drain

Mehr

10. Die Adressierungsarten des MSP 430

10. Die Adressierungsarten des MSP 430 10. Die Adressierungsarten 10.1 Übersicht über die Adressierungsarten 10.2 -Operanden 10.3 Indexregister mit Distanz 10.4 Symbolische (relativ zum ) 10.5 Absolute 10.6 Indirekte 10.7 Indirekte Adressierung

Mehr

Assembler - Adressierungsarten

Assembler - Adressierungsarten Assembler - Adressierungsarten Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Adressierungsarten 1/31 2008-04-01

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen

Mehr

Computational Engineering I

Computational Engineering I DEPARTMENT INFORMATIK Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 01.02.2017 Probeklausur zu Computational Engineering

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1 E-1 Technische Grundlagen der Informatik 2 SS 2009 Einleitung R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt Lernziel E-2 Verstehen lernen, wie ein Rechner auf der Mikroarchitektur-Ebene

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Parallelität auf Instruktionsebene Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005 Mikroprozessoren Aufbau und Funktionsweise Christian Richter Ausgewählte Themen der Multimediakommunikation SS 2005 Christian Richter (TU-Berlin) Mikroprozessoren AT MMK 2005 1 / 22 Gliederung Was ist

Mehr

Rechnerstrukturen 1: Der Sehr Einfache Computer

Rechnerstrukturen 1: Der Sehr Einfache Computer Inhaltsverzeichnis 1: Der Sehr Einfache Computer 1 Komponenten.................................... 1 Arbeitsweise..................................... 1 Instruktionen....................................

Mehr

a) Erläutern Sie die Begriffe CISC und RISC. Worin liegen die Unterschiede zwischen diesen beiden Architekturen?

a) Erläutern Sie die Begriffe CISC und RISC. Worin liegen die Unterschiede zwischen diesen beiden Architekturen? VU Technische Grundlagen der Informatik Übung 6: Mikroprozessoren, Pipelining.79, WS20 Übungsgruppen: Mo., 2.2. Fr., 6.2.20 Aufgabe : Theoriefragen a) Erläutern Sie die Begriffe CISC und RISC. Worin liegen

Mehr

Heute nur MIPS-Praxis (4 Aufgaben)

Heute nur MIPS-Praxis (4 Aufgaben) Themen heute Heute nur MIPS-Praxis (4 Aufgaben) Hinweis: Diese Aufgaben findet ihr auf den Übungsblättern zu den Tutorien (bei Aufgabe 4 wurde eine Teilaufgabe und im Tutorium #6 bereits geklärte Wissensfragen

Mehr

Grundlagen - Grundbegriffe, Aufbau, Rechnerarchitekturen, Bus, Speicher - Maschinencode, Zahlendarstellung, Datentypen - ATMELmega128

Grundlagen - Grundbegriffe, Aufbau, Rechnerarchitekturen, Bus, Speicher - Maschinencode, Zahlendarstellung, Datentypen - ATMELmega128 Grundlagen - Grundbegriffe, Aufbau, Rechnerarchitekturen, Bus, Speicher - Maschinencode, Zahlendarstellung, Datentypen - ATMELmega128 Progammierung in C - Vergleich C und C++ - Anatomie eines µc-programmes

Mehr

Einleitung Performance Netzwerk Leistungsaufnahme Skalierbarkeit Sicherheit Zuverlässigkeit Kompatibilität. Ziele und Maße. Dr.-Ing.

Einleitung Performance Netzwerk Leistungsaufnahme Skalierbarkeit Sicherheit Zuverlässigkeit Kompatibilität. Ziele und Maße. Dr.-Ing. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Performance 3 Netzwerk 4 Leistungsaufnahme 5 Skalierbarkeit 6 Sicherheit

Mehr

Mikrocomputertechnik. Adressierungsarten

Mikrocomputertechnik. Adressierungsarten Adressierungsarten Ein Mikroprozessor bietet meist eine Reihe von Möglichkeiten, die Operanden für eine Rechenoperation zu bestimmen. Diese Möglichkeiten bezeichnet man als Adressierungsarten. unmittelbare

Mehr

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache Assembler Programmierung Motivation Informatik II SS 2004 Teil 4: Assembler Programmierung Was ist ein Programm? Eine Reihe von Befehlen, die der Ausführung einer Aufgabe dient Dazu wird das Programm sequentiell

Mehr

Informatik 12 Kapitel 3 - Funktionsweise eines Rechners

Informatik 12 Kapitel 3 - Funktionsweise eines Rechners Fachschaft Informatik Informatik 12 Kapitel 3 - Funktionsweise eines Rechners Michael Steinhuber König-Karlmann-Gymnasium Altötting 9. Februar 2017 Folie 1/36 Inhaltsverzeichnis I 1 Komponenten eines PCs

Mehr

Assembler Integer-Arithmetik

Assembler Integer-Arithmetik Assembler Integer-Arithmetik Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Integer-Arithmetik 1/23 2008-04-01 Arithmetik

Mehr

Hier: Soviele Instruktionen wie möglich sollen in einer Zeiteinheit ausgeführt werden. Durchsatz.

Hier: Soviele Instruktionen wie möglich sollen in einer Zeiteinheit ausgeführt werden. Durchsatz. Pipelining beim DLX 560 Prozessor Pipelining : Implementierungstechnik Vielfältig angewendet in der Rechnerarchitektur. Pipelining macht CPUs schnell. Pipelining ist wie Fließbandverarbeitung. Hintereinanderausführung

Mehr

Was ist Rechnerleistung

Was ist Rechnerleistung Was ist Rechnerleistung Leistung im engeren Sinne: Leistung gemessen in seltsamen Einheiten, bestimmt vorwiegend von der Zentraleinheit: MIPS (Millionen Instruktionen pro Sekunde) FLOPS (Floating Point

Mehr

2 Rechnerarchitekturen

2 Rechnerarchitekturen 2 Rechnerarchitekturen Rechnerarchitekturen Flynns Klassifikation Flynnsche Klassifikation (Flynn sche Taxonomie) 1966 entwickelt, einfaches Modell, bis heute genutzt Beschränkung der Beschreibung auf

Mehr

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS RISC: Reduced Instruction Set Computer 1 The CMOS Generations: Speedup through Miniaturization 10-fache Leistungssteigerung 2 Was ist ein Reduced Instruction Set Computer (RISC*)? * Der Begriff RISC wurde

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung : Mikroprozessoren, Pipelining, Cache 183.579, SS01 Übungsgruppen: Do., 10.05. Mi., 1.05.01 Aufgabe 1: Stack Funktionsweise eines Stacks Erläutern Sie die

Mehr

2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise Teil 1 Kapitel 2 Rechner im Überblick 2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise Frank Schmiedle Technische Informatik I 2.1 Rechnersichten Modellierung eines Rechners Zusammenspiel

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9 Inhalt Curriculum 1.4.2 Manfred Wilfling HTBLA Kaindorf 28. November 2011 M. Wilfling (HTBLA Kaindorf) CPUs 28. November 2011 1 / 9 Begriffe CPU Zentraleinheit (Central Processing Unit) bestehend aus Rechenwerk,

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 3. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 3 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

68000 Assembler. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren.

68000 Assembler. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren. Ein Programm liegt der CPU in binärer Form vor und wird durch den Assembler in einer primitiven

Mehr

Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1.

Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1. Materialien Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1. Einleitung 1 Digitaltechnik und Rechnerstrukturen Vorlesungs- und

Mehr

Kapitel 11 RISC-Rechner

Kapitel 11 RISC-Rechner Kapitel 11 - RISC-Rechner Seite 219 Kapitel 11 RISC-Rechner (reduced instruction set computer, RISC) 11.1. Einleitung In den Achtzigerjahren änderten sich die Randbedingungen für Rechner: Hardware wurde

Mehr

Brückenkurs / Computer

Brückenkurs / Computer Brückenkurs / Computer Sebastian Stabinger IIS 23 September 2013 Sebastian Stabinger (IIS) Brückenkurs / Computer 23 September 2013 1 / 20 Content 1 Allgemeines zum Studium 2 Was ist ein Computer? 3 Geschichte

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

System-Architektur und -Software

System-Architektur und -Software System-Architektur und -Software Sommersemester 2001 Lutz Richter Institut für Informatik Universität Zürich Obligatorische Veranstaltung des Kerngebietes System-Architektur und -Software Voraussetzungen

Mehr

nutzt heute Diese Prinzipien werden wir im Kapitel 3 behandelt Lehrstuhl für Informatik 3 - D. Fey Vorlesung GRa - SS

nutzt heute Diese Prinzipien werden wir im Kapitel 3 behandelt Lehrstuhl für Informatik 3 - D. Fey Vorlesung GRa - SS 3.1 Einführung (1) Nahezu jeder Prozessor in einem Desktop-Rechner (der auf oder unter dem Tisch steht) und in einem Server- Rechner (auf dem man sich von der Ferne einloggt und dort rechnet) nutzt heute

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Modul Computersysteme Prüfungsklausur WS 2011/2012. Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur

Modul Computersysteme Prüfungsklausur WS 2011/2012. Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur Modul Computersysteme Prüfungsklausur WS 2011/2012 Lösungsvorschläge Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur 1 Aufgabe 1 (10 Punkte): a) Gegeben

Mehr

Legen Sie den Ausweis (mit Lichtbild!) griffbereit auf den Platz! Dieses Aufgabenheft umfasst 24 Seiten. Überprüfen Sie die Vollständigkeit!

Legen Sie den Ausweis (mit Lichtbild!) griffbereit auf den Platz! Dieses Aufgabenheft umfasst 24 Seiten. Überprüfen Sie die Vollständigkeit! Department Informatik Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 25.09.2013 Klausur zu Grundlagen der Rechnerarchitektur

Mehr

1 Rechnerstrukturen 1: Der Sehr Einfache Computer

1 Rechnerstrukturen 1: Der Sehr Einfache Computer David Neugebauer, Informationsverarbeitung - Universität zu Köln, Seminar BIT I Inhaltsverzeichnis 1 Rechnerstrukturen 1: Der Sehr Einfache Computer 1 1.1 Komponenten................................. 1

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 4 AM 21.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller SS 2004 VAK 18.004 Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller Aufgabenblatt 2.5 Lösung 2.5.1 Befehlszähler (Program Counter, PC) enthält Adresse des nächsten auszuführenden

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr