DIGITALE SCHALTUNGEN II

Größe: px
Ab Seite anzeigen:

Download "DIGITALE SCHALTUNGEN II"

Transkript

1 DIGITALE SCHALTUNGEN II 3. Sequentielle Schaltkreise 3.1 Vergleich kombinatorische sequentielle Schaltkreise 3.2 Binäre Speicherelemente RS Flipflop Getaktetes RS Flipflop D Flipflop JK Flipflop Master Slave JK Flipflop 3.3 Schaltungen mit Flipflops Zähler und Teiler Register 1/40

2 Vergleich von kombinatorischem Schaltkreis mit sequentiellem Schaltkreis Kombinatorischer Schaltkreis i j Der Zustand der Ausgänge j wird eindeutig von den Zuständen der Eingänge i bestimmt. Sequentieller Schaltkreis i j k Der Zustand der Ausgänge j wird von den Zuständen der Eingänge i und den Rückführungen k bestimmt. Die Rückführungen implementieren die Funktionälitat eines Gedächtnisses. 2/40

3 RS-Flipflop S Q Q R Wahrheitstabelle Q v S R Q n Q n Komprimierte Wahrheitstabelle Q v S R Q n Q v 0 0 Q v X X Nebenbedingung: R S = 0 3/40

4 4/40 34

5 5/40 35

6 Getaktetes RS-Flipflop Takt 1 t 0 t Getakteter Eingang a T & a, 0 Getaktetes RS-Flipflop S & & Q T R & & Q 6/40

7 JK-Flipflop J & & Q T K & & Q Komprimierte Wahrheitstabelle J K Q n 0 0 Q n Q n 1 7/40

8 Master Slave JK-Flipflop J & & & & Q T T 1 K & & & & Q Master Slave 8/40

9 9/40 39

10 10/40 40

11 11/40 41

12 12/40 42

13 13/40 43

14 4. Struktur und Arbeitsweise eines Rechners 4.1 Register 4.2 Bus 4.3 Einfache Operationen 4.4 Steuerung 4.5 Hauptspeicher 4.6 von Neumann-Struktur eines Rechners 4.7 Memory mapped IO 4.8 Einfache Mikroprozessoren 4.9 Architekturen: CISC und RISC 4.10 Neue Architekturen 14/40

15 15/40 44

16 16/40 45

17 17/40 46

18 18/40

19 19/40 48

20 20/40 49

21 21/40 50

22 22/40 51

23 Memory-mapped IO Ein-/Ausgabe Seiten F F FFFF F y /40 E/A Bus Speicher Bus Adapter Bus Hauptspeicher 0 x FFFF Bus Logischer Adressraum Prozessor

24 24/40 52

25 25/40 53

26 Intel 4004 Der Intel 4004 ist ein 4-Bit-Mikroprozessor des Mikrochipherstellers Intel, der am 15. November 1971 auf den Markt kam. Er gilt als der erste Ein-Chip-Mikroprozessor, der in Serie produziert und am freien Markt vertrieben wurde. Meist wird er auch als erster Mikroprozessor überhaupt bezeichnet, was aber nicht richtig ist, da bei Texas Instruments bereits 1968 ein Mikroprozessor als Auftragsarbeit entwickelt wurde, der aber nie in Serie ging. 26/40

27 Rockwell 6502 (1975) Taktrate 1-3 MHz 8 Bit Register ausser PC (16 Bit) 16 Bit Adressen 64k Byte Adressraum 56 Instruktionstypen; 151 Instruktionen Instruktionen 1 3 Byte, erstes Byte immer Op-Code Ausführungsdauer: 1 Byte Befehl 2 µs 3 Byte Befehl 7 µs Beispiele von Adressierungsmodi Immediate Addressing LDA #$3F 2 Byte # immediate, $ hexadezimal Lade die Konstante 3F H in den Akkumulator Absolute Addressing 3Byte LDA $12BA Lade den Inhalt von Speicheradresse 12BA H in den Akkumulator Absolute Indexed Addressing 3Byte LDA $12BA, X Lade den Inhalt von Speicheradresse, gegeben durch 12BA H Indexregister X, in den Akkumulator + Inhalt von 27/40

28 28/40 55

29 29/40 56

30 ARM-Architektur Die ARM-Architektur ist ein 1983 vom britischen Computerunternehmen Acorn entwickeltes 32-Bit-Chip-Design. Das Unternehmen begann die Entwicklung eines leistungsfähigen Prozessors für einen Nachfolger seines bis dahin auf dem 6502 basierenden Computer. ARM steht für Advanced RISC Machines. Das Unternehmen ARM Limited stellt keine eigenen Elektronikchips her, sondern vergibt unterschiedliche Lizenzen an Halbleiterhersteller. Die Vielzahl dieser Lizenznehmer und verschiedene Vorteile der Architektur (z. B. geringer Energiebedarf) führten dazu, dass ARM-Chips im Embedded-Bereich die meistgenutzte Architektur sind. Fast alle derzeitigen Smartphone und Tablet-Computer haben beispielsweise einen oder mehrere lizenzierte ARM-Prozessoren. Nachdem der ARM zum ARM3 (mit Cache und höherer Taktfrequenz) weiterentwickelt worden war und immer mehr Unternehmen Interesse an diesen Prozessoren bekundet hatten, gründete Acorn im Jahre 1990 zusammen mit Apple und VLSI Technology das Unternehmen Advanced RISC Machines Ltd. mit Sitz in Großbritannien, welches später in ARM Ltd. umbenannt wurde. Architektur Familie(n) Erscheinungsjahr Takt ARMv1 ARM MHz ARMv2 ARM2, ARM3 1986, MHz ARMv3 ARM6, ARM7 1991, MHz ARMv4 ARMv5 ARMv6 ARMv7 ARM7TDMI, ARM8, StrongARM ARM9TDMI ARM7EJ, ARM9E, ARM10E, XScale 1995, ARM11, 2002 ARM Cortex-M0, ARM Cortex-M0+, ARM Cortex-? M1 ARM Cortex-M3, ARM Cortex-M4 ARM Cortex-A (A8, A9, A5, A15, A7 und A12), ARM Cortex-R ? 16,8 75 MHz, MHz 180 MHz MHz MHz MHz bis 200 MHz [3]? bis 2 GHz? ARMv8 ARM Cortex-A53, ARM Cortex-A57 *[4] GHz Quelle: Wikipedia: ARM-Architektur 30/40

31 Vergleich CISC RISC Complex Instruction Set Computer Vertreter: 6502, PDP11, VAX11 Oft Implementierung des Orthogonal Instruction Set Anfang 70-iger: Semantische Lücke; die meisten komplexen Instruktionen werden von Compilern nicht oder nur wendig genutzt. Reduced Instruction Set Computer auch Load/Store Architektur genannt Vertreter: Alpha Unterscheiden sich nicht durch die Zahl der Instruktion sondern durch die Pipeline Verarbeitung der Befehle. Die Pipeline hat eine fixe Anzahl von Schritten. Dadurch sind komplexe Adressierungsmodi ausser bei Load oder Store Operationen nicht möglich. Beispiel CISC ADD adr1, adr2, adr3 einfache @(adr3) komplexe Adressierung Beispiel RISC Es gibt separate Load und Store Befehle, die auch komplexe Addressierungsmodi unterstützen. Die anderen Operationen finden ausschliesslich in/zwischen den Registern statt LOA LOA ADD R2 R1, R2, R1 31/40

32 Befehlpipelining A IF, Instruction Fetch B ID, Instruction Decoding C EX, Execution D WB, Write Back Wenn jede Phase des Befehls mit einem Taktzyklus durchgeführt wird, wird effektiv ein Befehl pro Takt ausgeführt. Falls die Phasen mehrere Taktzyklen zur Ausführung benötigen, bestimmt die längste Phase die effektive Ausführungszeit. Quelle: Wikipedia 32/40

33 Beschleunigung der Befehlsbearbeitung Superpipelining: Aufteilen jeder Phase in Teilschritte mit einem Taktzyklus. Trotz einer grösseren Zahl von (Teil-)Phasen wird pro Takt effektiv ein Befehl ausgeführt! Superskalare Architektur: Mehrere parallele Pipelines Quelle: D.W. Hoffmann 33/40

34 Hazards: Probleme, derart dass effektiv weniger als ein Befehl pro Taktzyklus ausgeführt wird. Control Hazard Probleme bei bedingten Sprüngen start: BEQ R1, R2, else: // if (R1 == R2) ADD R1, #1; // R1 = R1 + 1; JMP end: // else else: ADD R2, #1; // R2 = R2 + 1; end:... Lösen des Problems durch Einschieben von leeren Operationen NOP start: BEQ R1, R2, else: NOP NOP NOP ADD R1, #1; JMP end: NOP NOP NOP else: ADD R2, #1; end:... Quelle: D.W. Hoffmann 34/40

35 Lösen des Problems durch Spekulative Befehlsausführung Nach bedingtem Sprung Einfüllen der Befehle des wahrscheinlicheren Zweiges Trifft die Vorhersage nicht zu, muss die Pipeline entleert und der Prozessorstatus zurückgesetzt werden Statische Vorhersage schlechte Trefferquote << 85% Dynamische Vorhersage Erhöhung der Trefferquote (bis 98%) durch Aufzeichnen des Sprungverhaltens in Branch History Table (BHT) Reaktion auf den ersten Wechsel des Sprungverhaltens ist zu ineffizient, daher Aufzeichnung zweier (oder mehr) Wechsel BHT mit 2 Bit Prediction Index aus den niederwertigen Bits der Adresse Sprungstatus /40

36 Sprungstati und Übergänge Sprungstatus Bedeutung 00 Sprung 2 oder mehrere Male ausgeführt 01 Sprung zum ersten Mal nicht ausgeführt 10 Sprung zum ersten Mal wieder ausgeführt 11 Sprung 2 oder mehrere Male nicht ausgeführt Vorhersage springen? ja ja nein nein Kein Sprung Sprung 36/40

37 37/40 58

38 Entwicklung der RISC Prozessoren Beispiel Alpha-Chip CMOS6 Technologie: Leiterbahnen 0.35 µm, 6 Schichten 3 cm 2 Fläche 15, Transistoren weiteres Parallelisieren der Instruktionsbearbeitung mehr Pipelines 4 Befehle pro Zyklus Superskalar 4 Integer Pipelines 2 Floatingpoint Pipelines Takt 500 MHz MHz 2000 MIPS Vorhersage der Geschwindigkeitserhöhung durch Reduktion der Grösse 38/40

39 39/40 60

40 Und wie geht es weiter? Explicitly Parallel Instruction Computing (EPIC) Vertreter: Itanium Prozessor speziell konzipiert für die Parallelverarbeitung. Die Entscheidung über die Parallelisierung wird schon vom Compiler vorgenommen, damit Vereinfachung des Prozessors im Vergleich zur superskalaren Architektur. 40/40

Neue Prozessor-Architekturen für Desktop-PC

Neue Prozessor-Architekturen für Desktop-PC Neue Prozessor-Architekturen für Desktop-PC Bernd Däne Technische Universität Ilmenau Fakultät I/A - Institut TTI Postfach 100565, D-98684 Ilmenau Tel. 0-3677-69-1433 bdaene@theoinf.tu-ilmenau.de http://www.theoinf.tu-ilmenau.de/ra1/

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005 Mikroprozessoren Aufbau und Funktionsweise Christian Richter Ausgewählte Themen der Multimediakommunikation SS 2005 Christian Richter (TU-Berlin) Mikroprozessoren AT MMK 2005 1 / 22 Gliederung Was ist

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9 Inhalt Curriculum 1.4.2 Manfred Wilfling HTBLA Kaindorf 28. November 2011 M. Wilfling (HTBLA Kaindorf) CPUs 28. November 2011 1 / 9 Begriffe CPU Zentraleinheit (Central Processing Unit) bestehend aus Rechenwerk,

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Samsungs Exynos 5 Dual

Samsungs Exynos 5 Dual Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Samsungs Exynos 5 Dual Candy Lohse Dresden, 12.12.12 Gliederung 1. Motivation und

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

früher: CISC ( Complex Instruction Set Computer )

früher: CISC ( Complex Instruction Set Computer ) Hochleistungs-CPUs früher: CISC ( Complex Instruction Set Computer ) mächtige Instruktionssätze zur Unterstützung von Hochsprachenkonstrukten durch Hardware (Idee: don t do in software what you can do

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Technische Informatik I, SS 2001

Technische Informatik I, SS 2001 Technische Informatik I SS 2001 PD Dr. A. Strey Abteilung Neuroinformatik Universität Ulm Inhalt Einführung: Überblick über die historische Entwicklung der Rechnerhardware Teil 1: Digitale Logik kurzer

Mehr

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1 E-1 Technische Grundlagen der Informatik 2 SS 2009 Einleitung R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt Lernziel E-2 Verstehen lernen, wie ein Rechner auf der Mikroarchitektur-Ebene

Mehr

11.0 Rechnerarchitekturen

11.0 Rechnerarchitekturen 11.0 Rechnerarchitekturen Die Ziele dieses Kapitels sind: Kennen lernen der Rechnerklassifikation nach Flynn Betrachtung von Prozessorarchitekturen auf verschiedenen Abstraktionsebenen - Befehlsarchitektur

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

Instruktionen pro Takt

Instruktionen pro Takt (c) Peter Sturm, Universität Trier (u.a.) 1 Instruktionen pro Takt 500 MIPS (Dhrystone) Taktfrequenz 450 400 350 300 250 200 150 100 50 0 8086 80286 80386 80486 Pentium Pentium Pro Die-Größen: Intel Vorlesung

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 6 Datum: 24. 25. 11. 2016 Pipelining 1 Taktrate / Latenz In dieser

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

3. Grundlagen der Rechnerarchitektur

3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und Adressierungstechniken 3.4 Beispiel: der Prozessor

Mehr

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 14. Okt. 2015 Computeraufbau: nur ein Überblick Genauer: Modul Digitale Systeme (2. Semester) Jetzt: Grundverständnis

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS RISC: Reduced Instruction Set Computer 1 The CMOS Generations: Speedup through Miniaturization 10-fache Leistungssteigerung 2 Was ist ein Reduced Instruction Set Computer (RISC*)? * Der Begriff RISC wurde

Mehr

Rechnergrundlagen SS 2007. 11. Vorlesung

Rechnergrundlagen SS 2007. 11. Vorlesung Rechnergrundlagen SS 2007 11. Vorlesung Inhalt Evaluation der Lehre (Auswertung) Synchroner/asynchroner Systembus Kontrollfluss/Datenfluss RISC vs. CISC Speicherhierarchie Cache Lesen Schreiben Überschreiben

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit)

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit) Der Demo-Computer besitzt einen 4Bit-Mikroprozessor. Er kann entsprechend Wörter mit einer Breite von 4 Bits in einem Schritt verarbeiten. Die einzelnen Schritte der Abarbeitung werden durch Lampen visualisiert.

Mehr

Philipp Grasl PROZESSOREN

Philipp Grasl PROZESSOREN 1 PROZESSOREN INHALTSVERZEICHNIS Definition/Verwendung Prozessor Historische Entwicklung Prozessor Aufbau Prozessor Funktionsweise Prozessor Steuerung/Maschinenbefehle Prozessorkern Prozessortakt 2 DEFINITION

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 2.1. Aufbau eines Rechners in Ebenen 3 2.2. Die Ebene der elektronischen Bauelemente 5 2.3. Die Gatterebene 5 2.3.1 Einfache

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Von - Neumann - Rechner. Zentraleinheit ( CPU )

Von - Neumann - Rechner. Zentraleinheit ( CPU ) 01 Eingabe Verarbeitung Ausgabe Von - Neumann - Rechner Ausgabeeinheit Zentraleinheit ( CPU ) Eingabeeinheit Von-Neumann-Rechner mit struktur 02 Rechenwerk Umwelt Steuerwerk interner Speicher Eingabe Ausgabe

Mehr

Designprinzipien moderner Prozessoren

Designprinzipien moderner Prozessoren Designprinzipien moderner Prozessoren ARM Cortex A9 B. Totev, C. Knap Geschichte: Die britisch-österreichische Firma Acorn wird 1978 gegründet. Der erste von Roger Wilson entwickelter Rechner mit Mostek-6502-

Mehr

Systeme 1: Architektur

Systeme 1: Architektur slide 1 Vorlesung Systeme 1: Architektur Prof. Dr. Ulrich Ultes-Nitsche Forschungsgruppe Departement für Informatik Universität Freiburg slide 2 Prüfung 18. Februar 2004 8h00-11h40 13h00-18h20 20 Minuten

Mehr

Brückenkurs / Computer

Brückenkurs / Computer Brückenkurs / Computer Sebastian Stabinger IIS 23 September 2013 Sebastian Stabinger (IIS) Brückenkurs / Computer 23 September 2013 1 / 20 Content 1 Allgemeines zum Studium 2 Was ist ein Computer? 3 Geschichte

Mehr

CISC ( Complex Instruction Set Computer ) mächtige Instruktionssätze zur Unterstützung von Hochsprachenkonstrukten

CISC ( Complex Instruction Set Computer ) mächtige Instruktionssätze zur Unterstützung von Hochsprachenkonstrukten Hochleistungs-CPUs CISC ( Complex Instruction Set Computer ) mächtige Instruktionssätze zur Unterstützung von Hochsprachenkonstrukten durch Hardware (Idee: don t do in software what you can do in hardware

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

9.1. Aufbau einer Befehlspipeline

9.1. Aufbau einer Befehlspipeline Kapitel 9 - Befehlspipelining Seite 191 Kapitel 9 Befehlspipelining 9.1. Aufbau einer Befehlspipeline Ein typischer Befehl in einer Maschine mit einem RISC-artigen Befehlssatz besteht aus den Operationen:

Mehr

Programmierung Paralleler Prozesse

Programmierung Paralleler Prozesse Vorlesung Programmierung Paralleler Prozesse Prof. Dr. Klaus Hering Sommersemester 2007 HTWK Leipzig, FB IMN Sortierproblem Gegeben: Menge M mit einer Ordnungsrelation (etwa Menge der reellen Zahlen) Folge

Mehr

Aufbau von modernen Computersystemen

Aufbau von modernen Computersystemen Kapitel 2: Aufbau von modernen Computersystemen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Software Anwendersoftware Betriebssystem Hardware von Neumann Architektur

Mehr

Arithmetische und Logische Einheit (ALU)

Arithmetische und Logische Einheit (ALU) Arithmetische und Logische Einheit (ALU) Enthält Blöcke für logische und arithmetische Operationen. n Bit Worte werden mit n hintereinander geschalteten 1 Bit ALUs bearbeitet. Steuerleitungen bestimmen

Mehr

Echtzeit Videoverarbeitung

Echtzeit Videoverarbeitung Hardwareplattformen für Echtzeit Videoverarbeitung Herbert Thoma Seite 1 Gliederung Echtzeitanforderungen Prozessorarchitekturen Grundlagen Pipelining Parallele Befehlsausführung Systemkomponenten Speicher

Mehr

CISC-RISC-EPIC. eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen Seite: 1

CISC-RISC-EPIC. eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen Seite: 1 CISC-RISC-EPIC eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen 2008 www.equicon.de Seite: 1 Heutiges Programm: CISC-RISC-EPIC - Begriffserklärung von Neumann Rechnerarchitektur Evolution

Mehr

Teil Rechnerarchitekturen. Repetitorium. Corinna Schmitt

Teil Rechnerarchitekturen. Repetitorium. Corinna Schmitt Teil Rechnerarchitekturen Repetitorium Corinna Schmitt corinna.schmitt@unibas.ch Vorlesungsinhalt Rechnerarchitekturen M01: Architektur, ALU, Flip-Flop M02: Einführung in die Sprache C M03: 2er-Komplement,

Mehr

Technische Informatik. Der VON NEUMANN Computer

Technische Informatik. Der VON NEUMANN Computer Technische Informatik Der VON NEUMANN Computer Inhalt! Prinzipieller Aufbau! Schaltkreise! Schaltnetze und Schaltwerke! Rechenwerk! Arbeitsspeicher! Steuerwerk - Programmausführung! Periphere Geräte! Abstraktionsstufen

Mehr

Rechneraufbau und Rechnerstrukturen

Rechneraufbau und Rechnerstrukturen Rechneraufbau und Rechnerstrukturen von Walter Oberschelp RWTH Aachen und Gottfried Vossen Universität Münster 10. Auflage c 2006 R. Oldenbourg Verlag GmbH, München Inhaltsverzeichnis Auszug... x... aus

Mehr

Technische Informatik 2 Adressierungsarten

Technische Informatik 2 Adressierungsarten Technische Informatik 2 Adressierungsarten Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute X-Adressmaschine 0-Adressmaschine 1-Adressmaschine 2-Adressmaschine

Mehr

Implementierung: Direkt abgebildeter Cache

Implementierung: Direkt abgebildeter Cache Implementierung: Direkt abgebildeter Cache Direkt-abgebildeter Cache von 64 KB mit 16-Byte-Linien (Adress- und Wortlänge 32 Bit, Byteadressierung) Address (showing bit positions) 31 30 29 28..... 19 18

Mehr

Verlustleistungsreduzierung in Datenpfaden

Verlustleistungsreduzierung in Datenpfaden Verlustleistungsreduzierung in Datenpfaden F. Grassert, F. Sill, D. Timmermann Inhalt Motivation Analyse der Ausgangssituation Verlustleistung in der Schaltungstechnik Selbstgetaktete dynamische Logiken

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Speedup: Grundlagen der Performanz Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 30. April 2015 Eine Aufgabe aus der Praxis Gegeben ein

Mehr

Fragenkatalog Computersysteme Test 25. April 2008

Fragenkatalog Computersysteme Test 25. April 2008 Fragenkatalog Computersysteme Test 25. April 2008 Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at 6. April 2008 Der Test besteht aus 4 Fragen aus dem folgenden Katalog (mit eventuell leichten

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

Fragenkatalog zur Klausur Computersysteme

Fragenkatalog zur Klausur Computersysteme Fragenkatalog zur Klausur Computersysteme Wolfgang Schreiner RISC-Linz 25. Mai 2002 1. Erklären Sie die Begriffe Übersetzung und Interpretation von Programmiersprachen. Worin liegt der jeweilige Vorteil/Nachteil?

Mehr

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast Quantitative Prinzipien im Hardwareentwurf 1. Small is fast Kleine Hardwareeinheiten schalten in der Regel schneller als größere. Kleine Transistoren bilden an ihren Gates kleinere Kapazitäten die Source-Drain

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I SS 2001 PD Dr. A. Strey Abteilung Neuroinformatik Universität Ulm Inhalt Einführung: Überblick über die historische Entwicklung der Rechnerhardware Teil 1: Digitale Logik kurzer

Mehr

Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen

Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen Statt positive Zahlen von 0 bis 2 n -1mit einem Bitmuster der Länge n darzustellen und arithmetische Operationen darauf auszuführen,

Mehr

Was ist Rechnerleistung

Was ist Rechnerleistung Was ist Rechnerleistung Leistung im engeren Sinne: Leistung gemessen in seltsamen Einheiten, bestimmt vorwiegend von der Zentraleinheit: MIPS (Millionen Instruktionen pro Sekunde) FLOPS (Floating Point

Mehr

10. Die Adressierungsarten des MSP 430

10. Die Adressierungsarten des MSP 430 10. Die Adressierungsarten 10.1 Übersicht über die Adressierungsarten 10.2 -Operanden 10.3 Indexregister mit Distanz 10.4 Symbolische (relativ zum ) 10.5 Absolute 10.6 Indirekte 10.7 Indirekte Adressierung

Mehr

Einführung in die Systemprogrammierung 02

Einführung in die Systemprogrammierung 02 Einführung in die Systemprogrammierung 02 Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 4. Mai 2014 Eine Aufgabe aus der Praxis Gegeben ein bestimmtes Programm: Machen Sie dieses

Mehr

2.4 VLIW und EPIC-Prozessoren

2.4 VLIW und EPIC-Prozessoren 12 2.4 VLIW und EPIC-Prozessoren Peter Marwedel Informatik 12 TU Dortmund 2013/04/18 Gründe für die Einführung von Parallelität (1) Steigerung der Rechenleistung stößt an Komplexitätsschranken: Zunehmend

Mehr

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1 IT für Führungskräfte Zentraleinheiten 11.04.2002 Gruppe 2 - CPU 1 CPU DAS TEAM CPU heißt Central Processing Unit! Björn Heppner (Folien 1-4, 15-20, Rollenspielpräsentation 1-4) Harald Grabner (Folien

Mehr

Rechneraufbau und Rechnerstrukturen

Rechneraufbau und Rechnerstrukturen Rechneraufbau und Rechnerstrukturen von Prof. Dr. Walter Oberschelp, RWTH Aachen und Prof. Dr. Gottfried Vossen, Universität Münster 7, vollständig überarbeitete und aktualisierte Auflage R.Oldenbourg

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Übersicht. Einleitung. Übersicht. Architektur. Dr.-Ing. Volkmar Sieh WS 2008/2009

Übersicht. Einleitung. Übersicht. Architektur. Dr.-Ing. Volkmar Sieh WS 2008/2009 Übersicht Einleitung 1 Einleitung Dr.-Ing. Volkmar Sieh 2 Technologische Trends Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 3 Historischer

Mehr

Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (2) Architektur des Haswell- Prozessors (aus c t) Einführung

Mehr

Computergrundlagen Geschichte des Computers

Computergrundlagen Geschichte des Computers Computergrundlagen Geschichte des Computers Axel Arnold Institut für Computerphysik Universität Stuttgart Wintersemester 2010/11 1641: Rechenmaschine von B. Pascal B. Pascal, 1632-1662 mechanische Rechenmaschine

Mehr

das Grundprinzip findet sich auch heute noch, trotz aller gewaltigen technologischen Veränderungen, in modernen Mikroprozessoren D.

das Grundprinzip findet sich auch heute noch, trotz aller gewaltigen technologischen Veränderungen, in modernen Mikroprozessoren D. 1.1 von Neumann sche Universalrechenautomat (1) Urvater der meisten Rechner ist der klassische Universalrechenautomat (URA) geht zurück auf John von Neumann, Goldstine, Barks (Princeton, 1946) das Grundprinzip

Mehr

1 Einleitung zum RISC Prozessor

1 Einleitung zum RISC Prozessor 1 Einleitung zum RISC Prozessor Wesentliche Entwicklungsschritte der Computer-Architekturen [2, 3]: Familienkonzept von IBM mit System/360 (1964) und DEC mit PDP-8 (1965) eingeführt: Gleiche Hardware-Architekturen

Mehr

z/architektur von IBM

z/architektur von IBM von IBM Grundzüge einer modernen Architektur Von Matthias Fäth Gliederung Geschichtlicher Überblick Neuestes Flaggschiff Namensgebung Überblick Warum 64-Bit große Register Kompatibilität zu älteren Systemen

Mehr

, WS2013 Übungsgruppen: Di., Fr.,

, WS2013 Übungsgruppen: Di., Fr., VU Technische Grundlagen der Informatik Übung : Stack, Pipelining., WS20 Übungsgruppen: Di., 0.01. Fr.,.01.201 Aufgabe 1: Stack - Funktionsweise Erläutern Sie die Funktionsweise eines Stacks bzw. Kellerspeichers

Mehr

CPU Speicher I/O. Abbildung 11.1: Kommunikation über Busse

CPU Speicher I/O. Abbildung 11.1: Kommunikation über Busse Kapitel 11 Rechnerarchitektur 11.1 Der von-neumann-rechner Wir haben uns bisher mehr auf die logischen Bausteine konzentriert. Wir geben jetzt ein Rechnermodell an, das der physikalischen Wirklichkeit

Mehr

IA64 vs x86 64. Felix von Leitner felix-ccc@fefe.de. 28. Dezember 2002

IA64 vs x86 64. Felix von Leitner felix-ccc@fefe.de. 28. Dezember 2002 Felix von Leitner felix-ccc@fefe.de 28. Dezember 2002 Zusammenfassung Was sollte man als Assembler-Hacker über IA64 und X86 64 wissen? IA64 vs x86 64 Einführung Prozessoren arbeiten auf Befehlsebene. Bei

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis 3

Inhaltsverzeichnis. Inhaltsverzeichnis 3 Inhaltsverzeichnis Inhaltsverzeichnis 3 1 Einführung 9 1.1 Die Ursprünge der Computertechnik... 10 1.2 Der erste Mikroprozessor... 15 1.3 Schaltungstechniken... 15 1.3.1 Transistor-to-Transistor-Logik...

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 3. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Shangrila. One Instruction Set Computer

Shangrila. One Instruction Set Computer Shangrila One Instruction Set Computer Outline One Instruction Set Computer Die Idee Funktion Die Machine Shangrila VM Interfaces Tools Implementation Status & Zukunft OISC >> Die Idee CPU mit nur einer

Mehr

7.März 2014-15:01 Updated 7.März 2014-15:05. Intels Antwort auf Itanium und Co.

7.März 2014-15:01 Updated 7.März 2014-15:05. Intels Antwort auf Itanium und Co. 1 of 2 10/03/2014 17:06 George Sarpong TEAM 7.März 2014-15:01 Updated 7.März 2014-15:05 Intels Antwort auf Itanium und Co. Bildergalerie 1 / 4 Bruno Riva, Enterprise Technology Specialist bei Intel, erklärte

Mehr

PDA Architekturkonzepte. Hauptseminar Technische Informatik Stefan Türk

PDA Architekturkonzepte. Hauptseminar Technische Informatik Stefan Türk PDA Architekturkonzepte Hauptseminar Technische Informatik Stefan Türk Gliederung Einleitung Historische Entwicklung Prozessorarchitekturen Flashspeicher Funktion von Digitizeranzeigen Datenübertragungsverfahren

Mehr

2 Rechnerarchitekturen

2 Rechnerarchitekturen 2 Rechnerarchitekturen Rechnerarchitekturen Flynns Klassifikation Flynnsche Klassifikation (Flynn sche Taxonomie) 1966 entwickelt, einfaches Modell, bis heute genutzt Beschränkung der Beschreibung auf

Mehr

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011 Technische Universität Graz Institut tfür Angewandte Informationsverarbeitung und Kommunikationstechnologie Rechnerorganisation 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2003. 1 Ausblick. Erste

Mehr

ASIC-SYNTHESE DER SHAP-MIKROARCHITEKTUR

ASIC-SYNTHESE DER SHAP-MIKROARCHITEKTUR Fakultät Informatik Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur ASIC-SYNTHESE DER SHAP-MIKROARCHITEKTUR Vortrag zum großen Beleg Andrej Olunczek Andrej.Olunczek@mailbox.tu-dresden.de

Mehr

Inhaltsverzeichnis. Teil I Aufgaben 1

Inhaltsverzeichnis. Teil I Aufgaben 1 iii Teil I Aufgaben 1 1 Grundlagen der Elektrotechnik 3 Aufgabe 1: Punktladungen............................ 3 Aufgabe 2: Elektronenstrahlröhre........................ 3 Aufgabe 3: Kapazität eines Koaxialkabels...................

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Thomas Röfer Hardware und Software von Neumann Architektur Schichtenmodell der Software Zahlsysteme Repräsentation von Daten im Computer Hardware Prozessor (CPU)

Mehr

Der Mikroprozessor/ Prozessor b.z.w CPU

Der Mikroprozessor/ Prozessor b.z.w CPU Der Mikroprozessor/ Prozessor b.z.w CPU Vor dem Mikroprozessor: Vor dem Mikroprozessor gab es Mainframes und Minicomputer. Mainframes waren sehr große Rechner, zumeist raumfüllend, stromverschlingend und

Mehr

5. Weitere Konzepte. Ganz grob sieht das Innenleben des INTEL 8086 so aus:

5. Weitere Konzepte. Ganz grob sieht das Innenleben des INTEL 8086 so aus: 5. Weitere Konzepte Fast alles, was am Beispiel des LC1 erklärbar ist, haben wir auch am Beispiel des LC1 kennengelernt. Reale Rechner "können" eine ganze Menge mehr. Davon werde ich heute einiges behandeln.

Mehr