Rechnergrundlagen SS Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Rechnergrundlagen SS 2007. 11. Vorlesung"

Transkript

1 Rechnergrundlagen SS Vorlesung

2 Inhalt Evaluation der Lehre (Auswertung) Synchroner/asynchroner Systembus Kontrollfluss/Datenfluss RISC vs. CISC Speicherhierarchie Cache Lesen Schreiben Überschreiben Rechnergrundlagen 2

3 Systembus Physikalisch ist jeder Bus aus einer Anzahl von Leitungen aufgebaut. Bspw. besteht ein 16 bit Adressbus aus 16 individuellen Leitungen. Für jede Busleitung darf es zu einem Zeitpunkt nur eine Einheit geben, welche die Busleitung treibt. Rechnergrundlagen 3

4 Quelle und Senke Quelle: Als Quelle wird der Sender eines Datenwortes bezeichnet. Senke: Als Senke wird der Empfänger eines Datenwortes bezeichnet. Die CPU kann, in Abhängigkeit von Lese- oder Schreibzyklus, Senke oder Quelle eines Datentransfers sein. Rechnergrundlagen 4

5 Adress- und Datenbus Adress- und Datenbus sind zwei homogene Busse, die Signale gleicher Funktion zusammenfassen. Der Datenbus ist ein bidirektionaler Bus. Der Adressbus ist (in Systemen ohne DMA) ein unidirektionaler Bus. Von der CPU werden Adressen zum Speicher bzw. zu Einund Ausgabe transferiert. Es existieren auch Realisierungen mit gemultiplextem Adress- und Datenbus (Adresse und Daten werden zeitlich versetzt auf denselben Leitungen übertragen). Rechnergrundlagen 5

6 Synchron/asynchron Synchron zeitlich abgestimmter Vorgang Beispiel: Flip-Flops einer zyklischen Folgeschaltung schalten alle gleichzeitig, da es einen zentralen Takt gibt Asynchron Zeitlich nicht abgestimmt Beispiel: Flip-Flops schalten zu unterschiedlichen Zeiten, da der Takteingang der Flip-Flops nicht zentral beschaltet wird Rechnergrundlagen 6

7 Kontrollbus Der Kontrollbus ist ein inhomogener Bus, er fasst Signale unterschiedlicher Funktion zusammen. Hauptaufgaben der Signale: Markieren einer gültigen Adresse Auswahl eines Schreib- oder Lesetransfers Abschluss des Transfers Synchroner Systembus: Zeitliche Verhalten der Signale wird ausschließlich durch die CPU gesteuert. Asynchroner Systembus: Langsame Speicher oder Ein- bzw. Ausgabeeinheiten können das zeitliche Verhalten der Bussignale beeinflussen. Der adressierte Speicher bzw. die Ein-/Ausgabeeinheit muss ein Quittungssignal senden. Der Kontrollbus übernimmt dann die Aufgabe das Quittungssignal zu transferieren. Rechnergrundlagen 7

8 Buszyklen Mit Buszyklus wird die zeitliche Abfolge von Signalen auf dem Systembus bezeichnet. Der Bus-Master, üblicherweise die CPU, steuert die logische und zeitliche Abfolge der Signale beim Transfer. Für jeden Buszyklus gibt es einen Bus-Master. Beim Lesezyklus legt der Bus-Master die für das Lesen notwendigen Kontrollsignale und die Adresse am Bus an. Die adressierte Speicherzelle legt den gespeicherten Wert auf den Datenbus, der von der CPU eingelesen wird. Der Bus-Master terminiert den Zyklus. Beim Schreibzyklus legt der Bus-Master die für das Schreiben notwendigen Kontrollsignale und die Adresse am Bus an. Die CPU gibt ein Datenwort auf dem Datenbus aus. Der Speicher übernimmt das Datenwort und schreibt es an die adressierte Speicherzelle. Der Bus-Master terminiert den Zyklus Rechnergrundlagen 8

9 Synchroner Schreib- und Lesezyklus Rechnergrundlagen 9

10 Asynchroner Lesezyklus Rechnergrundlagen 10

11 Architekturen Rechnergrundlagen 11

12 Kontrollfluss Beim Kontrollfluss unterscheidet man: Deklarative Semantik: Formuliert die Bedingungen. Reihenfolge wird nicht spezifiziert. Beispiel: Es ist Schwimmbadwetter falls die Sonne scheint und es warm ist. Prozedurale Semantik: Definiert die Reihenfolge der auszuführenden Schritte. Beispiel: Um herauszufinden, ob Schwimmbadwetter ist, schaue zuerst auf das Thermometer und vergleiche die angezeigte Temperatur mit 25 C, dann sieh hoch, ob die Sonne scheint. Rechnergrundlagen 12

13 Datenfluss Der Datenfluss kann beschrieben werden: durch Eingabeparameter, wobei die Position der einzelnen Parameter in der Liste ebenfalls zu beachten ist. durch Ausgabeparameter: Rückgabewert einer Funktion Parameter in der Übergabe-Liste, falls er entsprechend spezifiziert ist (z.b. Übergabe by reference, Übergabe einer Adresse) Rechnergrundlagen 13

14 Digitale Signalprozessoren (DSPs) Die Harvard-Architektur findet sich z.b. in DSPs: DSP weisen zwar immer noch Kontrollfluss-Befehle auf, haben jedoch einige Spezialbefehle (z.b. Filterung), die nach dem Datenfluss-Prinzip arbeiten. Kontrollfluss: Beschreibt die Reihenfolge, wie einzelne Schritte ausgeführt werden, oder Bedingungen zur Ausführung. Nicht linear, Sprünge (Verzweigungen) möglich Datenfluss: Beschreibt, wie Daten von einem Schritt zum nächsten kommen, d.h. von den Eingabewerten über die Operationen zum Ergebnis. Im Datenfluss gibt es keinen expliziten Kontrollfluss, sondern der Datenfluss enthält einen impliziten, dem Datenfluss gleichgerichteten Kontrollfluss. Rechnergrundlagen 14

15 DSPs (Fortsetzung) Weitere Besonderheiten von DSPs: Sättigungsarithmetik: Bei Über- oder Unterlauf kein Vorzeichenwechsel. Bei Überlauf wird größtmögliche, bei Unterlauf kleinstmögliche Zahl dargestellt. keine extreme Verzerrung von Signalen. Indirekte Adressierung über Hilfsregister kurze Befehle, schneller Zugriff Ausführung der meisten Befehle in einem Zyklus Hartverdrahtetes Steuerwerk, keine Mikroprogrammierung Spezialbefehle für Filterung, FFT, modulare Adressierung, Sättigungsarithmetik Sehr performante ALU Multiplikation in wenigen oder nur einem Taktzyklus Rechnergrundlagen 15

16 Semantische Lücke (semantic gap) Der Rechner MARK I hatte 1948 sieben Maschinenbefehle geringer Komplexität. In der Folge versuchte man die sog. semantische Lücke zwischen höheren Programmiersprachen und der Maschinensprache zu schließen. Ziel war die Vereinfachung des Compilerbaus, kompakterer Opcode und eine höhere Rechenleistung. Rechnergrundlagen 16

17 CISC Klassische von-neumann Rechner sind CISC-Rechner (complex instruction set computer). Zu den ursprünglich einfachen Maschinenbefehlssätzen sind immer mehr spezialisierte Befehle hinzugefügt worden. Ziel war eine bessere Unterstützung der Hochsprachenkonstrukte. Die Prozessoren wurden insgesamt langsamer und aufwendiger. Rechnergrundlagen 17

18 Analyse Rechnergrundlagen 18

19 RISC (reduced instruction set computer) Zu Anfang der 70er Jahre zeigte eine Untersuchung, dass von Compilern für Hochsprachen nur wenige einfache Assemblerbefehle verwendet werden. Leistungsfähige und komplexe Assemblerbefehle werden kaum eingesetzt. Gründe: Compiler werden algorithmisch sehr komplex, wenn für eine Sequenz von Hochsprachenanweisungen untersucht werden muss ob sie durch einen komplexen Assemblerbefehl realisiert werden können. Teilweise werden Anweisungen der Hochsprachen nicht gut durch komplexe Assemblerbefehle abgebildet. Rechnergrundlagen 19

20 Ziele: CISC vs. RISC Die Entwickler von CISC Prozessoren stellen Assembler-Programmierern möglichst mächtige Befehle zur Verfügung. Die Entwickler von RISC Prozessoren verfolgen das entgegen gesetzte Ziel mit möglichst wenigen einfachen Assemblerbefehlen auszukommen. Rechnergrundlagen 20

21 CISC versus RISC Rechnergrundlagen 21

22 Prinzipien der RISC Entwicklung Analyse der Applikationen, um Schlüsseloperationen zu finden, die häufig ausgeführt werden. Entwurf eines Rechenwerks, das optimal die gefundenen Schlüsseloperationen verarbeiten kann. Entwurf von Instruktionen, welche die Schlüsseloperationen effizient im Rechenwerk ausführen. Weitere Instruktionen werden nur hinzugefügt, wenn die Verarbeitung der Schlüsseloperationen nicht verlangsamt wird. Die gleiche Optimierung wird für andere Bereiche des Rechners (Cache, Speichermanagement, etc.) durchgeführt. Rechnergrundlagen 22

23 Kennzeichen von RISC- Prozessoren Ein RISC-Prozessor hat viele Register, um möglichst viele Operanden lokal im Prozessor speichern zu können. Bei ALU-Operationen dienen Register als Operanden und als Senke für das Ergebnis. Es wird nicht mehr zwischen Adress- und Datenregister unterschieden. Nur wenige Adressierungsarten, bspw.: Unmittelbare Adressierung (Immediate). Der Operand ist in der Instruktion gespeichert. Register-indirekte Adressierung. Bei der Adressierung zeigt die Instruktion auf ein internes Register. Das Register enthält die Adresse des Operanden im Speicher. Rechnergrundlagen 23

24 Pipelining (Prinzip) Die gesamte Rechenzeit einer Operation wird nicht reduziert. Es werden mehrere Operationen versetzt parallel ausgeführt. Rechnergrundlagen 24

25 Pipelining (Blockschaltbild) Rechnergrundlagen 25

26 Pipelining (Ausführung) Rechnergrundlagen 26

27 Pipelining Bedingung für die erfolgreiche Anwendung eines Pipelining ist die Existenz fester Ausführungszeiten. Je feiner die Zerlegung der Abarbeitung der Befehle ist, desto höher das Potential zur Beschleunigung. Da konkurrierend auf den Speicher zugegriffen wird, muss der Zugriff sehr schnell erfolgen und etwaige Konflikte vermieden werden. Rechnergrundlagen 27

28 Probleme Die langsamste Stufe der Verarbeitung bestimmt den Takt des Pipelining. Wenn Sprünge ausgeführt werden, sind die auf Vorrat ausgeführten Verarbeitungsstufen hinfällig. Bsp.: Soll in aufeinander folgenden Instruktionen zunächst ein Operand berechnet und dann weg gespeichert werden, wird ein vorheriger alter Wert gespeichert. Die durch die versetzte Ausführung der Instruktionen entstehenden Konflikte werden als Hazards bezeichnet. Rechnergrundlagen 28

29 Lösungen Sprungbefehle: Die auf den Sprungbefehl folgenden Befehle werden aus der Pipeline gelöscht und durch NOP- Befehle ersetzt (Hardware). Es entstehen Bubbles. Die dem Sprungbefehl nachfolgenden Befehle werden vor der Ausführung des Sprungbefehls ausgeführt. Dies bedeutet, dass der Compiler an diese Stelle sinnvoll auszuführende Befehle platziert (Software). Rechnergrundlagen 29

30 Einfügen von NOPs Rechnergrundlagen 30

31 Lösungen (Forts.) Laufzeitkonflikte (Hazards): Man führt per Software NOPs ein, so dass verlängerte Speicherzugriffe (statisch) ausgeglichen werden. Wenn ein Cache Miss auftritt (dynamisch), muss von Seiten der Hardware garantiert werden, dass die Ausführung verzögert wird. Insgesamt führen die Anforderungen an Compiler für RISC-Architekturen zu sehr komplexen Maschinenprogrammen, so dass nur selten eine manuelle Bearbeitung vorgenommen werden kann. Rechnergrundlagen 31

32 Optimierende Compiler Zwei aufeinander aufbauende Phasen: Analyse und Synthese. In der Analyse werden die syntaktischen und semantischen Eigenschaften des Programms analysiert und eine maschinenunabhängige Optimierung durchgeführt. Es wird ein maschinenunabhängiger Zwischencode erzeugt. Für die Synthese müssen die Eigenschaften der Zielmaschine bekannt sein. Bei CISC Prozessoren genügt die Kenntnis der Befehlsarchitektur. Für RISC Prozessoren müssen auch die Details der Befehlspipeline bekannt sein. Für die Beseitigung von Konflikten werden NOPs eingefügt. Eine weitere Optimierung kann durch die Umordnung von Befehlen erreicht werden. Rechnergrundlagen 32

33 Grundtypen I Single Instruction, Single Data (SISD): ein sequentiell abgearbeiteter Befehlsstrom und ein entsprechend sequentieller Datenstrom (bspw. Intel bis 80486). Single Instruction, Multiple Data (SIMD): ein sequentiell abgearbeiteter Befehlsstrom steuert einen mehrfachen parallelen Datenstrom (bspw. MMX). Multiple Instruction, Single Data (MISD): mehrere Rechenwerke bearbeiten einen Datenstrom (bspw. UNIX pipe). Multiple Instruction, Multiple Data (MIMD): die Abarbeitung geschieht sowohl befehls- als auch datenparallel (bspw. Transputer). Rechnergrundlagen 33

34 Grundtypen II Rechnergrundlagen 34

35 Cache Ein Problem moderner Prozessoren ist ihre hohe Taktrate, da der Hauptspeicher die benötigten Daten nicht schnell genug liefern kann. Um dieses Problem zu lösen werden schnelle Pufferspeicher eingesetzt, die als Cache bezeichnet werden. Caches befinden sich zwischen Prozessorkern und Hauptspeicher. Sie dienen der Steigerung der Geschwindigkeit des Datenaustausches und der Entlastung des Datenbusses. Es muss ein Cache-Controller zum Einsatz kommen, der die Zugriffe des Prozessors auf den Hauptspeicher überwacht und Zugriffe auf den Cache bzw. Datenhaltung im Cache koordiniert. Rechnergrundlagen 35

36 Speicherhierarchie Rechnergrundlagen 36

37 Cache in modernen Rechnern Rechnergrundlagen 37

38 Organisation des Cache (Prinzip) Zugriff auf Cache ist deutlich schneller als der Zugriff auf Hauptspeicher. Wenn Daten im Cache stehen, kann die CPU sehr schnell darauf zugreifen. Größe des Cache ist deutlich kleiner als Größe des Hauptspeichers. Rechnergrundlagen 38

39 Speicherzellen Zerlegung des Hauptspeichers in Blöcke der Größe des Caches. Diese Blöcke werden, wie der Cache, in Cache-Zeilen aufgeteilt. Es werden nur ganze Zeilen in den Cache übernommen. Es existieren unterschiedliche Strategien für die Verwaltung des Cache, d.h. wie neue Zeilen eingeladen werden und welche ausgelagert werden. Rechnergrundlagen 39

40 Adressierung (Beispiel) Rechnergrundlagen 40

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 3 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen

4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen 4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen Ein Rechner besteht aus den folgenden Bestandteilen: Rechenwerk Rechenoperationen wie z.b. Addition, Multiplikation logische Verknüpfungen

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

11.0 Rechnerarchitekturen

11.0 Rechnerarchitekturen 11.0 Rechnerarchitekturen Die Ziele dieses Kapitels sind: Kennen lernen der Rechnerklassifikation nach Flynn Betrachtung von Prozessorarchitekturen auf verschiedenen Abstraktionsebenen - Befehlsarchitektur

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 4 AM 21.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1 IT für Führungskräfte Zentraleinheiten 11.04.2002 Gruppe 2 - CPU 1 CPU DAS TEAM CPU heißt Central Processing Unit! Björn Heppner (Folien 1-4, 15-20, Rollenspielpräsentation 1-4) Harald Grabner (Folien

Mehr

Teil VIII Von Neumann Rechner 1

Teil VIII Von Neumann Rechner 1 Teil VIII Von Neumann Rechner 1 Grundlegende Architektur Zentraleinheit: Central Processing Unit (CPU) Ausführen von Befehlen und Ablaufsteuerung Speicher: Memory Ablage von Daten und Programmen Read Only

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

Ein- Ausgabeeinheiten

Ein- Ausgabeeinheiten Kapitel 5 - Ein- Ausgabeeinheiten Seite 121 Kapitel 5 Ein- Ausgabeeinheiten Am gemeinsamen Bus einer CPU hängt neben dem Hauptspeicher die Peripherie des Rechners: d. h. sein Massenspeicher und die Ein-

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

CPU Speicher I/O. Abbildung 11.1: Kommunikation über Busse

CPU Speicher I/O. Abbildung 11.1: Kommunikation über Busse Kapitel 11 Rechnerarchitektur 11.1 Der von-neumann-rechner Wir haben uns bisher mehr auf die logischen Bausteine konzentriert. Wir geben jetzt ein Rechnermodell an, das der physikalischen Wirklichkeit

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Philipp Grasl PROZESSOREN

Philipp Grasl PROZESSOREN 1 PROZESSOREN INHALTSVERZEICHNIS Definition/Verwendung Prozessor Historische Entwicklung Prozessor Aufbau Prozessor Funktionsweise Prozessor Steuerung/Maschinenbefehle Prozessorkern Prozessortakt 2 DEFINITION

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

1 Einleitung zum RISC Prozessor

1 Einleitung zum RISC Prozessor 1 Einleitung zum RISC Prozessor Wesentliche Entwicklungsschritte der Computer-Architekturen [2, 3]: Familienkonzept von IBM mit System/360 (1964) und DEC mit PDP-8 (1965) eingeführt: Gleiche Hardware-Architekturen

Mehr

1 Aufgaben zu Wie funktioniert ein Computer?

1 Aufgaben zu Wie funktioniert ein Computer? 71 1 Aufgaben zu Wie funktioniert ein Computer? Netzteil a) Welche Spannungen werden von PC-Netzteilen bereitgestellt? 3.3 V, 5 V, 12 V, -5 V, -12 V. b) Warum können PC-Netzteile hohe Leistungen liefern,

Mehr

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9 Inhalt Curriculum 1.4.2 Manfred Wilfling HTBLA Kaindorf 28. November 2011 M. Wilfling (HTBLA Kaindorf) CPUs 28. November 2011 1 / 9 Begriffe CPU Zentraleinheit (Central Processing Unit) bestehend aus Rechenwerk,

Mehr

Microcomputertechnik

Microcomputertechnik Microcomputertechnik mit Mikrocontrollern der Familie 8051 Bearbeitet von Bernd-Dieter Schaaf 2. Auflage 2002. Buch. 230 S. Hardcover ISBN 978 3 446 22089 8 Format (B x L): 16 x 22,7 cm Gewicht: 407 g

Mehr

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit)

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit) Der Demo-Computer besitzt einen 4Bit-Mikroprozessor. Er kann entsprechend Wörter mit einer Breite von 4 Bits in einem Schritt verarbeiten. Die einzelnen Schritte der Abarbeitung werden durch Lampen visualisiert.

Mehr

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 2.1. Aufbau eines Rechners in Ebenen 3 2.2. Die Ebene der elektronischen Bauelemente 5 2.3. Die Gatterebene 5 2.3.1 Einfache

Mehr

ZENTRALEINHEITEN GRUPPE

ZENTRALEINHEITEN GRUPPE 31. Oktober 2002 ZENTRALEINHEITEN GRUPPE 2 Rita Schleimer IT für Führungskräfte WS 2002/03 1 Rita Schleimer TEIL 1 - Inhalt Zentraleinheit - Überblick Architekturprinzipien Zentralspeicher IT für Führungskräfte

Mehr

3. Rechnerarchitektur

3. Rechnerarchitektur ISS: EDV-Grundlagen 1. Einleitung und Geschichte der EDV 2. Daten und Codierung 3. Rechnerarchitektur 4. Programmierung und Softwareentwicklung 5. Betriebssyteme 6. Internet und Internet-Dienste 3. Rechnerarchitektur

Mehr

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 14. Okt. 2015 Computeraufbau: nur ein Überblick Genauer: Modul Digitale Systeme (2. Semester) Jetzt: Grundverständnis

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 7 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Abschlussklausur Informatik, SS 2012

Abschlussklausur Informatik, SS 2012 Abschlussklausur Informatik, SS 202 09.07.202 Name, Vorname: Matr.-Nr.: Unterschrift: Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen 2.5 Unterbrechungen

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Was ist ein Rechner? Maschine, die Probleme für

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (2) Architektur des Haswell- Prozessors (aus c t) Einführung

Mehr

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Von-Neumann-Rechner (John von Neumann : 1903-1957) C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Quelle: http://www.cs.uakron.edu/~margush/465/01_intro.html Analytical Engine - Calculate

Mehr

Technische Informatik 2 Adressierungsarten

Technische Informatik 2 Adressierungsarten Technische Informatik 2 Adressierungsarten Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute X-Adressmaschine 0-Adressmaschine 1-Adressmaschine 2-Adressmaschine

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Rechnerarchitektur. Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz.

Rechnerarchitektur. Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz. Rechnerarchitektur Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz.de Rechnerarchitektur Dr. Andreas Müller TU Chemnitz Fakultät

Mehr

Technische Informatik

Technische Informatik Technische Informatik Eine einführende Darstellung von Prof. Dr. Bernd Becker Prof. Dr. Paul Molitor Oldenbourg Verlag München Wien Inhaltsverzeichnis 1 Einleitung 1 1.1 Was ist überhaupt ein Rechner?

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Das Von-Neumann-Prinzip Prinzipien der Datenverarbeitung Fast alle modernen Computer funktionieren nach dem Von- Neumann-Prinzip. Der Erfinder dieses Konzeptes John von Neumann (1903-1957) war ein in den

Mehr

Steuerungen. 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC)

Steuerungen. 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC) Steuerungen 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC) VPS - Funktion der Steuerung in der Schaltungstopologie

Mehr

Daten- Bus. Steuerbus

Daten- Bus. Steuerbus 1 Grundlagen... 1 1.1 Rechnerarchitektur... 1 1.2 Takt... 2 1.3 Speicherarchitektur... 2 2 Mikroprozessor... 4 2.1 Begriffsbestimmung... 4 2.2 Geschichte... 4 2.3 Aufbau eines einfachen Mikroprozessors...

Mehr

Das Rechnermodell von John von Neumann

Das Rechnermodell von John von Neumann Das Rechnermodell von John von Neumann Historisches Die ersten mechanischen Rechenmaschinen wurden im 17. Jahhundert entworfen. Zu den Pionieren dieser Entwichlung zählen Wilhelm Schickard, Blaise Pascal

Mehr

Rechneraufbau und Rechnerstrukturen

Rechneraufbau und Rechnerstrukturen Rechneraufbau und Rechnerstrukturen von Prof. Dr. Walter Oberschelp, RWTH Aachen und Prof. Dr. Gottfried Vossen, Universität Münster 7, vollständig überarbeitete und aktualisierte Auflage R.Oldenbourg

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur Wintersemester 2016/2017 Tutorübung

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Architektur paralleler Plattformen

Architektur paralleler Plattformen Architektur paralleler Plattformen Freie Universität Berlin Fachbereich Informatik Wintersemester 2012/2013 Proseminar Parallele Programmierung Mirco Semper, Marco Gester Datum: 31.10.12 Inhalt I. Überblick

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Grundlagen der Parallelisierung

Grundlagen der Parallelisierung Grundlagen der Parallelisierung Philipp Kegel, Sergei Gorlatch AG Parallele und Verteilte Systeme Institut für Informatik Westfälische Wilhelms-Universität Münster 3. Juli 2009 Inhaltsverzeichnis 1 Einführung

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.)

Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.) Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.) von Martin Stöcker Motivation Geschwindigkeit der Prozessoren verdoppelt sich alle 18 Monate (Moore s Law) Geschwindigkeit des Speichers

Mehr

Informatik II SS 2006. Von Neumann Prinzipien (1946) Bestandteile eines von Neumann Rechners. Speicher

Informatik II SS 2006. Von Neumann Prinzipien (1946) Bestandteile eines von Neumann Rechners. Speicher Von Neumann Prinzipien (1946) Informatik II SS 2006 Kapitel 3: Rechnerarchitektur Teil 2: von Neumann Architektur Dr. Michael Ebner Dr. René Soltwisch Lehrstuhl für Telematik Institut für Informatik 1.

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich fr Algorithmen und Datenstrukturen Institut fr Computergraphik und Algorithmen Technische Universität Wien One of the few resources increasing faster

Mehr

Ausgabegerät. Eingabe- gerät. Zentral -einheit. Massenspeicher. Ausgabeinformation. Eingabe- information. 2. Organisation eines Von-Neumann-Rechners

Ausgabegerät. Eingabe- gerät. Zentral -einheit. Massenspeicher. Ausgabeinformation. Eingabe- information. 2. Organisation eines Von-Neumann-Rechners Eingabe- Eingabe- gerät information Ausgabegerät Ausgabeinformation Zentralspeicher Zentralprozessor Peripheriesteuerung Massenspeicher Adressbu s Datenbu Steuerbu s Zentral -einheit Abb. 2.1: Aufbau eines

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Thomas Röfer Hardware und Software von Neumann Architektur Schichtenmodell der Software Zahlsysteme Repräsentation von Daten im Computer Hardware Prozessor (CPU)

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Intel 80x86 symmetrische Multiprozessorsysteme Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Gliederung I. Parallel Computing Einführung II.SMP Grundlagen III.Speicherzugriff

Mehr

3.0 8051 Assembler und Hochsprachen

3.0 8051 Assembler und Hochsprachen 3.0 8051 Assembler und Hochsprachen Eine kurze Übersicht zum Ablauf einer Programmierung eines 8051 Mikrocontrollers. 3.1 Der 8051 Maschinencode Grundsätzlich akzeptiert ein 8051 Mikrocontroller als Befehle

Mehr

Gliederung Seite 1. Gliederung

Gliederung Seite 1. Gliederung Gliederung Seite 1 Gliederung 1. Klassifikationen...6 1.1. Klassifikation nach der Kopplung der rechnenden Einheiten...6 1.1.1. Enge Kopplung...6 1.1.2. Lose Kopplung...6 1.2. Klassifikation nach der Art

Mehr

Paralleles Rechnen. (Architektur verteilter Systeme) von Thomas Offermann Philipp Tommek Dominik Pich

Paralleles Rechnen. (Architektur verteilter Systeme) von Thomas Offermann Philipp Tommek Dominik Pich Paralleles Rechnen (Architektur verteilter Systeme) von Thomas Offermann Philipp Tommek Dominik Pich Gliederung Motivation Anwendungsgebiete Warum paralleles Rechnen Flynn's Klassifikation Theorie: Parallel

Mehr

1 Proseminar: Konzepte von Betriebssystem-Komponenten. Thema: Server OS AS/400 Referend: Sand Rainer. Server OS - AS/400

1 Proseminar: Konzepte von Betriebssystem-Komponenten. Thema: Server OS AS/400 Referend: Sand Rainer. Server OS - AS/400 1 Proseminar: Konzepte von Betriebssystem-Komponenten Server OS - AS/400 Gliederung Was ist eine AS/400? Wie ist OS/400 aufgebaut? Was kann eine AS/400? Bsp.: Logische Partitionierung 2 Proseminar: Konzepte

Mehr

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert?

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert? SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 2 2014-04-28 bis 2014-05-02 Aufgabe 1: Unterbrechungen (a) Wie unterscheiden sich synchrone

Mehr

Rechneraufbau und Rechnerstrukturen

Rechneraufbau und Rechnerstrukturen Rechneraufbau und Rechnerstrukturen von Walter Oberschelp RWTH Aachen und Gottfried Vossen Universität Münster 10. Auflage c 2006 R. Oldenbourg Verlag GmbH, München Inhaltsverzeichnis Auszug... x... aus

Mehr

Teil Rechnerarchitekturen M03. Darstellung von Zahlen, Rechnen, CPU, Busse. Corinna Schmitt corinna.schmitt@unibas.ch

Teil Rechnerarchitekturen M03. Darstellung von Zahlen, Rechnen, CPU, Busse. Corinna Schmitt corinna.schmitt@unibas.ch Teil Rechnerarchitekturen M03 Darstellung von Zahlen, Rechnen, CPU, Busse Corinna Schmitt corinna.schmitt@unibas.ch Darstellung von Zahlen Rechnen 2015 Corinna Schmitt Teil Rechnerarchitekturen - 2 Zwei

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Logische und mathematische Grundlagen Digitale Daten Computerprogramme als Binärdaten von Neumann-Rechnerarchitektur Einführung in Maschinen-Code Speicherorganisation Betriebssysteme

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf Seite 1 von 37

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf  Seite 1 von 37 Skript Informatik Seite 1 von 37 Was ist Informatik? - Informatik ist die Wissenschaft von der systematischen Verarbeitung von Informationen, insbesondere deren automatisierte Verarbeitung mit Hilfe von

Mehr

Kurzvortrag zum Thema Coprozessoren Ingenieurinformatik, Hauptstudium

Kurzvortrag zum Thema Coprozessoren Ingenieurinformatik, Hauptstudium Technische Universitaet Ilmenau Fakultaet fuer Informatik und Automatisierung Institut fuer Theoretische und Technische Informatik Fachgebiet Rechnerarchitekturen Kurzvortrag zum Thema Coprozessoren Ingenieurinformatik,

Mehr

Prozessoren. Prozessoren Seite 1 von 9 Philipp Grasl 1AHWIM

Prozessoren. Prozessoren Seite 1 von 9 Philipp Grasl 1AHWIM Prozessoren Prozessoren Seite 1 von 9 Philipp Grasl 1AHWIM Inhalt 1. Definierung Prozessor:... 3 2. Historische Entwicklung:... 3 3. Aufbau:... 4 3.1 Register:... 4 3.2 Rechenwerke:... 4 3.3 Befehlsdecoder:...

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK Anmerkungen FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur (ERA) Die Fragen werden

Mehr

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme wwwnet-texde Proseminar Rechnerarchitekturen Parallelcomputer: Multiprozessorsysteme Stefan Schumacher, , PGP Key http://wwwnet-texde/uni Id: mps-folientex,v

Mehr

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 -

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikrocomputertechnik Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikroprozessor-Achritekturen Folie 2 Mikroprozessor-Achritekturen Klassifizierung anhand Wortbreite CPU-Architektur und Busleitungen

Mehr

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Computational Biology: Bioelektromagnetismus und Biomechanik Implementierung Gliederung Wiederholung: Biomechanik III Statische Elastomechanik Finite Elemente Diskretisierung Finite Differenzen Diskretisierung

Mehr

Vorlesung: Technische Informatik 3

Vorlesung: Technische Informatik 3 Rechnerarchitektur und Betriebssysteme zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 4. Computerarchitektur........................235

Mehr

Vorlesung "Struktur von Mikrorechnern" (CBS)

Vorlesung Struktur von Mikrorechnern (CBS) Ziele eines Mehrrechnerkonzeptes - Aufteilung von Aufgaben auf mehrere en kostengünstige Leistungssteigerung -einzelne en können auf privaten und auf gemeinsamen zurückgreifen -en können selbständig agieren

Mehr

7 Ein einfacher CISC-Prozessor

7 Ein einfacher CISC-Prozessor 7 Ein einfacher CISC-Prozessor In diesem Kapitel wird ein einfacher Prozessor vorgestellt. Die Architektur, die wir implementieren, wurde von R. Bryant und D. O Hallaron entworfen und verwendet eine Untermenge

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

3AA. Prof. Dr. Wolfgang P. Kowalk. Universität Oldenburg WS 2005/2006

3AA. Prof. Dr. Wolfgang P. Kowalk. Universität Oldenburg WS 2005/2006 3AA Prof. Dr. Wolfgang P. Kowalk Universität Oldenburg WS 2005/2006 Version vom 24.10.2005 Übersicht Einführung in maschinennahe Programmierung Verständnis für grundlegende Vorgänge im Computer Jedes Programm

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW

Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW 26. Oktober 2012 Prof. Dr. Christian Tschudin Departement Informatik, Universität Basel Uebersicht

Mehr

Rechnerstrukturen. 6. System. Systemebene. Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Prozessor.

Rechnerstrukturen. 6. System. Systemebene. Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Prozessor. Rechnerstrukturen 6. System Systemebene 1 (Monoprozessor) 2-n n (Multiprozessor) s L1- in der L2- ( oder Motherboard) ggf. L3- MMU Speicher Memory Controller (Refresh etc.) E/A-Geräte (c) Peter Sturm,

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Speedup: Grundlagen der Performanz Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 30. April 2015 Eine Aufgabe aus der Praxis Gegeben ein

Mehr

Technische Informatik. Der VON NEUMANN Computer

Technische Informatik. Der VON NEUMANN Computer Technische Informatik Der VON NEUMANN Computer Inhalt! Prinzipieller Aufbau! Schaltkreise! Schaltnetze und Schaltwerke! Rechenwerk! Arbeitsspeicher! Steuerwerk - Programmausführung! Periphere Geräte! Abstraktionsstufen

Mehr

Rechnerarchitektur Atmega 32. 1 Vortrag Atmega 32. Von Urs Müller und Marion Knoth. Urs Müller Seite 1 von 7

Rechnerarchitektur Atmega 32. 1 Vortrag Atmega 32. Von Urs Müller und Marion Knoth. Urs Müller Seite 1 von 7 1 Vortrag Atmega 32 Von Urs Müller und Marion Knoth Urs Müller Seite 1 von 7 Inhaltsverzeichnis 1 Vortrag Atmega 32 1 1.1 Einleitung 3 1.1.1 Hersteller ATMEL 3 1.1.2 AVR - Mikrocontroller Familie 3 2 Übersicht

Mehr

9.0 Komplexe Schaltwerke

9.0 Komplexe Schaltwerke 9.0 Komplexe Schaltwerke Die Ziele dieses Kapitels sind: Lernen komplexe Schaltwerke mittels kleinerer, kooperierender Schaltwerke zu realisieren Verstehen wie aufgabenspezifische Mikroprozessoren funktionieren

Mehr

Fragenkatalog Computersysteme Test 25. April 2008

Fragenkatalog Computersysteme Test 25. April 2008 Fragenkatalog Computersysteme Test 25. April 2008 Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at 6. April 2008 Der Test besteht aus 4 Fragen aus dem folgenden Katalog (mit eventuell leichten

Mehr

Echtzeit Videoverarbeitung

Echtzeit Videoverarbeitung Hardwareplattformen für Echtzeit Videoverarbeitung Herbert Thoma Seite 1 Gliederung Echtzeitanforderungen Prozessorarchitekturen Grundlagen Pipelining Parallele Befehlsausführung Systemkomponenten Speicher

Mehr

CISC-RISC-EPIC. eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen Seite: 1

CISC-RISC-EPIC. eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen Seite: 1 CISC-RISC-EPIC eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen 2008 www.equicon.de Seite: 1 Heutiges Programm: CISC-RISC-EPIC - Begriffserklärung von Neumann Rechnerarchitektur Evolution

Mehr

Wichtige Rechnerarchitekturen

Wichtige Rechnerarchitekturen Wichtige Rechnerarchitekturen Teil 5 INMOS Transputer, CSP/Occam 1 INMOS Transputer 1983 vorgestellt von der Firma INMOS (Bristol) (Entwicklung seit 1978) Der Name Transputer entstand als Kunstwort aus

Mehr