Rechnergrundlagen SS Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Rechnergrundlagen SS 2007. 11. Vorlesung"

Transkript

1 Rechnergrundlagen SS Vorlesung

2 Inhalt Evaluation der Lehre (Auswertung) Synchroner/asynchroner Systembus Kontrollfluss/Datenfluss RISC vs. CISC Speicherhierarchie Cache Lesen Schreiben Überschreiben Rechnergrundlagen 2

3 Systembus Physikalisch ist jeder Bus aus einer Anzahl von Leitungen aufgebaut. Bspw. besteht ein 16 bit Adressbus aus 16 individuellen Leitungen. Für jede Busleitung darf es zu einem Zeitpunkt nur eine Einheit geben, welche die Busleitung treibt. Rechnergrundlagen 3

4 Quelle und Senke Quelle: Als Quelle wird der Sender eines Datenwortes bezeichnet. Senke: Als Senke wird der Empfänger eines Datenwortes bezeichnet. Die CPU kann, in Abhängigkeit von Lese- oder Schreibzyklus, Senke oder Quelle eines Datentransfers sein. Rechnergrundlagen 4

5 Adress- und Datenbus Adress- und Datenbus sind zwei homogene Busse, die Signale gleicher Funktion zusammenfassen. Der Datenbus ist ein bidirektionaler Bus. Der Adressbus ist (in Systemen ohne DMA) ein unidirektionaler Bus. Von der CPU werden Adressen zum Speicher bzw. zu Einund Ausgabe transferiert. Es existieren auch Realisierungen mit gemultiplextem Adress- und Datenbus (Adresse und Daten werden zeitlich versetzt auf denselben Leitungen übertragen). Rechnergrundlagen 5

6 Synchron/asynchron Synchron zeitlich abgestimmter Vorgang Beispiel: Flip-Flops einer zyklischen Folgeschaltung schalten alle gleichzeitig, da es einen zentralen Takt gibt Asynchron Zeitlich nicht abgestimmt Beispiel: Flip-Flops schalten zu unterschiedlichen Zeiten, da der Takteingang der Flip-Flops nicht zentral beschaltet wird Rechnergrundlagen 6

7 Kontrollbus Der Kontrollbus ist ein inhomogener Bus, er fasst Signale unterschiedlicher Funktion zusammen. Hauptaufgaben der Signale: Markieren einer gültigen Adresse Auswahl eines Schreib- oder Lesetransfers Abschluss des Transfers Synchroner Systembus: Zeitliche Verhalten der Signale wird ausschließlich durch die CPU gesteuert. Asynchroner Systembus: Langsame Speicher oder Ein- bzw. Ausgabeeinheiten können das zeitliche Verhalten der Bussignale beeinflussen. Der adressierte Speicher bzw. die Ein-/Ausgabeeinheit muss ein Quittungssignal senden. Der Kontrollbus übernimmt dann die Aufgabe das Quittungssignal zu transferieren. Rechnergrundlagen 7

8 Buszyklen Mit Buszyklus wird die zeitliche Abfolge von Signalen auf dem Systembus bezeichnet. Der Bus-Master, üblicherweise die CPU, steuert die logische und zeitliche Abfolge der Signale beim Transfer. Für jeden Buszyklus gibt es einen Bus-Master. Beim Lesezyklus legt der Bus-Master die für das Lesen notwendigen Kontrollsignale und die Adresse am Bus an. Die adressierte Speicherzelle legt den gespeicherten Wert auf den Datenbus, der von der CPU eingelesen wird. Der Bus-Master terminiert den Zyklus. Beim Schreibzyklus legt der Bus-Master die für das Schreiben notwendigen Kontrollsignale und die Adresse am Bus an. Die CPU gibt ein Datenwort auf dem Datenbus aus. Der Speicher übernimmt das Datenwort und schreibt es an die adressierte Speicherzelle. Der Bus-Master terminiert den Zyklus Rechnergrundlagen 8

9 Synchroner Schreib- und Lesezyklus Rechnergrundlagen 9

10 Asynchroner Lesezyklus Rechnergrundlagen 10

11 Architekturen Rechnergrundlagen 11

12 Kontrollfluss Beim Kontrollfluss unterscheidet man: Deklarative Semantik: Formuliert die Bedingungen. Reihenfolge wird nicht spezifiziert. Beispiel: Es ist Schwimmbadwetter falls die Sonne scheint und es warm ist. Prozedurale Semantik: Definiert die Reihenfolge der auszuführenden Schritte. Beispiel: Um herauszufinden, ob Schwimmbadwetter ist, schaue zuerst auf das Thermometer und vergleiche die angezeigte Temperatur mit 25 C, dann sieh hoch, ob die Sonne scheint. Rechnergrundlagen 12

13 Datenfluss Der Datenfluss kann beschrieben werden: durch Eingabeparameter, wobei die Position der einzelnen Parameter in der Liste ebenfalls zu beachten ist. durch Ausgabeparameter: Rückgabewert einer Funktion Parameter in der Übergabe-Liste, falls er entsprechend spezifiziert ist (z.b. Übergabe by reference, Übergabe einer Adresse) Rechnergrundlagen 13

14 Digitale Signalprozessoren (DSPs) Die Harvard-Architektur findet sich z.b. in DSPs: DSP weisen zwar immer noch Kontrollfluss-Befehle auf, haben jedoch einige Spezialbefehle (z.b. Filterung), die nach dem Datenfluss-Prinzip arbeiten. Kontrollfluss: Beschreibt die Reihenfolge, wie einzelne Schritte ausgeführt werden, oder Bedingungen zur Ausführung. Nicht linear, Sprünge (Verzweigungen) möglich Datenfluss: Beschreibt, wie Daten von einem Schritt zum nächsten kommen, d.h. von den Eingabewerten über die Operationen zum Ergebnis. Im Datenfluss gibt es keinen expliziten Kontrollfluss, sondern der Datenfluss enthält einen impliziten, dem Datenfluss gleichgerichteten Kontrollfluss. Rechnergrundlagen 14

15 DSPs (Fortsetzung) Weitere Besonderheiten von DSPs: Sättigungsarithmetik: Bei Über- oder Unterlauf kein Vorzeichenwechsel. Bei Überlauf wird größtmögliche, bei Unterlauf kleinstmögliche Zahl dargestellt. keine extreme Verzerrung von Signalen. Indirekte Adressierung über Hilfsregister kurze Befehle, schneller Zugriff Ausführung der meisten Befehle in einem Zyklus Hartverdrahtetes Steuerwerk, keine Mikroprogrammierung Spezialbefehle für Filterung, FFT, modulare Adressierung, Sättigungsarithmetik Sehr performante ALU Multiplikation in wenigen oder nur einem Taktzyklus Rechnergrundlagen 15

16 Semantische Lücke (semantic gap) Der Rechner MARK I hatte 1948 sieben Maschinenbefehle geringer Komplexität. In der Folge versuchte man die sog. semantische Lücke zwischen höheren Programmiersprachen und der Maschinensprache zu schließen. Ziel war die Vereinfachung des Compilerbaus, kompakterer Opcode und eine höhere Rechenleistung. Rechnergrundlagen 16

17 CISC Klassische von-neumann Rechner sind CISC-Rechner (complex instruction set computer). Zu den ursprünglich einfachen Maschinenbefehlssätzen sind immer mehr spezialisierte Befehle hinzugefügt worden. Ziel war eine bessere Unterstützung der Hochsprachenkonstrukte. Die Prozessoren wurden insgesamt langsamer und aufwendiger. Rechnergrundlagen 17

18 Analyse Rechnergrundlagen 18

19 RISC (reduced instruction set computer) Zu Anfang der 70er Jahre zeigte eine Untersuchung, dass von Compilern für Hochsprachen nur wenige einfache Assemblerbefehle verwendet werden. Leistungsfähige und komplexe Assemblerbefehle werden kaum eingesetzt. Gründe: Compiler werden algorithmisch sehr komplex, wenn für eine Sequenz von Hochsprachenanweisungen untersucht werden muss ob sie durch einen komplexen Assemblerbefehl realisiert werden können. Teilweise werden Anweisungen der Hochsprachen nicht gut durch komplexe Assemblerbefehle abgebildet. Rechnergrundlagen 19

20 Ziele: CISC vs. RISC Die Entwickler von CISC Prozessoren stellen Assembler-Programmierern möglichst mächtige Befehle zur Verfügung. Die Entwickler von RISC Prozessoren verfolgen das entgegen gesetzte Ziel mit möglichst wenigen einfachen Assemblerbefehlen auszukommen. Rechnergrundlagen 20

21 CISC versus RISC Rechnergrundlagen 21

22 Prinzipien der RISC Entwicklung Analyse der Applikationen, um Schlüsseloperationen zu finden, die häufig ausgeführt werden. Entwurf eines Rechenwerks, das optimal die gefundenen Schlüsseloperationen verarbeiten kann. Entwurf von Instruktionen, welche die Schlüsseloperationen effizient im Rechenwerk ausführen. Weitere Instruktionen werden nur hinzugefügt, wenn die Verarbeitung der Schlüsseloperationen nicht verlangsamt wird. Die gleiche Optimierung wird für andere Bereiche des Rechners (Cache, Speichermanagement, etc.) durchgeführt. Rechnergrundlagen 22

23 Kennzeichen von RISC- Prozessoren Ein RISC-Prozessor hat viele Register, um möglichst viele Operanden lokal im Prozessor speichern zu können. Bei ALU-Operationen dienen Register als Operanden und als Senke für das Ergebnis. Es wird nicht mehr zwischen Adress- und Datenregister unterschieden. Nur wenige Adressierungsarten, bspw.: Unmittelbare Adressierung (Immediate). Der Operand ist in der Instruktion gespeichert. Register-indirekte Adressierung. Bei der Adressierung zeigt die Instruktion auf ein internes Register. Das Register enthält die Adresse des Operanden im Speicher. Rechnergrundlagen 23

24 Pipelining (Prinzip) Die gesamte Rechenzeit einer Operation wird nicht reduziert. Es werden mehrere Operationen versetzt parallel ausgeführt. Rechnergrundlagen 24

25 Pipelining (Blockschaltbild) Rechnergrundlagen 25

26 Pipelining (Ausführung) Rechnergrundlagen 26

27 Pipelining Bedingung für die erfolgreiche Anwendung eines Pipelining ist die Existenz fester Ausführungszeiten. Je feiner die Zerlegung der Abarbeitung der Befehle ist, desto höher das Potential zur Beschleunigung. Da konkurrierend auf den Speicher zugegriffen wird, muss der Zugriff sehr schnell erfolgen und etwaige Konflikte vermieden werden. Rechnergrundlagen 27

28 Probleme Die langsamste Stufe der Verarbeitung bestimmt den Takt des Pipelining. Wenn Sprünge ausgeführt werden, sind die auf Vorrat ausgeführten Verarbeitungsstufen hinfällig. Bsp.: Soll in aufeinander folgenden Instruktionen zunächst ein Operand berechnet und dann weg gespeichert werden, wird ein vorheriger alter Wert gespeichert. Die durch die versetzte Ausführung der Instruktionen entstehenden Konflikte werden als Hazards bezeichnet. Rechnergrundlagen 28

29 Lösungen Sprungbefehle: Die auf den Sprungbefehl folgenden Befehle werden aus der Pipeline gelöscht und durch NOP- Befehle ersetzt (Hardware). Es entstehen Bubbles. Die dem Sprungbefehl nachfolgenden Befehle werden vor der Ausführung des Sprungbefehls ausgeführt. Dies bedeutet, dass der Compiler an diese Stelle sinnvoll auszuführende Befehle platziert (Software). Rechnergrundlagen 29

30 Einfügen von NOPs Rechnergrundlagen 30

31 Lösungen (Forts.) Laufzeitkonflikte (Hazards): Man führt per Software NOPs ein, so dass verlängerte Speicherzugriffe (statisch) ausgeglichen werden. Wenn ein Cache Miss auftritt (dynamisch), muss von Seiten der Hardware garantiert werden, dass die Ausführung verzögert wird. Insgesamt führen die Anforderungen an Compiler für RISC-Architekturen zu sehr komplexen Maschinenprogrammen, so dass nur selten eine manuelle Bearbeitung vorgenommen werden kann. Rechnergrundlagen 31

32 Optimierende Compiler Zwei aufeinander aufbauende Phasen: Analyse und Synthese. In der Analyse werden die syntaktischen und semantischen Eigenschaften des Programms analysiert und eine maschinenunabhängige Optimierung durchgeführt. Es wird ein maschinenunabhängiger Zwischencode erzeugt. Für die Synthese müssen die Eigenschaften der Zielmaschine bekannt sein. Bei CISC Prozessoren genügt die Kenntnis der Befehlsarchitektur. Für RISC Prozessoren müssen auch die Details der Befehlspipeline bekannt sein. Für die Beseitigung von Konflikten werden NOPs eingefügt. Eine weitere Optimierung kann durch die Umordnung von Befehlen erreicht werden. Rechnergrundlagen 32

33 Grundtypen I Single Instruction, Single Data (SISD): ein sequentiell abgearbeiteter Befehlsstrom und ein entsprechend sequentieller Datenstrom (bspw. Intel bis 80486). Single Instruction, Multiple Data (SIMD): ein sequentiell abgearbeiteter Befehlsstrom steuert einen mehrfachen parallelen Datenstrom (bspw. MMX). Multiple Instruction, Single Data (MISD): mehrere Rechenwerke bearbeiten einen Datenstrom (bspw. UNIX pipe). Multiple Instruction, Multiple Data (MIMD): die Abarbeitung geschieht sowohl befehls- als auch datenparallel (bspw. Transputer). Rechnergrundlagen 33

34 Grundtypen II Rechnergrundlagen 34

35 Cache Ein Problem moderner Prozessoren ist ihre hohe Taktrate, da der Hauptspeicher die benötigten Daten nicht schnell genug liefern kann. Um dieses Problem zu lösen werden schnelle Pufferspeicher eingesetzt, die als Cache bezeichnet werden. Caches befinden sich zwischen Prozessorkern und Hauptspeicher. Sie dienen der Steigerung der Geschwindigkeit des Datenaustausches und der Entlastung des Datenbusses. Es muss ein Cache-Controller zum Einsatz kommen, der die Zugriffe des Prozessors auf den Hauptspeicher überwacht und Zugriffe auf den Cache bzw. Datenhaltung im Cache koordiniert. Rechnergrundlagen 35

36 Speicherhierarchie Rechnergrundlagen 36

37 Cache in modernen Rechnern Rechnergrundlagen 37

38 Organisation des Cache (Prinzip) Zugriff auf Cache ist deutlich schneller als der Zugriff auf Hauptspeicher. Wenn Daten im Cache stehen, kann die CPU sehr schnell darauf zugreifen. Größe des Cache ist deutlich kleiner als Größe des Hauptspeichers. Rechnergrundlagen 38

39 Speicherzellen Zerlegung des Hauptspeichers in Blöcke der Größe des Caches. Diese Blöcke werden, wie der Cache, in Cache-Zeilen aufgeteilt. Es werden nur ganze Zeilen in den Cache übernommen. Es existieren unterschiedliche Strategien für die Verwaltung des Cache, d.h. wie neue Zeilen eingeladen werden und welche ausgelagert werden. Rechnergrundlagen 39

40 Adressierung (Beispiel) Rechnergrundlagen 40

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

11.0 Rechnerarchitekturen

11.0 Rechnerarchitekturen 11.0 Rechnerarchitekturen Die Ziele dieses Kapitels sind: Kennen lernen der Rechnerklassifikation nach Flynn Betrachtung von Prozessorarchitekturen auf verschiedenen Abstraktionsebenen - Befehlsarchitektur

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen

4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen 4 Der Von-Neumann-Rechner als Grundkonzept für Rechnerstrukturen Ein Rechner besteht aus den folgenden Bestandteilen: Rechenwerk Rechenoperationen wie z.b. Addition, Multiplikation logische Verknüpfungen

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 4 AM 21.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1 IT für Führungskräfte Zentraleinheiten 11.04.2002 Gruppe 2 - CPU 1 CPU DAS TEAM CPU heißt Central Processing Unit! Björn Heppner (Folien 1-4, 15-20, Rollenspielpräsentation 1-4) Harald Grabner (Folien

Mehr

Teil VIII Von Neumann Rechner 1

Teil VIII Von Neumann Rechner 1 Teil VIII Von Neumann Rechner 1 Grundlegende Architektur Zentraleinheit: Central Processing Unit (CPU) Ausführen von Befehlen und Ablaufsteuerung Speicher: Memory Ablage von Daten und Programmen Read Only

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

Ein- Ausgabeeinheiten

Ein- Ausgabeeinheiten Kapitel 5 - Ein- Ausgabeeinheiten Seite 121 Kapitel 5 Ein- Ausgabeeinheiten Am gemeinsamen Bus einer CPU hängt neben dem Hauptspeicher die Peripherie des Rechners: d. h. sein Massenspeicher und die Ein-

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

1 Einleitung zum RISC Prozessor

1 Einleitung zum RISC Prozessor 1 Einleitung zum RISC Prozessor Wesentliche Entwicklungsschritte der Computer-Architekturen [2, 3]: Familienkonzept von IBM mit System/360 (1964) und DEC mit PDP-8 (1965) eingeführt: Gleiche Hardware-Architekturen

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9 Inhalt Curriculum 1.4.2 Manfred Wilfling HTBLA Kaindorf 28. November 2011 M. Wilfling (HTBLA Kaindorf) CPUs 28. November 2011 1 / 9 Begriffe CPU Zentraleinheit (Central Processing Unit) bestehend aus Rechenwerk,

Mehr

1 Aufgaben zu Wie funktioniert ein Computer?

1 Aufgaben zu Wie funktioniert ein Computer? 71 1 Aufgaben zu Wie funktioniert ein Computer? Netzteil a) Welche Spannungen werden von PC-Netzteilen bereitgestellt? 3.3 V, 5 V, 12 V, -5 V, -12 V. b) Warum können PC-Netzteile hohe Leistungen liefern,

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 2.1. Aufbau eines Rechners in Ebenen 3 2.2. Die Ebene der elektronischen Bauelemente 5 2.3. Die Gatterebene 5 2.3.1 Einfache

Mehr

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit)

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit) Der Demo-Computer besitzt einen 4Bit-Mikroprozessor. Er kann entsprechend Wörter mit einer Breite von 4 Bits in einem Schritt verarbeiten. Die einzelnen Schritte der Abarbeitung werden durch Lampen visualisiert.

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

3. Rechnerarchitektur

3. Rechnerarchitektur ISS: EDV-Grundlagen 1. Einleitung und Geschichte der EDV 2. Daten und Codierung 3. Rechnerarchitektur 4. Programmierung und Softwareentwicklung 5. Betriebssyteme 6. Internet und Internet-Dienste 3. Rechnerarchitektur

Mehr

ZENTRALEINHEITEN GRUPPE

ZENTRALEINHEITEN GRUPPE 31. Oktober 2002 ZENTRALEINHEITEN GRUPPE 2 Rita Schleimer IT für Führungskräfte WS 2002/03 1 Rita Schleimer TEIL 1 - Inhalt Zentraleinheit - Überblick Architekturprinzipien Zentralspeicher IT für Führungskräfte

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen 2.5 Unterbrechungen

Mehr

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Was ist ein Rechner? Maschine, die Probleme für

Mehr

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Von-Neumann-Rechner (John von Neumann : 1903-1957) C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Quelle: http://www.cs.uakron.edu/~margush/465/01_intro.html Analytical Engine - Calculate

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Technische Informatik

Technische Informatik Technische Informatik Eine einführende Darstellung von Prof. Dr. Bernd Becker Prof. Dr. Paul Molitor Oldenbourg Verlag München Wien Inhaltsverzeichnis 1 Einleitung 1 1.1 Was ist überhaupt ein Rechner?

Mehr

Rechnerarchitektur. Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz.

Rechnerarchitektur. Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz. Rechnerarchitektur Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz.de Rechnerarchitektur Dr. Andreas Müller TU Chemnitz Fakultät

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Das Von-Neumann-Prinzip Prinzipien der Datenverarbeitung Fast alle modernen Computer funktionieren nach dem Von- Neumann-Prinzip. Der Erfinder dieses Konzeptes John von Neumann (1903-1957) war ein in den

Mehr

Daten- Bus. Steuerbus

Daten- Bus. Steuerbus 1 Grundlagen... 1 1.1 Rechnerarchitektur... 1 1.2 Takt... 2 1.3 Speicherarchitektur... 2 2 Mikroprozessor... 4 2.1 Begriffsbestimmung... 4 2.2 Geschichte... 4 2.3 Aufbau eines einfachen Mikroprozessors...

Mehr

Technische Informatik 2 Adressierungsarten

Technische Informatik 2 Adressierungsarten Technische Informatik 2 Adressierungsarten Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute X-Adressmaschine 0-Adressmaschine 1-Adressmaschine 2-Adressmaschine

Mehr

Architektur paralleler Plattformen

Architektur paralleler Plattformen Architektur paralleler Plattformen Freie Universität Berlin Fachbereich Informatik Wintersemester 2012/2013 Proseminar Parallele Programmierung Mirco Semper, Marco Gester Datum: 31.10.12 Inhalt I. Überblick

Mehr

Steuerungen. 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC)

Steuerungen. 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC) Steuerungen 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC) VPS - Funktion der Steuerung in der Schaltungstopologie

Mehr

Informatik II SS 2006. Von Neumann Prinzipien (1946) Bestandteile eines von Neumann Rechners. Speicher

Informatik II SS 2006. Von Neumann Prinzipien (1946) Bestandteile eines von Neumann Rechners. Speicher Von Neumann Prinzipien (1946) Informatik II SS 2006 Kapitel 3: Rechnerarchitektur Teil 2: von Neumann Architektur Dr. Michael Ebner Dr. René Soltwisch Lehrstuhl für Telematik Institut für Informatik 1.

Mehr

Das Rechnermodell von John von Neumann

Das Rechnermodell von John von Neumann Das Rechnermodell von John von Neumann Historisches Die ersten mechanischen Rechenmaschinen wurden im 17. Jahhundert entworfen. Zu den Pionieren dieser Entwichlung zählen Wilhelm Schickard, Blaise Pascal

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.)

Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.) Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.) von Martin Stöcker Motivation Geschwindigkeit der Prozessoren verdoppelt sich alle 18 Monate (Moore s Law) Geschwindigkeit des Speichers

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

3.0 8051 Assembler und Hochsprachen

3.0 8051 Assembler und Hochsprachen 3.0 8051 Assembler und Hochsprachen Eine kurze Übersicht zum Ablauf einer Programmierung eines 8051 Mikrocontrollers. 3.1 Der 8051 Maschinencode Grundsätzlich akzeptiert ein 8051 Mikrocontroller als Befehle

Mehr

Ausgabegerät. Eingabe- gerät. Zentral -einheit. Massenspeicher. Ausgabeinformation. Eingabe- information. 2. Organisation eines Von-Neumann-Rechners

Ausgabegerät. Eingabe- gerät. Zentral -einheit. Massenspeicher. Ausgabeinformation. Eingabe- information. 2. Organisation eines Von-Neumann-Rechners Eingabe- Eingabe- gerät information Ausgabegerät Ausgabeinformation Zentralspeicher Zentralprozessor Peripheriesteuerung Massenspeicher Adressbu s Datenbu Steuerbu s Zentral -einheit Abb. 2.1: Aufbau eines

Mehr

Grundlagen der Parallelisierung

Grundlagen der Parallelisierung Grundlagen der Parallelisierung Philipp Kegel, Sergei Gorlatch AG Parallele und Verteilte Systeme Institut für Informatik Westfälische Wilhelms-Universität Münster 3. Juli 2009 Inhaltsverzeichnis 1 Einführung

Mehr

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Intel 80x86 symmetrische Multiprozessorsysteme Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Gliederung I. Parallel Computing Einführung II.SMP Grundlagen III.Speicherzugriff

Mehr

1 Proseminar: Konzepte von Betriebssystem-Komponenten. Thema: Server OS AS/400 Referend: Sand Rainer. Server OS - AS/400

1 Proseminar: Konzepte von Betriebssystem-Komponenten. Thema: Server OS AS/400 Referend: Sand Rainer. Server OS - AS/400 1 Proseminar: Konzepte von Betriebssystem-Komponenten Server OS - AS/400 Gliederung Was ist eine AS/400? Wie ist OS/400 aufgebaut? Was kann eine AS/400? Bsp.: Logische Partitionierung 2 Proseminar: Konzepte

Mehr

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich fr Algorithmen und Datenstrukturen Institut fr Computergraphik und Algorithmen Technische Universität Wien One of the few resources increasing faster

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Thomas Röfer Hardware und Software von Neumann Architektur Schichtenmodell der Software Zahlsysteme Repräsentation von Daten im Computer Hardware Prozessor (CPU)

Mehr

Kurzvortrag zum Thema Coprozessoren Ingenieurinformatik, Hauptstudium

Kurzvortrag zum Thema Coprozessoren Ingenieurinformatik, Hauptstudium Technische Universitaet Ilmenau Fakultaet fuer Informatik und Automatisierung Institut fuer Theoretische und Technische Informatik Fachgebiet Rechnerarchitekturen Kurzvortrag zum Thema Coprozessoren Ingenieurinformatik,

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK Anmerkungen FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur (ERA) Die Fragen werden

Mehr

Teil Rechnerarchitekturen M03. Darstellung von Zahlen, Rechnen, CPU, Busse. Corinna Schmitt corinna.schmitt@unibas.ch

Teil Rechnerarchitekturen M03. Darstellung von Zahlen, Rechnen, CPU, Busse. Corinna Schmitt corinna.schmitt@unibas.ch Teil Rechnerarchitekturen M03 Darstellung von Zahlen, Rechnen, CPU, Busse Corinna Schmitt corinna.schmitt@unibas.ch Darstellung von Zahlen Rechnen 2015 Corinna Schmitt Teil Rechnerarchitekturen - 2 Zwei

Mehr

Prozessoren. Prozessoren Seite 1 von 9 Philipp Grasl 1AHWIM

Prozessoren. Prozessoren Seite 1 von 9 Philipp Grasl 1AHWIM Prozessoren Prozessoren Seite 1 von 9 Philipp Grasl 1AHWIM Inhalt 1. Definierung Prozessor:... 3 2. Historische Entwicklung:... 3 3. Aufbau:... 4 3.1 Register:... 4 3.2 Rechenwerke:... 4 3.3 Befehlsdecoder:...

Mehr

Technische Informatik. Der VON NEUMANN Computer

Technische Informatik. Der VON NEUMANN Computer Technische Informatik Der VON NEUMANN Computer Inhalt! Prinzipieller Aufbau! Schaltkreise! Schaltnetze und Schaltwerke! Rechenwerk! Arbeitsspeicher! Steuerwerk - Programmausführung! Periphere Geräte! Abstraktionsstufen

Mehr

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme wwwnet-texde Proseminar Rechnerarchitekturen Parallelcomputer: Multiprozessorsysteme Stefan Schumacher, , PGP Key http://wwwnet-texde/uni Id: mps-folientex,v

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW

Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW 26. Oktober 2012 Prof. Dr. Christian Tschudin Departement Informatik, Universität Basel Uebersicht

Mehr

7 Ein einfacher CISC-Prozessor

7 Ein einfacher CISC-Prozessor 7 Ein einfacher CISC-Prozessor In diesem Kapitel wird ein einfacher Prozessor vorgestellt. Die Architektur, die wir implementieren, wurde von R. Bryant und D. O Hallaron entworfen und verwendet eine Untermenge

Mehr

Rechnerstrukturen. 6. System. Systemebene. Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Prozessor.

Rechnerstrukturen. 6. System. Systemebene. Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Prozessor. Rechnerstrukturen 6. System Systemebene 1 (Monoprozessor) 2-n n (Multiprozessor) s L1- in der L2- ( oder Motherboard) ggf. L3- MMU Speicher Memory Controller (Refresh etc.) E/A-Geräte (c) Peter Sturm,

Mehr

CISC-RISC-EPIC. eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen Seite: 1

CISC-RISC-EPIC. eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen Seite: 1 CISC-RISC-EPIC eine Zwangs-Evolution?! Jörg Spilling - DECUS Frankfurter Treffen 2008 www.equicon.de Seite: 1 Heutiges Programm: CISC-RISC-EPIC - Begriffserklärung von Neumann Rechnerarchitektur Evolution

Mehr

9.0 Komplexe Schaltwerke

9.0 Komplexe Schaltwerke 9.0 Komplexe Schaltwerke Die Ziele dieses Kapitels sind: Lernen komplexe Schaltwerke mittels kleinerer, kooperierender Schaltwerke zu realisieren Verstehen wie aufgabenspezifische Mikroprozessoren funktionieren

Mehr

Vorlesung: Technische Informatik 3

Vorlesung: Technische Informatik 3 Rechnerarchitektur und Betriebssysteme zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 4. Computerarchitektur........................235

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Speedup: Grundlagen der Performanz Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 30. April 2015 Eine Aufgabe aus der Praxis Gegeben ein

Mehr

Rechnerarchitektur Atmega 32. 1 Vortrag Atmega 32. Von Urs Müller und Marion Knoth. Urs Müller Seite 1 von 7

Rechnerarchitektur Atmega 32. 1 Vortrag Atmega 32. Von Urs Müller und Marion Knoth. Urs Müller Seite 1 von 7 1 Vortrag Atmega 32 Von Urs Müller und Marion Knoth Urs Müller Seite 1 von 7 Inhaltsverzeichnis 1 Vortrag Atmega 32 1 1.1 Einleitung 3 1.1.1 Hersteller ATMEL 3 1.1.2 AVR - Mikrocontroller Familie 3 2 Übersicht

Mehr

5 Weiterführende Rechnerarchitekturen

5 Weiterführende Rechnerarchitekturen 5 Weiterführende Rechnerarchitekturen 5.1 Globale Rechnerklassifikation 5.2 Lokale Prozessor-Klassifikation Befehlssatz Architekturen Stack-Architektur Akkumulator- Architektur Allgemeinzweck-Register-Architekturen

Mehr

Echtzeit Videoverarbeitung

Echtzeit Videoverarbeitung Hardwareplattformen für Echtzeit Videoverarbeitung Herbert Thoma Seite 1 Gliederung Echtzeitanforderungen Prozessorarchitekturen Grundlagen Pipelining Parallele Befehlsausführung Systemkomponenten Speicher

Mehr

Asynchrone Schaltungen

Asynchrone Schaltungen Asynchrone Schaltungen Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2013 Asynchrone Schaltungen 1/25 2013/07/18 Asynchrone Schaltungen

Mehr

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Computational Biology: Bioelektromagnetismus und Biomechanik Implementierung Gliederung Wiederholung: Biomechanik III Statische Elastomechanik Finite Elemente Diskretisierung Finite Differenzen Diskretisierung

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Hardware-Architekturen

Hardware-Architekturen Kapitel 3 Hardware-Architekturen Hardware-Architekturen Architekturkategorien Mehrprozessorsysteme Begriffsbildungen g Verbindungsnetze Cluster, Constellation, Grid Abgrenzungen Beispiele 1 Fragestellungen

Mehr

Grundlagen Rechnertechnik

Grundlagen Rechnertechnik Grundlagen Rechnertechnik 1 Inhaltsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis...2 2. Grundlagen...3 2.1. Prinzipieller Aufbau...3 2.2. Technische Grundlagen...4 2.3. Schaltkreissysteme...5

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

Ein und Ausgabe. von Neumann Konzept enthält folgende Komponenten: Rechenwerk Steuerwerk Speicher Eingabewerk Ausgabewerk (siehe 1.

Ein und Ausgabe. von Neumann Konzept enthält folgende Komponenten: Rechenwerk Steuerwerk Speicher Eingabewerk Ausgabewerk (siehe 1. Ein und Ausgabe von Neumann Konzept enthält folgende Komponenten: Rechenwerk Steuerwerk Speicher Eingabewerk Ausgabewerk (siehe 1. Vorlesung) v. Neumann Architektur Eingabewerk Speicher Ausgabewerk Rechenwerk

Mehr

Kurs Rechnerarchitektur (RA) im SS 2014. Informatik 12 Informatik 12. Tel.: 0231 755 6111 Tel.: 0231 755 6112 Sprechstunde: Mo, 13-14. Willkommen!

Kurs Rechnerarchitektur (RA) im SS 2014. Informatik 12 Informatik 12. Tel.: 0231 755 6111 Tel.: 0231 755 6112 Sprechstunde: Mo, 13-14. Willkommen! 12 Kurs Rechnerarchitektur (RA) im SS 2014 Peter Marwedel Michael Engel Informatik 12 Informatik 12 peter.marwedel@tu-.. michael.engel@tu-.. Tel.: 0231 755 6111 Tel.: 0231 755 6112 Sprechstunde: Mo, 13-14

Mehr

Registersatz. Vorteil Prefetch Bus:

Registersatz. Vorteil Prefetch Bus: CISC --Steuerwerk --Operationswerk (Rechenwerk) --Registersatz --Adresswerk -- Systembusschnittstelle --Internes Bussystem ALU: Negation, UND, ODER, antivalenz, Schiebeoberationen, Rotation Datenregister:

Mehr

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 UNIVERSITÄT LEIPZIG Enterprise Computing Einführung in das Betriebssystem z/os Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 Verarbeitungsgrundlagen Teil 4 Cache el0100 copyright W.

Mehr

HW/SW Codesign 5 - Performance

HW/SW Codesign 5 - Performance HW/SW Codesign 5 - Performance Martin Lechner e1026059 Computer Technology /29 Inhalt Was bedeutet Performance? Methoden zur Steigerung der Performance Einfluss der Kommunikation Hardware vs. Software

Mehr

Programmierung verteilter eingebetteter Systeme Teamprojekt Einführung und Grundlagen Teil 2

Programmierung verteilter eingebetteter Systeme Teamprojekt Einführung und Grundlagen Teil 2 Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Programmierung verteilter eingebetteter Systeme Teamprojekt Einführung und Grundlagen Teil 2 Stephan Rottmann, Ulf Kulau, Felix Büsching

Mehr

02.11.2001-11-06 Klasse: IA11. Der Prozessor, das Herzstück eines Computers

02.11.2001-11-06 Klasse: IA11. Der Prozessor, das Herzstück eines Computers Sascha Dedenbach Heinrich-Hertz Berufskolleg 02.11.2001-11-06 Klasse: IA11 Der Prozessor, das Herzstück eines Computers Inhaltsübersicht 1. Der Prozessor, das Herzstück eines Computers...Seite 3 2. Wie

Mehr

Aufbau von modernen Computersystemen

Aufbau von modernen Computersystemen Kapitel 2: Aufbau von modernen Computersystemen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Software Anwendersoftware Betriebssystem Hardware von Neumann Architektur

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung 7: Speicher und Peripherie 183.579, SS2012 Übungsgruppen: Do., 31.05. Mi., 06.06.2012 Aufgabe 1: Ihre Kreativität ist gefragt! Um die Qualität der Lehrveranstaltung

Mehr

Entwicklung von Partitionierungsstrategien im Entwurf dynamisch rekonfigurierbarer Systeme

Entwicklung von Partitionierungsstrategien im Entwurf dynamisch rekonfigurierbarer Systeme Entwicklung von Partitionierungsstrategien im Entwurf dynamisch rekonfigurierbarer Systeme R. Merker, Technische Universität Dresden, Fakultät ET und IT J. Kelber, Fachhochschule Schmalkalden, ET Gliederung

Mehr

Hardware/Software-Codesign

Hardware/Software-Codesign Klausur zur Lehrveranstaltung Hardware/Software-Codesign Dr. Christian Plessl Paderborn Center for Parallel Computing Universität Paderborn 8.10.2009 Die Bearbeitungsdauer beträgt 75 Minuten. Es sind keine

Mehr

Prozessor HC680 fiktiv

Prozessor HC680 fiktiv Prozessor HC680 fiktiv Dokumentation der Simulation Die Simulation umfasst die Struktur und Funktionalität des Prozessors und wichtiger Baugruppen des Systems. Dabei werden in einem Simulationsfenster

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik hier: Allgemeine Aufgaben von Computern bei der Datenverarbeitung Grundlegender Aufbau von Computern: Architekturen, Funktion und Kopplung der Komponenten Vom Algorithmus zum Programm Zusammenspiel von

Mehr

Rechnerarchitektur. Skript zur Vorlesung im Sommersemester 2015. Prof. Dr. Claudia Linnhoff-Popien

Rechnerarchitektur. Skript zur Vorlesung im Sommersemester 2015. Prof. Dr. Claudia Linnhoff-Popien Ludwig-Maximilians-Universität München Institut für Informatik Lehrstuhl für Mobile und Verteilte Systeme Rechnerarchitektur Skript zur Vorlesung im Sommersemester 2015 Prof. Dr. Claudia Linnhoff-Popien

Mehr

IT-Infrastruktur, WS 2014/15, Hans-Georg Eßer

IT-Infrastruktur, WS 2014/15, Hans-Georg Eßer ITIS-D'' IT-Infrastruktur WS 2014/15 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz D'': Rechnerstrukturen, Teil 3 v1.0, 2014/11/27 Folie D''-1 Dieser Foliensatz Vorlesungsübersicht Seminar Wiss.

Mehr

Mikrocomputertechnik. Adressierungsarten

Mikrocomputertechnik. Adressierungsarten Adressierungsarten Ein Mikroprozessor bietet meist eine Reihe von Möglichkeiten, die Operanden für eine Rechenoperation zu bestimmen. Diese Möglichkeiten bezeichnet man als Adressierungsarten. unmittelbare

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Neue Prozessor-Architekturen für Desktop-PC

Neue Prozessor-Architekturen für Desktop-PC Neue Prozessor-Architekturen für Desktop-PC Bernd Däne Technische Universität Ilmenau Fakultät I/A - Institut TTI Postfach 100565, D-98684 Ilmenau Tel. 0-3677-69-1433 bdaene@theoinf.tu-ilmenau.de http://www.theoinf.tu-ilmenau.de/ra1/

Mehr

MIKROPROZESSOR PROGRAMMIERUNG 2. VORLESUNG. LV-Nr. 439.026 SS2007 1 INSTITUT FÜR ELEKTRONIK BIT

MIKROPROZESSOR PROGRAMMIERUNG 2. VORLESUNG. LV-Nr. 439.026 SS2007 1 INSTITUT FÜR ELEKTRONIK BIT MIKROPROZESSOR PROGRAMMIERUNG 2. VORLESUNG BIT LV-Nr. 439.026 SS2007 1 LABORÜBUNG Gruppeneinteilung Mikroprozessor-Programmierung LU Anmeldung zur Laborübung im TUGOnline erforderlich! Für Terminwechsel

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Betriebssysteme Aufgaben Management von Ressourcen Präsentation einer einheitlichen

Mehr

Thema 4. Prozessoren

Thema 4. Prozessoren Thema 4 Prozessoren Wo sind wir? Rechenwerk Steuerwerk CPU Speicherwerk Ein- und Ausgabekanal Befehle Daten Adressen Datenbus Adressbus Steuerbus }Sammelleitungen Abgrenzung Mikroprozessor Im wesentlichen

Mehr

Zyklus: FETCH, DECODE, FETCH OPERANDS, UPDATE INSTRUCTION POINTER, EXECUTE

Zyklus: FETCH, DECODE, FETCH OPERANDS, UPDATE INSTRUCTION POINTER, EXECUTE 1. Von Neumann Architektur Aufbau: CPU Rechenwerk ALU (arithmetische und logische Operationen) Steuerwerk (Steuerung der Verarbeitung über Operationscodes) Hauptspeicher Daten und Befehle Adressierung

Mehr

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS RISC: Reduced Instruction Set Computer 1 The CMOS Generations: Speedup through Miniaturization 10-fache Leistungssteigerung 2 Was ist ein Reduced Instruction Set Computer (RISC*)? * Der Begriff RISC wurde

Mehr

Informatik II. Rechnerarchitektur. Rechnerarchitektur. Rechnerarchitektur. Einführung. Rainer Schrader. 24. November 2005

Informatik II. Rechnerarchitektur. Rechnerarchitektur. Rechnerarchitektur. Einführung. Rainer Schrader. 24. November 2005 Informatik II Einführung Rainer Schrader Zentrum für Angewandte Informatik Köln 24. November 2005 1 / 59 2 / 59 Gliederung von-neumann-rechner Vektor- und Feldrechner arallelrechner alternative Rechnerkonzepte

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 6 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Welche(r) der folgenden Bitstrings kann/können als Zahl in BCD-Kodierung aufgefasst werden? a) 0000

Mehr