Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Größe: px
Ab Seite anzeigen:

Download "Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)"

Transkript

1 Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also: das Opcode Field der Instruktion) Control RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite Grundlagen der Rechnerarchitektur Prozessor 34

2 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 35

3 Beispiel für eine R Typ Instruktion add $t1, $t2, $t3 Instruktion wird gefetched und PC um 4 erhöht. Die Register $t2 (Instruction [25 21]) und $t3 (Instruction [20 16]) werden aus dem Register File geladen. Die ALU führt die in dem Function Field (Instruction [5 0]) codierte Operation auf den gelesenen Register Daten aus. Das Ergebnis der ALU wird in Register $t1 (Instruction [15 11]) zurück geschrieben. Grundlagen der Rechnerarchitektur Prozessor 36

4 Beispiel für eine Load/Save Instruktion lw $t1, 8($t2) Instruktion wird gefetched und PC um 4 erhöht. Das Register $t2 (Instruction [25 21]) wird aus dem Register File geladen. Die ALU addiert das Register Datum und den 32 Bit Signexteded 16 Bit Immediate Wert 8 (Instruction [15 0]). Die Summe aus der ALU wird als Adresse für den Datenspeicher verwendet. Das Datum aus dem Datenspeicher wird in das Register File geschrieben. Das Register in das geschrieben wird ist $t1 (Instruction [20 16]). Grundlagen der Rechnerarchitektur Prozessor 37

5 Beispiel für eine Branch Instruktion beq $t1, $t2, 42 Instruktion wird gefetched und PC um 4 erhöht. Die Register $t1 (Instruction [25 21]) und $t2 (Instruction [20 16]) werden aus dem Register File geladen. Die Haupt ALU subtrahiert die ausgelesenen Register Daten voneinander. Die zusätzliche ALU addiert PC+4 auf den 32 Bit Signexteded und um 2 nach links geshifteten 16 Bit Immediate Wert 42 (Instruction [15 0]). Das Zero Ergebins der Haupt ALU entscheidet ob der PC auf PC+4 oder auf das Ergebnis der zusätzlichen ALU gesetzt wird. Grundlagen der Rechnerarchitektur Prozessor 38

6 Eine Übung zum Abschluss In der vorigen Übung zum Abschluss wurde das Blockschaltbild des Datenpfads so erweitert, sodass auch die MIPS Instruktion j unterstützt wird. Wie müssen Control und Alu Control modifiziert werden (wenn überhaupt), damit die MIPS Instruktion j auch von Seiten des Control unterstützt wird? Erinnerung: j addr # Springe pseudo-direkt nach addr address Opcode Bits Adresse Bits 25 0 J Typ Grundlagen der Rechnerarchitektur Prozessor 39

7 Pipelining Grundlagen der Rechnerarchitektur Prozessor 40

8 Pipelining Instruktionszyklen Grundlagen der Rechnerarchitektur Prozessor 41

9 MIPS Instruktionszyklus Ein MIPS Instruktionszklus besteht aus: 1. Instruktion aus dem Speicher holen (IF: Instruction Fetch) 2. Instruktion decodieren und Operanden aus Register lesen (ID: Instruction Decode/Register File Read) 3. Ausführen der Instruktion oder Adresse berechnen (EX: Execute/Address Calculation) 4. Datenspeicherzugriff (MEM: Memory Access) 5. Resultat in Register abspeichern (WB: Write Back) Grundlagen der Rechnerarchitektur Prozessor 42

10 Instruktionszyklen in unserem Blockschaltbild Grundlagen der Rechnerarchitektur Prozessor 43

11 Instruktionszyklen generell Instruktionszyklen anderer moderner CPUs haben diese oder eine sehr ähnliche Form von Instruktionszyklen. Unterschiede sind z.b.: Instruktion decodieren und Operanden lesen sind zwei getrennte Schritte. Dies ist z.b. notwendig, wenn Instruktionen sehr komplex codiert sind (z.b. x86 Instruktionen der Länge 1 bis 17 Byte) wenn Instruktionen Operanden im Speicher anstatt Register haben (z.b. einige Instruktionen bei x86) Grundlagen der Rechnerarchitektur Prozessor 44

12 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45

13 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten: Instruction Fetch 200ps, Register Read 100ps, ALU Operation 200ps, Data Access 200ps, Register Write 100ps. Wie hoch dürfen wir unseren Prozessor (ungefähr) Takten? Die längste Instruktion benötigt 800ps. Also gilt für den Clock Cycle c: Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 46

14 Die Pipelining Idee am Beispiel Wäsche waschen Bearbeitungszeit pro Wäscheladung bleibt dieselbe (Delay). Gesamtzeit für alle Wäscheladungen sinkt (Throughput). Waschen Trocknen Falten Einräumen Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 47

15 Was ist die Performance Ratio? Annahme jeder Arbeitsgang beansprucht dieselbe Zeit. Was ist die Performance Ratio für n Wäscheladungen? Generell für k Pipeline Stufen, d.h. k Arbeitsgänge und gleiche Anzahl Zeiteinheiten t pro Arbeitsgang? Grundlagen der Rechnerarchitektur Prozessor 48

16 Pipelining für unseren MIPS Prozessor Im Folgenden betrachten wir zunächst ein ganz einfaches Programm: lw $1, 100($0) lw $2, 200($0) lw $3, 300($0) lw $4, 400($0) lw $5, 500($0) Bemerkung: Da die MIPS Registernamen im Folgenden nicht von Bedeutung sind, geben wir in den Programmbeispielen häufig nur noch die Registernummern (z.b. wie oben $0 und $1) an. Außerdem betrachten wir das spezielle Zero Register momentan nicht. Wie kann man die Pipelining Idee im Falle unseres MIPS Prozessors anwenden? Grundlagen der Rechnerarchitektur Prozessor 49

17 Die Pipeline nach den ersten drei Instruktionen Annahme: IF = 200ps ID = 100ps EX = 200ps MEM = 200ps WB = 100ps Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 50

18 Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen würde. Allerdings brauchen die einzelnen Stufen s1,...,sk unterschiedliche Zeiteinheiten: t 1,..., t k. Somit ist die Performance Ratio für n Instruktionen: Mit den Zeiten aus dem vorigen Beispiel für n also: Die Performance Ratio wird durch die langsamste Stufe bestimmt. Grundlagen der Rechnerarchitektur Prozessor 51

19 Taktung Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen die bisher betrachteten Ausführungszeiten: Instruction Fetch 200ps, Register Read 100ps, ALU Operation 200ps, Data Access 200ps, Register Write 100ps. Wie hoch dürfen wir unseren Prozessor (ungefähr) Takten? Die längste Stufe benötigt 200ps. Also gilt für den Clock Cycle c: Achtung: Maximal mögliche Taktung hängt aber auch von anderen Faktoren ab. (Erinnerung: Power Wall). Grundlagen der Rechnerarchitektur Prozessor 52

20 Quiz Welchen CPI Wert suggeriert das MIPS Pipelining Beispiel? Achtung: der CPI Wert ist in der Regel höher, wie wir noch sehen. Grundlagen der Rechnerarchitektur Prozessor 53

21 Der Ansatz ist noch zu naiv Beispiel: lw $5, 500($0) lw $4, 400($0) lw $3, 300($0) lw $2, 200($0) lw $1, 100($0) IF ID EX MEM WB Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 54

22 Pipelining Pipeline Register Grundlagen der Rechnerarchitektur Prozessor 55

23 Pipeline Stufen brauchen Pipeline Register Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 56

24 Pipeline Stufen brauchen Pipeline Register Control Write Register darf erst in der WB Stufe gesetzt werden. Änderung im Tafelbild Wird durchgereicht RegDst steht mit der Entscheidung von Control erst in der EX Stufe fest. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 57

25 Was speichern die Pipeline Register? Wir schauen uns den Weg einer einzigen Instruktion durch die Pipeline an; und zwar den der Load Word Instruktion lw. Auf dem Weg durch die Pipeline überlegen wir, was alles in den Pipeline Registern IF/ID, ID/EX, EX/MEM und MEM/WB stehen muss. In der Darstellung verwenden wir folgende Konvention. Bedeutet: Register/Speicher wird gelesen Bedeutet: Register/Speicher wird beschrieben Grundlagen der Rechnerarchitektur Prozessor 58

26 Was speichern die Pipeline Register? IF/ID: Instruktion PC+4 (z.b. für beq) Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 59

27 Was speichern die Pipeline Register? ID/EX: PC+4 (z.b. für beq) Inhalt Register 1 Inhalt Register 2 Sign ext. Immediate (z.b. für beq) Das Write Register (wird im Letzten Zyklus von lw gebraucht) Generell: Alles was in einem späteren Clock Cycle noch verwendet werden könnte, muss durchgereicht werden. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 60

28 Was speichern die Pipeline Register? EX/MEM: Ergebnis von PC+4+ Offset (z.b. für beq) Zero der ALU (z.b. für beq) Result der ALU Register 2 Daten (z.b. für sw) Das Write Register (wird im letzten Zyklus von lw gebraucht) Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 61

29 Was speichern die Pipeline Register? MEM/WB: Das gelesene Datum aus dem Speicher (wird dann von lw im nächsten Zyklus ins Write Register geschrieben) Das Ergebnis der ALU Operation (für die arithmetisch logischen Instruktionen) Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 62

30 Was speichern die Pipeline Register? Für die letzte Pipeline Stufe braucht man kein Pipeline Register. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 63

31 Zusätzlich wird noch Control Info gespeichert Control Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 64

32 Zusätzlich wird noch Control Info gespeichert Werden durchgereicht. Control hängt von der Instruktion ab. Damit muss Control Info erst ab ID/EX Register gespeichert werden. Das ID/EX Register muss bereitstellen: RegDst ALUOp (2) ALUSrc Das EX/MEM Register muss bereit stellen: Branch MemRead MemWrite Das MEM/WB Register muss bereit stellen: MemtoReg RegWrite Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 65

33 Pipelining Pipelining Visualisierung Grundlagen der Rechnerarchitektur Prozessor 66

34 Pipelining Visualisierung Zusammenfassung der vorhin implizit eingeführten Visualisierungen und Einführung einer neuen Visualisierung. Wir betrachten folgenden Beispiel Code: lw $10, 20($1) sub $11, $2, $3 add $12, $3, $4 lw $13, 24($1) add $14, $5, $6 Wir unterscheiden generell zwischen zwei Visualisierungsarten: Single Clock Cylce Pipeline Diagramm und Multiple Clock Cycle Pipeline Diagramm Grundlagen der Rechnerarchitektur Prozessor 67

35 Single Clock Cycle Pipeline Diagramm Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 68

36 Einfaches Multiple Clock Cycle Pipeline Diagramm Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 69

37 Detaillierteres Multiple Clock Cycle Pipeline Diagramm IF ID EX MEM WB Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 70

38 Pipelining Komplexere Pipelines Grundlagen der Rechnerarchitektur Prozessor 71

39 Komplexere Piplelines Pipeline Stufen sind nicht auf 5 festgelegt! z.b. weitere Unterteilung von IF, ID, EX, MEM, WB Erlaubt höhere Taktung Kann aufgrund der Instruktions Komplexität erforderlich sein Kann aufgrund von Instruktionen mit zeitlich unbalancierten Stufen erforderlich sein Wie pipelined man x86 ISA mit Instruktionslängen zwischen 1 und 17 Bytes? Komplexe Instruktionen der x86 ISA werden in Folge von Mikroinstruktionen übersetzt Mikroinstruktionssatz ist vom Typ RISC Pipelining findet auf den Mikroinstruktionen statt Beispiel AMD Opteron X4: Was das ist sehen wir noch im Kapitel Multiple Issue Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 72

40 Pipeline Stufen einiger ausgewählter Prozessoren Mikroprozesor Jahr Taktrate Pipeline Stufen Leistung Intel MHz 5 5 W Intel Pentium MHz 5 10 W Intel Pentium Pro MHz W Intel Pentium 4 Willamette MHz W Intel Pentium 4 Prescott MHz W Intel Core MHz W UltraSPARC IV MHz W Sun UltraSPARC T1 (Niagara) MHz 6 70 W Pipeline Stufen sinken wieder? Aggressives Pipelining ist sehr Leistungshungrig Aktueller Trend eher zu Multi Cores mit geringerer Leistungsaufnahme pro Core. Grundlagen der Rechnerarchitektur Prozessor 73

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Grundlagen der Rechnerarchitektur. Prozessor

Grundlagen der Rechnerarchitektur. Prozessor Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Grundlagen der Rechnerarchitektur. Prozessor

Grundlagen der Rechnerarchitektur. Prozessor Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Allgemeine Lösung mittels Hazard Detection Unit

Allgemeine Lösung mittels Hazard Detection Unit Allgemeine Lösung mittels Hazard Detection Unit Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 83

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren der beiden Registerwerte $t1 und $t2 in einem Zielregister

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

N Bit Binärzahlen. Stelle: Binär-Digit:

N Bit Binärzahlen. Stelle: Binär-Digit: N Bit Binärzahlen N Bit Binärzahlen, Beispiel 16 Bit: Stelle: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binär-Digit: 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 Least Significant Bit (LSB) und Most Significant Bit (MSB)

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine Verantwortung übernommen.

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 27 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 27/5/3 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 26 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 26/5/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining Implementierung

Mehr

Pipelining for DLX 560 Prozessor. Pipelining : implementation-technique. Pipelining makes CPUs fast. pipe stages

Pipelining for DLX 560 Prozessor. Pipelining : implementation-technique. Pipelining makes CPUs fast. pipe stages Pipelining for DLX 560 Prozessor Pipelining : implementation-technique Pipelining makes CPUs fast. pipe stages As many instructions as possible in one unit of time 1 Pipelining can - Reduce CPI - Reduce

Mehr

Carry Lookahead Adder

Carry Lookahead Adder Carry Lookahead Adder Mittels der Generate und Propagate Ausdrücke lässt ich dann für jede Stelle i der Carry (Übertrag) für die Stelle i+1 definieren: Für einen 4 Stelligen Addierer ergibt sich damit:

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

Speichern von Zuständen

Speichern von Zuständen Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 R S C D altes Q neues Q 0 0 0 0 0 1 0 1 0 0 1

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle # A B C D OK m9 + m11 1 0 1 P1 m7 + m15 1 1 1 P2 m11 + m15 1 1 1 P3 m0 + m1 + m4 + m5 0 0 P4 m0 + m1 + m8 + m9 0 0 P5 m4 + m5 + m6 + m7 0

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Übung 7 Datum : 22.-23. November 2018 Pipelining Aufgabe 1: Taktrate / Latenz In dieser Aufgabe

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer Aufgabe 8.1 Ausnahmen (Exceptions) a. Erklären Sie den Begriff Exception. b. Welche Arten von Exceptions kennen Sie? Wie werden sie ausgelöst und welche Auswirkungen auf den ablaufenden Code ergeben sich

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018

Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018 Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018 Aufgabe 1: Taktrate / Latenz Einzeltakt-Architektur Pipelining-Architektur Pipelining-Architektur 15 15 120 ps 15

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 8 Datum: 30. 11. 1. 12. 2017 In dieser Übung soll mit Hilfe des Simulators WinMIPS64 die

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Rechnerstrukturen, Teil 2

Rechnerstrukturen, Teil 2 2 Rechnerstrukturen, Teil 2 Vorlesung 4 SWS WS 7/8 2.3 Register-Transfer-Strukturen Prof. Dr. Jian-Jia Chen Fakultät für Informatik Technische Universität Dortmund jian-jia.chen@cs.uni-.de http://ls2-www.cs.tu-.de

Mehr

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining Einzeltakt-Architektur TI1 - Übung 6: Pipelining Pipelining-Architektur

Mehr

2.3 Register-Transfer-Strukturen

2.3 Register-Transfer-Strukturen 2 2.3 Register-Transfer-Strukturen Kontext Die Wissenschaft Informatik befasst sich mit der Darstellung, Speicherung, Übertragung und Verarbeitung von Information [Gesellschaft für Informatik] 2, 24-2

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Parallelität auf Instruktionsebene Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr Praktikum zur Vorlesung Prozessorarchitektur SS 2017 Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch 21.06.2017, 14:00 Uhr 1.1. Einführung Programmsteuerbefehle

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 6 Datum: 24. 25. 11. 2016 Pipelining 1 Taktrate / Latenz In dieser

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Generation 5: Invisible Computers (ab 1993)

Generation 5: Invisible Computers (ab 1993) Generation 5: Invisible Computers (ab 1993) Jahr Name Gebaut von Kommentar 1993 PIC Microchip Technology Erster Mikrocontroller auf Basis von EEPROMs. Diese erlauben das Flashen ohne zusätzliche. Bemerkung:

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Kapitel 2. Pipeline-Verarbeitung. Technologie- Entwicklung. Strukturelle Maßnahmen. Leistungssteigerung in Rechnersystemen

Kapitel 2. Pipeline-Verarbeitung. Technologie- Entwicklung. Strukturelle Maßnahmen. Leistungssteigerung in Rechnersystemen Technologie- Entwicklung Kapitel 2 Pipeline-Verarbeitung SSI: Small Scale Integration MSI: Medium Scale Integration LSI: Large Scale Integration VLSI: Very Large Scale Integration ULSI: Ultra Large Scale

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Logische Bausteine Addierwerke Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Addition eines einzigen Bits Eingang Ausgang a b CarryIn CarryOut Sum 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

Hier: Soviele Instruktionen wie möglich sollen in einer Zeiteinheit ausgeführt werden. Durchsatz.

Hier: Soviele Instruktionen wie möglich sollen in einer Zeiteinheit ausgeführt werden. Durchsatz. Pipelining beim DLX 560 Prozessor Pipelining : Implementierungstechnik Vielfältig angewendet in der Rechnerarchitektur. Pipelining macht CPUs schnell. Pipelining ist wie Fließbandverarbeitung. Hintereinanderausführung

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 1 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining

Mehr

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer Rechnerarchitektur Marián Vajteršic und Helmut A. Mayer Fachbereich Computerwissenschaften Universität Salzburg marian@cosy.sbg.ac.at und helmut@cosy.sbg.ac.at Tel.: 8044-6344 und 8044-6315 30. Mai 2017

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht Kapitel 3 Mikroarchitektur 3.1 elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung (zur Realisierung der Befehlsabarbeitung

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Datapath. Data Register# Register# PC Address instruction. Register#

Datapath. Data Register# Register# PC Address instruction. Register# Überblick über die Implementation Datapath Um verschiedene Instruktionen, wie MIPS instructions, interger arithmatic-logical instruction und memory-reference instructions zu implementieren muss man für

Mehr

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1 E-1 Technische Grundlagen der Informatik 2 SS 2009 Einleitung R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt Lernziel E-2 Verstehen lernen, wie ein Rechner auf der Mikroarchitektur-Ebene

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 20.03.09 4-1 Heutige große Übung Ankündigung

Mehr

Architekturmerkmale. SigProc-5-Architekturmerkmale 1

Architekturmerkmale. SigProc-5-Architekturmerkmale 1 Architekturmerkmale SigProc-5-Architekturmerkmale 1 Stream processing Signalproben werden sofort verarbeitet SigProc-5-Architekturmerkmale 2 + Signalwerte sind aktuell innerhalb der Abtastperiode + Minimale

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Computersysteme. Fragestunde

Computersysteme. Fragestunde Computersysteme Fragestunde 1 Dr.-Ing. Christoph Starke Institut für Informatik Christian Albrechts Universität zu Kiel Tel.: 8805337 E-Mail: chst@informatik.uni-kiel.de 2 Kurze Besprechung von Serie 12,

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 8 Musterlösung zu Übung 5 Datum : 8.-9. November 8 Aufgabe : MIPS Architektur Das auf der nächsten

Mehr

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC HSD RISC &CISC CISC - Complex Instruction Set Computer - Annahme: größerer Befehlssatz und komplexere Befehlen höhere Leistungsfähigkeit - Möglichst wenige Zeilen verwendet, um Aufgaben auszuführen - Großer

Mehr

Umstellung auf neue Pipeline

Umstellung auf neue Pipeline new_pipe Umstellung auf neue Pipeline»» Umstellung auf neue Pipeline Core mit 2 Port Registerfile In dieser Konfiguration wird am Registerfile ein Phasensplitting durchgeführt, um in jedem Takt 2 Register

Mehr

Aufgabe 1 : Assembler

Aufgabe 1 : Assembler Sommer 2016 Technische Informatik I Lösungsvorschlag Seite 2 Aufgabe 1 : Assembler (maximal 23 Punkte) Hinweis: Auf der letzten Seite des Prüfungsbogens finden Sie eine Übersicht von Assemblerbefehlen.

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 5 Prozessor Pipelineimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Pipelining Definition 5 2 Definition Pipelining (Fliessbandverarbeitung) ist eine

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

DIGITALE SCHALTUNGEN II

DIGITALE SCHALTUNGEN II DIGITALE SCHALTUNGEN II 3. Sequentielle Schaltkreise 3.1 Vergleich kombinatorische sequentielle Schaltkreise 3.2 Binäre Speicherelemente 3.2.1 RS Flipflop 3.2.2 Getaktetes RS Flipflop 3.2.3 D Flipflop

Mehr

Übungsblatt 6. Implementierung einer Befehlspipeline

Übungsblatt 6. Implementierung einer Befehlspipeline Praktikum zur Vorlesung Prozessorarchitektur SS 2016 Übungsblatt 6. Implementierung einer Befehlspipeline 1.1. Einführung Durch die Einteilung der Befehlsverarbeitung in mehrere Zyklen in dem vorangegangenen

Mehr

Das Verfahren in Hardware

Das Verfahren in Hardware Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = 110110 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt

Mehr

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller SS 2004 VAK 18.004 Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller Aufgabenblatt 2.5 Lösung 2.5.1 Befehlszähler (Program Counter, PC) enthält Adresse des nächsten auszuführenden

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr