Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Größe: px
Ab Seite anzeigen:

Download "Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31"

Transkript

1 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

2 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur von den Eingängen ab. Wieschon gezeigt, ist dies durch eine Wahrheits tabelle beschreibbar. Ausgänge hängen von den Eingängen ab und dem aktuellen Zustand des Bausteins ab. Wie kann man dieses Verhalten beschreiben? Kombinatorische Schaltungen Sequentielle Schaltungen Grundlagen der Rechnerarchitektur Logik und Arithmetik 32

3 Zustandsautomat Ein Beispiel: Bi il Eingabe 01 / Ausgabe 00 Eingabe 00 / Ausgabe 11 Eingabe 10 / Ausgabe 01 Eingabe 11 / Ausgabe 10 Zustand 00 Bit Eing gabe Eingabe 11 / Ausgabe 00 Zustand 01 2 Bit Ausga 2 be Zustand 10 Grundlagen der Rechnerarchitektur Logik und Arithmetik 33

4 Speichern von Zuständen Speichern eines Bits am Beispiel R S Latch (S=Set, R=Reset) Beobachtung: das Speichern von Zustand erfordert Rückkopplungen (d.h. Ausgang ist wieder Eingang) in der Schaltung. R S altes Q neues Q Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 34

5 Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q R S C D altes Q neues Q Weitere Details zu Latches und Flip Flops Flops in der Vorlesung Digitaltechnik. Grundlagen der Rechnerarchitektur Logik und Arithmetik 35

6 Beispiel Wirwollen das Ergebnis einer kombinatorischen Schaltung in einem D Latch speichern. Q soll wohldefiniert entweder den Inhalt vor oder nach der Berechnung speichern. Kombinatorische Schaltung Q n Bit Eingang Ergebnis istein Bit C (Clock) D (Daten) D Latch NOT(Q) Problem: Wann liegt das Ergebnis Bit stabil tbilan D an? Zeit Bildquelle: Symbole kopiert aus David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 36

7 Lösung: Taktung Wirwollen das Ergebnis einer kombinatorischen Schaltung in einem D Latch speichern. Q soll wohldefiniert entweder den Inhalt vor oder nach der Berechnung speichern. Kombinatorische Schaltung Q n Bit Eingang Ergebnis istein Bit C (Clock) D (Daten) D Latch NOT(Q) Letztes Clock Signal Nächstes Clock Signal Zeit Takt Zyklus Bildquelle: Symbole kopiert aus David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 37

8 Logische Bausteine Blockschaltdiagramme ltdi Grundlagen der Rechnerarchitektur Logik und Arithmetik 38

9 Bausteine als Black Box Wir haben jetzt einige Basisbausteine kennen gelernt. In dieser Vorlesung sind wir mit Blockschaltbildern in der Regel eine Abstaktionsebene höher. Die betrachteten Bausteine sind Kästen mit Eingangsleitungen und Ausgangsleitungen. Die Leitungen können entweder Daten transportieren (Datenleitungen) oder Steuersignale (Steuerleitungen). Wie die Bausteine der Blockschaltbilder intern mit Grundbausteinen aufgebaut sind und wie die Taktung der einzelnen Bausteine genau abläuft betrachten wir in dieser Vorlesung nicht ihtweiter. Mehr Mhdazu kann man in der Vorlesung Digitaltechnik it ik lernen. Eingansleitungen Bemerkung: In Blockschaltbildern ltbild wird das für sequentielle Bausteine erforderliche Clock Signal häufig der Übersicht halber weg gelassen. Baustein Ausgansleitungen Beispiel eines abstrakten Bausteins Grundlagen der Rechnerarchitektur Logik und Arithmetik 39

10 Verschaltung von Bausteinen Verbinden von Bauelementen Bus (lassen häufig die Markierung n Bits weg) n Bits Einzelne Leitung Datenflussrichtung Ausgabe eines logischen Bausteins Eingabe eines logischen Bausteins Kreuzungen und Verbindungen Bi Beispiel il Baustein A Leitungen kreuzen sich, sind aber nicht verbunden Verbindungen außerhalb der Leitungsendpunkte sind durch einen Punkt gekennzeichnet. Baustein B Baustein C Grundlagen der Rechnerarchitektur Logik und Arithmetik 40

11 Arithmetische, logische Einheit (ALU) ALU Operation (k) Angabe in Klammern istdie Anzahl Bits. A (n) OR Beispiel Funktionen AND B (n) ALU CarryOut (1) Zero (1) Result (n) Overflow (1) Ggf. ist die ALU auf eine Operation festgelegt. Dann Entfällt der Eingang und ALU wird mit dem Namen der Operation ersetzt. NOT Addition Subtraktion Vergleich Kombinatorisch? Sequentiell? Grundlagen der Rechnerarchitektur Logik und Arithmetik 41

12 Register und Shift Register Eingang (n) Speichert n Bits Reset (1) Load (1) Shift (1) Ausgang (n) Kombinatorisch? Sequentiell? Grundlagen der Rechnerarchitektur Logik und Arithmetik 42

13 Control Eingänge sind Datenleitungen aus anderen Bausteinen Control Ausgänge sind Steuerleitungen in andere Bausteine Ein Baustein der das Zusammenarbeiten von anderen Bauseinen koordiniert. In Abhängigkeit der Eingänge werden die passenden Steuerleitungen geschaltet. Kombinatorisch? Sequentiell? Grundlagen der Rechnerarchitektur Logik und Arithmetik 43

14 Control Beispiel Store R1 4 Bit Register R1 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 SUB 0 0 Zero Ausgabe Store R1 Store R2 Zero Control Control soll folgenden Algorithmus implementieren: wenn R2 gerade und R1-R2=0, dann R1 = 0 wenn R2 ungerade und R1-R2!=0, dann R2 = R1-R2 sonst R1 = R1-R2 Anhand der Wahrheitstabelle wird dann die Schaltung gebaut. Rückgekoppelte Register haben immer einen wohldefinierten Zustand, da Register nur zum Clock Signal aktualisiert werden. Grundlagen der Rechnerarchitektur Logik und Arithmetik 44

15 Darstellung von Algorithmen Grundlagen der Rechnerarchitektur Einführung 45

16 Pseudo Code Darstellungen Elementaranweisungen Variablenzuweisungen, z.b.: x = 42 Arithmetik, z.b.: y = 10 x = (42 + y) * 20 Das Symbol = beinhaltet implizit eine zeitliche Abfolge, damit ist z.b. sinnvoll: x = x + 1 Abkürzende Schreibweise für voriges Konstrukt: x++ Allgemein: als Elementaranweisung betrachten wir jede Anweisung, die auf der betrachteten Abstraktionsebene nicht weiter sinnvoll in eine Folge von einfacheren Anweisungen unterteilbar ist. Grundlagen der Rechnerarchitektur Assembler 46

17 Felder Felder für den Zugriff auf den Speicher, z.b.: A[] Zugriff auf ite Speicherstelle: A[i] Bi Beispiel: il 0x0f00 : 14 A[0] 0x0f01 : 15 A[1] 0x0f02 : 42 A[2] 0x0f03 : 43 A[3] x0f0f : 255 A[15] Grundlagen der Rechnerarchitektur Assembler 47

18 Sequenz von Elementaranweisungen Jedes Programm beginnt an einer Stelle und terminiert (hoffentlich) irgendwann. Start Im Flussdiagramm ist Beginn und Ende des Programms mit denovalen Symbolen dargestellt. Im Beispiel also Start und Ende. Das einfachste Programm arbeitet einfach eine Sequenz von elementaren Anweisungen ab. Setze i auf i+1 Setze j auf 2*i usw. Im Flussdiagramm wird so eine Sequenz durch ein Rechteck dargestellt. Die Abarbeitungsrichtung des Programms wird durch die Pfeile gekennzeichnet. Ende Grundlagen der Rechnerarchitektur Assembler 48

19 If then else if then else am Beispiel: if(i<10) then <Code-Block 1> else <Code-Block 2> Ist i<10? ja nein Code Block 1 Code Block 2 Grundlagen der Rechnerarchitektur Einführung 49

20 Switch Statement Switch Statement am Beispiel: ja i=1? Code Block 1 switch(i) case 1: <Code-Block 1> case 2: <Code-Block 2>... defaut: <Code-Block n> nein i=2? nein... ja Code Block 2 Code Block n Grundlagen der Rechnerarchitektur Einführung 50

21 For Schleife For Schleife am Beispiel: for(i=0; i<10; i++) { <das innere der Schleife> } Bedeutet: Initialisiere i mit 0 Führe das innere der Schleife aus Erhöhe i um eins Wiederhole wenn immer noch i10 i<10 Start Setze i auf 0 Ist i<10? ja Innere der Schleife nein Erhöhe i um 1 Ende Grundlagen der Rechnerarchitektur Assembler 51

22 While Schleife While Schleife an Beispiel: Start i=0 while(i<10) { <das innere der Schleife> i++ } Bedeutet: Initialisiere i mit 0 Führe das innere der Schleife aus Erhöhe i um eins Wiederhole wenn immer noch i<10 Setze i auf 0 Ist i<10? ja Innere der Schleife Erhöhe i um 1 nein Ende Grundlagen der Rechnerarchitektur Assembler 52

23 Beispiel Gegeben seien die ganzzahligen Variablen n und m. Bestimme größtes k welches n k < m erfüllt: Grundlagen der Rechnerarchitektur Assembler 53

24 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 54

25 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: Multiplikator B: * Produkt: Grundlagen der Rechnerarchitektur Logik und Arithmetik 55

26 Maximale Länge des Ergebnisses Beobachtung: Multiplikand der Länge n Bits und Multiplikator der Länge m Bits ergibt Produkt einer Länge mit maximal n+m Bits. Grundlagen der Rechnerarchitektur Logik und Arithmetik 56

27 Das Verfahren als Algorithmus Start Beispiel 1001*0101: Addiere Multiplikand zum Produkt Beispiel für 4 Bit Zahlen Teste erstes 1 Multiplikator Bit * p Shifte Multiplikand ein Bit nach Links Shifte Multiplikator ein Bit nach Rechts ter nein Durchlauf? ja Ende Grundlagen der Rechnerarchitektur Logik und Arithmetik 57

28 Das Verfahren in Hardware Links Shift Demonstration ti mit 1001 * 0110 = Bit Multiplikand 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 1. Produkt = Produkt + Multiplikand 8 Bit Produkt Control Test 4. Anzahl hldurch läufe = 5 Ende Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 58

29 Beschleunigung des Verfahrens Beobachtung: Jeder Teilschritt verbrauche einen Taktzyklus. Wie viele Taktzyklen c dauert die Multiplikation von zwei n Bit Zahlen? Verbesserung: Parallele Operationen. Initiales Produktregister: Multiplikator 1 Addiere Start Teste 0 Shifte Links Shifte Rechts Multiplikation mit n Zyklen fertig. Fertig? ja Ende nein Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 59

30 Vorzeichenbehaftete Multiplikation Möglichkeit 1: Betrachte Multiplikand x und Multiplikator y. Sei x = x wenn x nicht negativ bzw. x = x sonst. Sei y = y wenn y nicht negativ bzw. y = y sonst. Berechne z = x * y. Ergebnis z = z wenn x und y nicht negativ oder x und y negativ, ansonsten ist z = z. Möglichkeit 2: Tausche im Verfahren der vorigen Folie das Produktregister mit einem vorzeichenbehafteten Rechts Shift Register aus. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 60

31 Weitere Beschleunigungen Eine ALU für jede Summation x 3 y x 2 y 4 Bit ALU c s 3 s 2 s 1 s 0 x 1 y x 0 y 3 y 2 y 1 x 0 y 0 Beobachtung: (Y) * (X) 4 Bit ALU c s 3 s 2 s 1 s Bit ALU c s 3 s 2 s 1 s (Z) z 7 z 6 z 5 z 4 z 3 z 2 z 1 z 0 Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 61

32 Weitere Beschleunigungen Parallele l Organisation i der ALUs in einen Binärbaum (keine weiteren Details hier) JedeALU Operationverbrauche einen Taktzyklus. Wieviele Taktzyklen dauert die Multiplikation von 32 Bit Zahlen? Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 62

33 Division Grundlagen der Rechnerarchitektur Logik und Arithmetik 63

34 Division nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a : b? Beispiel: Dividend Divisor Quotient : = Rest: Grundlagen der Rechnerarchitektur Logik und Arithmetik 64

35 Das Verfahren als Algorithmus Start Beispiel 1001 : 10: Subtrahiere Dvdt :Dvsr= Qtnt Divisor vom Rest : 10 = Teste < Rest Restauriere den alten Shifte Quotient nach Rest. Shifte Quotient Links und setze nach Links und setze dessen LSB= dessen LSB= Shifte Divisor i ein Bit 001 nach Rechts ter nein 01 Durchlauf? -00 Beispiel für -- ja 4 Bit Zahlen 1 Rest Ende Grundlagen der Rechnerarchitektur Logik und Arithmetik 65

36 Das Verfahren in Hardware Rechts Shift Demonstration ti mit 1001 : 0010 = 100 Rest 1 8 Bit Divisor 3. Rechts Shift Links Shift 4 Bit Quotient 8 Bit ALU 2. Links Shift; LSB=Rest wurde verändert 1. Rest=Rest Divisor, wenn Divisor < Rest 4. Anzahl Durchläufe = 6 Ende 8 Bit Rest Control Test Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 66

37 Beschleunigung des Verfahrens Analog zur Multiplikation Einsparung von Taktzyklen durch parallele Operationen Rd Reduziert wie bid bei der Multiplikation die ALU Größe und Anzahl hlregister Skizze (ohne Details) Kann man analog zur Multiplikation durch viele parallel arbeitende ALUs die Geschwindigkeit weiter steigern? Erinnerung: Multiplikation mit parallel arbeitenden ALUs Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 67

38 Vorzeichenbehaftete Division Umgang mit dem Quotienten (analog wie für Multiplikation): Betrachte Divisor x und Dividend y (also: Quotient z von y:x). Si Sei x = x wenn x nicht negativ iht ti bzw. x = x sonst. Sei y = y wenn y nicht negativ bzw. y = y sonst. Berechne Quotient z von y : x. Ergebnis z = z wenn x und y nicht negativ oder x und y negativ, ansonsten ist z = z. Und was ist das Vorzeichen des Rests? Beispiel: Dividend : Divisor Quotient Rest Quotient * Divisor + Rest = Dividend 7 : * = 7-7 : * 2 1 = -7 7 : * = 7-7 : * -2 1 = -7 Also: Vorzeichen des Rests ist Vorzeichen des Dividend. Grundlagen der Rechnerarchitektur Logik und Arithmetik 68

39 Gleitkommazahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 69

40 Reelle Gleitkommazahlen Beispiel Kleine Zahl Große Zahl Wissenschaftliche Darstellung (eine Ziffer rechts des Kommas) Normalisierte Darstellung (keine führende Null) Grundlagen der Rechnerarchitektur Logik und Arithmetik 70

41 Binäre Gleitkommazahlen Was ist der Dezimalwert der binären Gleitkommazahl 101,1001? Was bedeutet 11, ? Also: mit 2 i multiplizieren verschiebt das Komma um i Stellen nach rechts. Analog: mit 2 i multiplizieren verschiebt das Komma um i Stellen nach links. Grundlagen der Rechnerarchitektur Logik und Arithmetik 71

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2 3.9 Subtraktion 155 3.9 Subtraktion Allgemein Bezeichnungen: Minuend - Subtrahend = Differenz Die Subtraktion zweier Zahlen wird stellenweise ausgeführt. Dabei kann es vorkommen, dass eine größere Zahl

Mehr

Multiplikationschip. Multiplikation. Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95. Oberwiesenstr.

Multiplikationschip. Multiplikation. Beitrag zu Werkstattunterricht Multiplikation Allgemeine Didaktik - Seminar SS95. Oberwiesenstr. Informationsblatt für die Lehrkraft Multiplikation Multiplikationschip Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95 Autor: Ernesto Ruggiano Oberwiesenstr. 42 85 Zürich

Mehr

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir

Mehr

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 6.1: Multiplikation von positiven Dualzahlen Berechnen

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010 Das negative Zweierkomplementzahlensystem Ines Junold 23. Februar 2010 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das konventionelle Zweierkomplement 4 2.1 Definition.......................................

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Motivation und Überblick

Motivation und Überblick Motivation und Überblick Drei große Bereiche der Vorlesung: Darstellung von Zahlen in Rechnern Verarbeitung von Binärdaten auf der Ebene digitaler Schaltungen Programmierung auf Maschinenebene und relativ

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Diskrete Strukturen. Arbeitsblatt 1: Zahlen (zu Übungsblatt 1)

Diskrete Strukturen. Arbeitsblatt 1: Zahlen (zu Übungsblatt 1) Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2011 Arbeitsblatt 1 16. August 2011 Diskrete Strukturen

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

3. Grundanweisungen in Java

3. Grundanweisungen in Java 3. Grundanweisungen in Java Die Grundanweisungen entsprechen den Prinzipien der strukturierten Programmierung 1. Zuweisung 2. Verzweigungen 3. Wiederholungen 4. Anweisungsfolge (Sequenz) Die Anweisungen

Mehr

5 Verarbeitungsschaltungen

5 Verarbeitungsschaltungen 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Programmieren I. Kapitel 5. Kontrollfluss

Programmieren I. Kapitel 5. Kontrollfluss Programmieren I Kapitel 5. Kontrollfluss Kapitel 5: Kontrollfluss Ziel: Komplexere Berechnungen im Methodenrumpf Ausdrücke und Anweisungen Fallunterscheidungen (if, switch) Wiederholte Ausführung (for,

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum: Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris VHDL VHDL Akronym für Very High-Speed Integrated Circuit Hardware Description Language

Mehr

Lösung 2. Übungsblatt

Lösung 2. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985

Mehr

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014

Mehr

Algorithmen zur Datenanalyse in C++

Algorithmen zur Datenanalyse in C++ Algorithmen zur Datenanalyse in C++ Hartmut Stadie 16.04.2012 Algorithmen zur Datenanalyse in C++ Hartmut Stadie 1/ 39 Einführung Datentypen Operatoren Anweisungssyntax Algorithmen zur Datenanalyse in

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 30. Oktober 2013 1/35 1 Boolesche

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Rechner-Arithmetik Addition (Wiederholung) Multiplikation Wallace-Tree Subtraktion Addition negativer Zahlen Gleitkommazahlen-Arithmetik

Mehr

Lösungsvorschlag zu 1. Übung

Lösungsvorschlag zu 1. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

1 Aufgaben 1.1 Objektorientiert: ("extended-hamster") Sammel-Hamster

1 Aufgaben 1.1 Objektorientiert: (extended-hamster) Sammel-Hamster 1 Aufgaben 1.1 Objektorientiert: ("extended-hamster") Sammel-Hamster Aufgabe: Bearbeitungszeit: ca. 1/4 Std) Schreiben Sie ein "objektorientiertes" Programm ("CuB_05_1") für das Sammeln der Körner. Aufgabenbeschreibung:

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Computer Arithmetik. Computer Arithmetik Allgemein

Computer Arithmetik. Computer Arithmetik Allgemein Vortrag von René Grohmann und Mirwais Turjalei, 22.11.2000 Computer Arithmetik Computer Arithmetik Allgemein Die ALU: Die Alu ist die Einheit im Computer, die dazu bestimmt ist arithmetische und logische

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

1 Aufgaben 1.1 Umgebungsvariable setzen: CLASSPATH

1 Aufgaben 1.1 Umgebungsvariable setzen: CLASSPATH 1 Aufgaben 1.1 Umgebungsvariable setzen: CLASSPATH Die Umgebungsvariable CLASSPATH kann im Hamster-Simulator sowohl für Compiler als auch für die Ausführung des Hamster-Programms gesetzt werden: Hierdurch

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

Laborübung 4. Zustandsautomaten (Finite State Machines)

Laborübung 4. Zustandsautomaten (Finite State Machines) Laborübung 4 Zustandsautomaten (Finite State Machines) Für den Entwurf und die Beschreibung von digitalen Systemen bilden Zustandsautomaten (Finite State Maschines; FSMs) eine wesentliche Grundlage. Mit

Mehr

Praktikum zur Vorlesung Einführung in die Programmierung WS 14/15 Blatt 3

Praktikum zur Vorlesung Einführung in die Programmierung WS 14/15 Blatt 3 Michael Jugovac Dominik Kopczynski Jan Quadflieg Till Schäfer Stephan Windmüller Dortmund, den 30. Oktober 2014 Praktikum zur Vorlesung Einführung in die Programmierung WS 14/15 Blatt 3 Es können 12 (+5

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

Cls. Der Aufbau der Schaltung geschieht mit dem HWPRAK-Altera-Board, das in diesem Versuch nun aus den folgenden Komponenten besteht:

Cls. Der Aufbau der Schaltung geschieht mit dem HWPRAK-Altera-Board, das in diesem Versuch nun aus den folgenden Komponenten besteht: 9 Versuch Nr. 7 9.1 Anmerkungen zum Versuch Nr. 7 In den letzten drei Versuchen haben Sie die wichtigsten Bestandteile eines Rechners kennen gelernt, in der Software MAX+PlusII eingegeben und in den Baustein

Mehr

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines

Mehr

Vorwort 8. Kap. 1: Grundlagen 10

Vorwort 8. Kap. 1: Grundlagen 10 Inhaltsverzeichnis Vorwort 8 Kap. 1: Grundlagen 10 1.1 Analogie zwischen der Spieluhr und einem Prozessor 10 1.2 Unterschiede zwischen Mikroprozessor und Spieluhr 11 1.3 Die Programmierung eines Mikroprozessors

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Grundzüge der Informatik Zahlendarstellungen (7)

Grundzüge der Informatik Zahlendarstellungen (7) Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda e0225646@student.tuwien.ac.at Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1

Mehr

Welche Informatik-Kenntnisse bringen Sie mit?

Welche Informatik-Kenntnisse bringen Sie mit? Welche Informatik-Kenntnisse bringen Sie mit? So gehen Sie vor! Lösen Sie die Aufgaben der Reihe nach von 1 bis 20, ohne das Lösungsblatt zur Hilfe zu nehmen. Der Schwierigkeitsgrad der Aufgaben nimmt

Mehr

12 == 12 true 12 == 21 false 4 === 7 true 4 === "vier" false 4 === 4.0 false 12!= 13 true 12!== 12 false 12!== 12.0 true. 1 < 3 true 3 < 1 false

12 == 12 true 12 == 21 false 4 === 7 true 4 === vier false 4 === 4.0 false 12!= 13 true 12!== 12 false 12!== 12.0 true. 1 < 3 true 3 < 1 false Die if-anweisung if (Bedingung 1) { Code 1 else { Code 2 ; Anm.1: Das ; kann entfallen, da innerhalb { ein sog. Codeblock geschrieben wird. Anm.2: Es gibt noch andere Schreibweisen, aber wir wollen uns

Mehr

2. Algorithmenbegriff

2. Algorithmenbegriff 2. Algorithmenbegriff Keine Algorithmen: Anleitungen, Kochrezepte, Wegbeschreibungen,... Algorithmus: Berechnungsvorschrift, die angibt, wie durch Ausführung bestimmter Elementaroperationen aus Eingabegrößen

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 3 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Semestralklausur Einführung in Computer Microsystems

Semestralklausur Einführung in Computer Microsystems Semestralklausur Einführung in Computer Microsystems 07. Juli 2008 Dr.-Ing. Wolfgang Heenes Name (Nachname, Vorname) Matrikelnummer Unterschrift Prüfung Bitte ankreuzen Anzahl abgegebene Zusatzblätter:

Mehr

Flussdiagramm / Programmablaufplan (PAP)

Flussdiagramm / Programmablaufplan (PAP) Flussdiagramm / Programmablaufplan (PAP) Basissysmbole Grenzstelle (Anfang, Zwischenhalt oder Ende des Programms/Algorithmus) Verbindung Zur Verdeutlichung der Ablaufrichtung werden Linien mit einer Pfeilspitze

Mehr

Zahlensysteme. Formale Methoden der Informatik WiSe 2008/2009 Folie 1 (von 54)

Zahlensysteme. Formale Methoden der Informatik WiSe 2008/2009 Folie 1 (von 54) Zahlensysteme Formale Methoden der Informatik WiSe 28/29 Folie (von 54) Teil I: Zahlensysteme. Einführung und Zahlensysteme 2. Zahlensysteme / Algorithmik 3. Zahlendarstellung im Rechner Franz-Josef Radermacher,

Mehr

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011 Technische Universität Graz Institut tfür Angewandte Informationsverarbeitung und Kommunikationstechnologie Rechnerorganisation 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2003. 1 Ausblick. Erste

Mehr

Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 2

Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 2 Fakultät Verkehrswissenschaften Friedrich List, Professur für Verkehrsbetriebslehre und Logistik Modul Entscheidungsunterstützung in der Logistik Einführung in die Programmierung mit C++ Übung 2 SS 2016

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Unterlagen. CPP-Uebungen-08/

Unterlagen.  CPP-Uebungen-08/ Unterlagen http://projects.eml.org/bcb/people/ralph/ CPP-Uebungen-08/ http://www.katjawegner.de/lectures.html Kommentare in C++ #include /* Dies ist ein langer Kommentar, der über zwei Zeilen

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr

Abschlussklausur Informatik, SS 2012

Abschlussklausur Informatik, SS 2012 Abschlussklausur Informatik, SS 202 09.07.202 Name, Vorname: Matr.-Nr.: Unterschrift: Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg

Mehr

Operatoren (1) Operatoren (2)

Operatoren (1) Operatoren (2) Operatoren (1) Binäre Operatoren + - * / % < = > & ^ > && Addition Subtraktion Multiplikation Division Divisionsrest Vergl. auf kleiner Vergl. auf kleiner oder gleich Vergl. auf gleich Vergl.

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean 01.11.05 1 Noch für heute: 01.11.05 3 primitie Datentypen in JAVA Primitie Datentypen Pseudocode Name Speichergröße Wertgrenzen boolean 1 Byte false true char 2 Byte 0 65535 byte 1 Byte 128 127 short 2

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Logische und mathematische Grundlagen Digitale Daten Computerprogramme als Binärdaten von Neumann-Rechnerarchitektur Einführung in Maschinen-Code Speicherorganisation Betriebssysteme

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

Von-Neumann-Architektur

Von-Neumann-Architektur Von-Neumann-Architektur Bisher wichtig: Konstruktionsprinzip des Rechenwerkes und Leitwerkes. Neu: Größerer Arbeitsspeicher Ein- und Ausgabewerk (Peripherie) Rechenwerk (ALU) Steuerwerk (CU) Speicher...ppppp...dddddd..

Mehr

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt 5 1.1: VHDL 28./29.05.2009

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt 5 1.1: VHDL 28./29.05.2009 Übungen zu Architektur Eingebetteter Systeme Blatt 5 28./29.05.2009 Teil 1: Grundlagen 1.1: VHDL Bei der Erstellung Ihres Softcore-Prozessors mit Hilfe des SOPC Builder hatten Sie bereits erste Erfahrungen

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr