Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Größe: px
Ab Seite anzeigen:

Download "Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31"

Transkript

1 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

2 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur von den Eingängen ab. Wieschon gezeigt, ist dies durch eine Wahrheits tabelle beschreibbar. Ausgänge hängen von den Eingängen ab und dem aktuellen Zustand des Bausteins ab. Wie kann man dieses Verhalten beschreiben? Kombinatorische Schaltungen Sequentielle Schaltungen Grundlagen der Rechnerarchitektur Logik und Arithmetik 32

3 Zustandsautomat Ein Beispiel: Bi il Eingabe 01 / Ausgabe 00 Eingabe 00 / Ausgabe 11 Eingabe 10 / Ausgabe 01 Eingabe 11 / Ausgabe 10 Zustand 00 Bit Eing gabe Eingabe 11 / Ausgabe 00 Zustand 01 2 Bit Ausga 2 be Zustand 10 Grundlagen der Rechnerarchitektur Logik und Arithmetik 33

4 Speichern von Zuständen Speichern eines Bits am Beispiel R S Latch (S=Set, R=Reset) Beobachtung: das Speichern von Zustand erfordert Rückkopplungen (d.h. Ausgang ist wieder Eingang) in der Schaltung. R S altes Q neues Q Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 34

5 Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q R S C D altes Q neues Q Weitere Details zu Latches und Flip Flops Flops in der Vorlesung Digitaltechnik. Grundlagen der Rechnerarchitektur Logik und Arithmetik 35

6 Beispiel Wirwollen das Ergebnis einer kombinatorischen Schaltung in einem D Latch speichern. Q soll wohldefiniert entweder den Inhalt vor oder nach der Berechnung speichern. Kombinatorische Schaltung Q n Bit Eingang Ergebnis istein Bit C (Clock) D (Daten) D Latch NOT(Q) Problem: Wann liegt das Ergebnis Bit stabil tbilan D an? Zeit Bildquelle: Symbole kopiert aus David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 36

7 Lösung: Taktung Wirwollen das Ergebnis einer kombinatorischen Schaltung in einem D Latch speichern. Q soll wohldefiniert entweder den Inhalt vor oder nach der Berechnung speichern. Kombinatorische Schaltung Q n Bit Eingang Ergebnis istein Bit C (Clock) D (Daten) D Latch NOT(Q) Letztes Clock Signal Nächstes Clock Signal Zeit Takt Zyklus Bildquelle: Symbole kopiert aus David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 37

8 Logische Bausteine Blockschaltdiagramme ltdi Grundlagen der Rechnerarchitektur Logik und Arithmetik 38

9 Bausteine als Black Box Wir haben jetzt einige Basisbausteine kennen gelernt. In dieser Vorlesung sind wir mit Blockschaltbildern in der Regel eine Abstaktionsebene höher. Die betrachteten Bausteine sind Kästen mit Eingangsleitungen und Ausgangsleitungen. Die Leitungen können entweder Daten transportieren (Datenleitungen) oder Steuersignale (Steuerleitungen). Wie die Bausteine der Blockschaltbilder intern mit Grundbausteinen aufgebaut sind und wie die Taktung der einzelnen Bausteine genau abläuft betrachten wir in dieser Vorlesung nicht ihtweiter. Mehr Mhdazu kann man in der Vorlesung Digitaltechnik it ik lernen. Eingansleitungen Bemerkung: In Blockschaltbildern ltbild wird das für sequentielle Bausteine erforderliche Clock Signal häufig der Übersicht halber weg gelassen. Baustein Ausgansleitungen Beispiel eines abstrakten Bausteins Grundlagen der Rechnerarchitektur Logik und Arithmetik 39

10 Verschaltung von Bausteinen Verbinden von Bauelementen Bus (lassen häufig die Markierung n Bits weg) n Bits Einzelne Leitung Datenflussrichtung Ausgabe eines logischen Bausteins Eingabe eines logischen Bausteins Kreuzungen und Verbindungen Bi Beispiel il Baustein A Leitungen kreuzen sich, sind aber nicht verbunden Verbindungen außerhalb der Leitungsendpunkte sind durch einen Punkt gekennzeichnet. Baustein B Baustein C Grundlagen der Rechnerarchitektur Logik und Arithmetik 40

11 Arithmetische, logische Einheit (ALU) ALU Operation (k) Angabe in Klammern istdie Anzahl Bits. A (n) OR Beispiel Funktionen AND B (n) ALU CarryOut (1) Zero (1) Result (n) Overflow (1) Ggf. ist die ALU auf eine Operation festgelegt. Dann Entfällt der Eingang und ALU wird mit dem Namen der Operation ersetzt. NOT Addition Subtraktion Vergleich Kombinatorisch? Sequentiell? Grundlagen der Rechnerarchitektur Logik und Arithmetik 41

12 Register und Shift Register Eingang (n) Speichert n Bits Reset (1) Load (1) Shift (1) Ausgang (n) Kombinatorisch? Sequentiell? Grundlagen der Rechnerarchitektur Logik und Arithmetik 42

13 Control Eingänge sind Datenleitungen aus anderen Bausteinen Control Ausgänge sind Steuerleitungen in andere Bausteine Ein Baustein der das Zusammenarbeiten von anderen Bauseinen koordiniert. In Abhängigkeit der Eingänge werden die passenden Steuerleitungen geschaltet. Kombinatorisch? Sequentiell? Grundlagen der Rechnerarchitektur Logik und Arithmetik 43

14 Control Beispiel Store R1 4 Bit Register R1 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 SUB 0 0 Zero Ausgabe Store R1 Store R2 Zero Control Control soll folgenden Algorithmus implementieren: wenn R2 gerade und R1-R2=0, dann R1 = 0 wenn R2 ungerade und R1-R2!=0, dann R2 = R1-R2 sonst R1 = R1-R2 Anhand der Wahrheitstabelle wird dann die Schaltung gebaut. Rückgekoppelte Register haben immer einen wohldefinierten Zustand, da Register nur zum Clock Signal aktualisiert werden. Grundlagen der Rechnerarchitektur Logik und Arithmetik 44

15 Darstellung von Algorithmen Grundlagen der Rechnerarchitektur Einführung 45

16 Pseudo Code Darstellungen Elementaranweisungen Variablenzuweisungen, z.b.: x = 42 Arithmetik, z.b.: y = 10 x = (42 + y) * 20 Das Symbol = beinhaltet implizit eine zeitliche Abfolge, damit ist z.b. sinnvoll: x = x + 1 Abkürzende Schreibweise für voriges Konstrukt: x++ Allgemein: als Elementaranweisung betrachten wir jede Anweisung, die auf der betrachteten Abstraktionsebene nicht weiter sinnvoll in eine Folge von einfacheren Anweisungen unterteilbar ist. Grundlagen der Rechnerarchitektur Assembler 46

17 Felder Felder für den Zugriff auf den Speicher, z.b.: A[] Zugriff auf ite Speicherstelle: A[i] Bi Beispiel: il 0x0f00 : 14 A[0] 0x0f01 : 15 A[1] 0x0f02 : 42 A[2] 0x0f03 : 43 A[3] x0f0f : 255 A[15] Grundlagen der Rechnerarchitektur Assembler 47

18 Sequenz von Elementaranweisungen Jedes Programm beginnt an einer Stelle und terminiert (hoffentlich) irgendwann. Start Im Flussdiagramm ist Beginn und Ende des Programms mit denovalen Symbolen dargestellt. Im Beispiel also Start und Ende. Das einfachste Programm arbeitet einfach eine Sequenz von elementaren Anweisungen ab. Setze i auf i+1 Setze j auf 2*i usw. Im Flussdiagramm wird so eine Sequenz durch ein Rechteck dargestellt. Die Abarbeitungsrichtung des Programms wird durch die Pfeile gekennzeichnet. Ende Grundlagen der Rechnerarchitektur Assembler 48

19 If then else if then else am Beispiel: if(i<10) then <Code-Block 1> else <Code-Block 2> Ist i<10? ja nein Code Block 1 Code Block 2 Grundlagen der Rechnerarchitektur Einführung 49

20 Switch Statement Switch Statement am Beispiel: ja i=1? Code Block 1 switch(i) case 1: <Code-Block 1> case 2: <Code-Block 2>... defaut: <Code-Block n> nein i=2? nein... ja Code Block 2 Code Block n Grundlagen der Rechnerarchitektur Einführung 50

21 For Schleife For Schleife am Beispiel: for(i=0; i<10; i++) { <das innere der Schleife> } Bedeutet: Initialisiere i mit 0 Führe das innere der Schleife aus Erhöhe i um eins Wiederhole wenn immer noch i10 i<10 Start Setze i auf 0 Ist i<10? ja Innere der Schleife nein Erhöhe i um 1 Ende Grundlagen der Rechnerarchitektur Assembler 51

22 While Schleife While Schleife an Beispiel: Start i=0 while(i<10) { <das innere der Schleife> i++ } Bedeutet: Initialisiere i mit 0 Führe das innere der Schleife aus Erhöhe i um eins Wiederhole wenn immer noch i<10 Setze i auf 0 Ist i<10? ja Innere der Schleife Erhöhe i um 1 nein Ende Grundlagen der Rechnerarchitektur Assembler 52

23 Beispiel Gegeben seien die ganzzahligen Variablen n und m. Bestimme größtes k welches n k < m erfüllt: Grundlagen der Rechnerarchitektur Assembler 53

24 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 54

25 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: Multiplikator B: * Produkt: Grundlagen der Rechnerarchitektur Logik und Arithmetik 55

26 Maximale Länge des Ergebnisses Beobachtung: Multiplikand der Länge n Bits und Multiplikator der Länge m Bits ergibt Produkt einer Länge mit maximal n+m Bits. Grundlagen der Rechnerarchitektur Logik und Arithmetik 56

27 Das Verfahren als Algorithmus Start Beispiel 1001*0101: Addiere Multiplikand zum Produkt Beispiel für 4 Bit Zahlen Teste erstes 1 Multiplikator Bit * p Shifte Multiplikand ein Bit nach Links Shifte Multiplikator ein Bit nach Rechts ter nein Durchlauf? ja Ende Grundlagen der Rechnerarchitektur Logik und Arithmetik 57

28 Das Verfahren in Hardware Links Shift Demonstration ti mit 1001 * 0110 = Bit Multiplikand 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 1. Produkt = Produkt + Multiplikand 8 Bit Produkt Control Test 4. Anzahl hldurch läufe = 5 Ende Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 58

29 Beschleunigung des Verfahrens Beobachtung: Jeder Teilschritt verbrauche einen Taktzyklus. Wie viele Taktzyklen c dauert die Multiplikation von zwei n Bit Zahlen? Verbesserung: Parallele Operationen. Initiales Produktregister: Multiplikator 1 Addiere Start Teste 0 Shifte Links Shifte Rechts Multiplikation mit n Zyklen fertig. Fertig? ja Ende nein Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 59

30 Vorzeichenbehaftete Multiplikation Möglichkeit 1: Betrachte Multiplikand x und Multiplikator y. Sei x = x wenn x nicht negativ bzw. x = x sonst. Sei y = y wenn y nicht negativ bzw. y = y sonst. Berechne z = x * y. Ergebnis z = z wenn x und y nicht negativ oder x und y negativ, ansonsten ist z = z. Möglichkeit 2: Tausche im Verfahren der vorigen Folie das Produktregister mit einem vorzeichenbehafteten Rechts Shift Register aus. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 60

31 Weitere Beschleunigungen Eine ALU für jede Summation x 3 y x 2 y 4 Bit ALU c s 3 s 2 s 1 s 0 x 1 y x 0 y 3 y 2 y 1 x 0 y 0 Beobachtung: (Y) * (X) 4 Bit ALU c s 3 s 2 s 1 s Bit ALU c s 3 s 2 s 1 s (Z) z 7 z 6 z 5 z 4 z 3 z 2 z 1 z 0 Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 61

32 Weitere Beschleunigungen Parallele l Organisation i der ALUs in einen Binärbaum (keine weiteren Details hier) JedeALU Operationverbrauche einen Taktzyklus. Wieviele Taktzyklen dauert die Multiplikation von 32 Bit Zahlen? Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 62

33 Division Grundlagen der Rechnerarchitektur Logik und Arithmetik 63

34 Division nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a : b? Beispiel: Dividend Divisor Quotient : = Rest: Grundlagen der Rechnerarchitektur Logik und Arithmetik 64

35 Das Verfahren als Algorithmus Start Beispiel 1001 : 10: Subtrahiere Dvdt :Dvsr= Qtnt Divisor vom Rest : 10 = Teste < Rest Restauriere den alten Shifte Quotient nach Rest. Shifte Quotient Links und setze nach Links und setze dessen LSB= dessen LSB= Shifte Divisor i ein Bit 001 nach Rechts ter nein 01 Durchlauf? -00 Beispiel für -- ja 4 Bit Zahlen 1 Rest Ende Grundlagen der Rechnerarchitektur Logik und Arithmetik 65

36 Das Verfahren in Hardware Rechts Shift Demonstration ti mit 1001 : 0010 = 100 Rest 1 8 Bit Divisor 3. Rechts Shift Links Shift 4 Bit Quotient 8 Bit ALU 2. Links Shift; LSB=Rest wurde verändert 1. Rest=Rest Divisor, wenn Divisor < Rest 4. Anzahl Durchläufe = 6 Ende 8 Bit Rest Control Test Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 66

37 Beschleunigung des Verfahrens Analog zur Multiplikation Einsparung von Taktzyklen durch parallele Operationen Rd Reduziert wie bid bei der Multiplikation die ALU Größe und Anzahl hlregister Skizze (ohne Details) Kann man analog zur Multiplikation durch viele parallel arbeitende ALUs die Geschwindigkeit weiter steigern? Erinnerung: Multiplikation mit parallel arbeitenden ALUs Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 67

38 Vorzeichenbehaftete Division Umgang mit dem Quotienten (analog wie für Multiplikation): Betrachte Divisor x und Dividend y (also: Quotient z von y:x). Si Sei x = x wenn x nicht negativ iht ti bzw. x = x sonst. Sei y = y wenn y nicht negativ bzw. y = y sonst. Berechne Quotient z von y : x. Ergebnis z = z wenn x und y nicht negativ oder x und y negativ, ansonsten ist z = z. Und was ist das Vorzeichen des Rests? Beispiel: Dividend : Divisor Quotient Rest Quotient * Divisor + Rest = Dividend 7 : * = 7-7 : * 2 1 = -7 7 : * = 7-7 : * -2 1 = -7 Also: Vorzeichen des Rests ist Vorzeichen des Dividend. Grundlagen der Rechnerarchitektur Logik und Arithmetik 68

39 Gleitkommazahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 69

40 Reelle Gleitkommazahlen Beispiel Kleine Zahl Große Zahl Wissenschaftliche Darstellung (eine Ziffer rechts des Kommas) Normalisierte Darstellung (keine führende Null) Grundlagen der Rechnerarchitektur Logik und Arithmetik 70

41 Binäre Gleitkommazahlen Was ist der Dezimalwert der binären Gleitkommazahl 101,1001? Was bedeutet 11, ? Also: mit 2 i multiplizieren verschiebt das Komma um i Stellen nach rechts. Analog: mit 2 i multiplizieren verschiebt das Komma um i Stellen nach links. Grundlagen der Rechnerarchitektur Logik und Arithmetik 71

Speichern von Zuständen

Speichern von Zuständen Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 R S C D altes Q neues Q 0 0 0 0 0 1 0 1 0 0 1

Mehr

Carry Lookahead Adder

Carry Lookahead Adder Carry Lookahead Adder Mittels der Generate und Propagate Ausdrücke lässt ich dann für jede Stelle i der Carry (Übertrag) für die Stelle i+1 definieren: Für einen 4 Stelligen Addierer ergibt sich damit:

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle # A B C D OK m9 + m11 1 0 1 P1 m7 + m15 1 1 1 P2 m11 + m15 1 1 1 P3 m0 + m1 + m4 + m5 0 0 P4 m0 + m1 + m8 + m9 0 0 P5 m4 + m5 + m6 + m7 0

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Logische Bausteine Addierwerke Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Addition eines einzigen Bits Eingang Ausgang a b CarryIn CarryOut Sum 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Das Verfahren in Hardware

Das Verfahren in Hardware Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = 110110 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

N Bit Darstellung von Gleitkommazahlen

N Bit Darstellung von Gleitkommazahlen N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für )

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Der Zahlenformatstandard IEEE 754

Der Zahlenformatstandard IEEE 754 Der Zahlenformatstandard IEEE 754 Single Precision Double Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Bit Aufteilungen

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023)

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023) IEEE 754 Encoding Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Single Precision (Bias=127) Double Precision (Bias=1023) Dargestelltes Objekt Exponent

Mehr

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden.

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden. 70 Arithmetische Schaltungen Multiplikation vorzeichenbehafteter Zahlen Zur Multiplikation vorzeichenbehafteter Zahlen (er-komplement) kann auf die Schaltung für vorzeichenlose Multiplikation zurückgegriffen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

3.8 Sequentieller Multiplizierer 159

3.8 Sequentieller Multiplizierer 159 .8 Sequentieller Multiplizierer 59 Nachfolgende Abbildung zeigt den (unvollständigen) Aufbau einer Schaltung zur Implementierung des gezeigten Multiplikationsverfahrens. b) Vervollständigen Sie die Schaltung

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Computerarithmetik (15b)

Computerarithmetik (15b) Computerarithmetik (15b) Dazugehöriges Beispiel: Schleife Schritt Multiplikator Multiplikand Produkt 0 Anfangswerte 0011 0000 0010 0000 0000 1 1a: 1 -> Prod. = Prod. + Mcand 0011 0000 0010 0000 0010 2:

Mehr

Clevere Algorithmen programmieren

Clevere Algorithmen programmieren ClevAlg 2017 Arithmetische Operationen Clevere Algorithmen programmieren Dennis Komm, Jakub Závodný, Tobias Kohn 27. September 2017 Addition zweier Zahlen Addition von Zahlen Wir stellen Zahlen als Strings

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

6. Zahlendarstellungen und Rechnerarithmetik

6. Zahlendarstellungen und Rechnerarithmetik 6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

4. Mikroprogrammierung (Firmware)

4. Mikroprogrammierung (Firmware) 4. Mikroprogrammierung (Firmware) 4. Ein Mikroprogramm-gesteuerter Computer 4.2 Mikroprogramm-Beispiel: Multiplikation 4.3 Interpretation von Maschinenbefehlen durch ein Mikroprogramm 4. Mikroprogrammierung

Mehr

2. Vorzeichenbehaftete und vorzeichenlose Zahlen. 3.3 Beschleunigen der ganzzahligen Multiplikation - Booth s Algorithmus

2. Vorzeichenbehaftete und vorzeichenlose Zahlen. 3.3 Beschleunigen der ganzzahligen Multiplikation - Booth s Algorithmus Algorithmen II Inhalt Inhalt 1. Einleitung 2. Vorzeichenbehaftete und vorzeichenlose Zahlen 3. Grundlagen der ganzzahligen Arithmetik 3.1 Addition und Subtraktion 3.2 Multiplikation und Division 3.3 Beschleunigen

Mehr

N Bit Binärzahlen. Stelle: Binär-Digit:

N Bit Binärzahlen. Stelle: Binär-Digit: N Bit Binärzahlen N Bit Binärzahlen, Beispiel 16 Bit: Stelle: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binär-Digit: 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 Least Significant Bit (LSB) und Most Significant Bit (MSB)

Mehr

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2 3.9 Subtraktion 155 3.9 Subtraktion Allgemein Bezeichnungen: Minuend - Subtrahend = Differenz Die Subtraktion zweier Zahlen wird stellenweise ausgeführt. Dabei kann es vorkommen, dass eine größere Zahl

Mehr

Allgemeine Lösung mittels Hazard Detection Unit

Allgemeine Lösung mittels Hazard Detection Unit Allgemeine Lösung mittels Hazard Detection Unit Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 83

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 6.1: Multiplikation von positiven Dualzahlen Berechnen

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Informatik I Modul 5: Rechnerarithmetik (2)

Informatik I Modul 5: Rechnerarithmetik (2) Herbstsemester 2, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 5: Rechnerarithmetik (2) 2 Burkhard Stiller M5 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit

Mehr

Multiplikationschip. Multiplikation. Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95. Oberwiesenstr.

Multiplikationschip. Multiplikation. Beitrag zu Werkstattunterricht Multiplikation Allgemeine Didaktik - Seminar SS95. Oberwiesenstr. Informationsblatt für die Lehrkraft Multiplikation Multiplikationschip Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95 Autor: Ernesto Ruggiano Oberwiesenstr. 42 85 Zürich

Mehr

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir

Mehr

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2 .9 Subtraktion 55.9 Subtraktion Allgemein Bezeichnungen: Minuend - Subtrahend = Differenz Die Subtraktion zweier Zahlen wird stellenweise ausgeführt. Dabei kann es vorkommen, dass eine größere Zahl von

Mehr

2 Initialisierung clk_mkand= clk_produkt= multiplexer= init/>>1= 6 Schieben clk_mkand= clk_produkt= multiplexer= init/>>1=

2 Initialisierung clk_mkand= clk_produkt= multiplexer= init/>>1= 6 Schieben clk_mkand= clk_produkt= multiplexer= init/>>1= Arithmetische Schaltungen c) Vervollständigen Sie nachfolgend abgebildeten Zustands-Automaten so, dass er den Multiplizierer wie gewünscht steuert. Nehmen Sie an, dass Sie zur Detektion des Schleifen-Abbruchs

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Hard- und Softwaretechnik. Schieberegister. Andreas Zbinden. Gewerblich-Industrielle Berufsschule Bern, GIBB

Hard- und Softwaretechnik. Schieberegister. Andreas Zbinden. Gewerblich-Industrielle Berufsschule Bern, GIBB 4. Semester Hard- und Softwaretechnik Schieberegister Andreas Zbinden Gewerblich-Industrielle Berufsschule Bern, GIBB Zusammenfassung In diesem Dokument werden die Grundlagen von Schieberegistern und von

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Klausur zur Vorlesung. Grundlagen der Technischen Informatik (GTI) und. Grundlagen der Rechnerarchitektur (GRA)

Klausur zur Vorlesung. Grundlagen der Technischen Informatik (GTI) und. Grundlagen der Rechnerarchitektur (GRA) Klausur zur Vorlesung Grundlagen der Technischen Informatik (GTI) und Grundlagen der Rechnerarchitektur (GRA) Prof. Marco Platzner Fachgebiet Technische Informatik Universität Paderborn.3.2008 Teil : (GTI)

Mehr

3 Verarbeitung und Speicherung elementarer Daten

3 Verarbeitung und Speicherung elementarer Daten 3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Teil V. Programmierbare Logische Arrays (PLAs)

Teil V. Programmierbare Logische Arrays (PLAs) Teil V Programmierbare Logische Arrays (PLAs) 1 Aufbau von PLAs Programmierbares Logisches Array (PLA): Programmierbarer Einheitsbaustein aufgebaut als ein Gitter (Array) von Basisbausteinen (Zellen).

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Multiplexer und Schieberegister

Multiplexer und Schieberegister Hard- und Softwaretechnik Schaltwerke Multiplexer und Schieberegister Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Multiplexer, Demultiplexer 2 2 Schieberegister 6 2.1

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

5. Aufgabenblatt mit Lösungsvorschlag

5. Aufgabenblatt mit Lösungsvorschlag Einführung in Computer Microsystems Sommersemester 2010 Wolfgang Heenes 5. Aufgabenblatt mit Lösungsvorschlag 19.05.2010 Aufgabe 1: Logik, Latch, Register Geben Sie für alle folgen reg-variablen an, ob

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Multiplikation

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Multiplikation Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Multiplikation Eberhard Zehendner (FSU Jena) Rechnerarithmetik Multiplikation 1 / 28 Multiplikation in UInt 2 (l),

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

Binäre Darstellung ganzer Zahlen

Binäre Darstellung ganzer Zahlen Vorlesung Objektorientierte Softwareentwicklung Exkurse use Binäre Darstellung ganzer Zahlen Binärdarstellung natürlicher Zahlen Ganze Zahlen im Einerkomplement Ganze Zahlen im Zweierkomplement Elementare

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010 Das negative Zweierkomplementzahlensystem Ines Junold 23. Februar 2010 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das konventionelle Zweierkomplement 4 2.1 Definition.......................................

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Aufgabe 1: a) Bestimmen Sie die Darstellung der Zahl 113

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 20.03.09 4-1 Heutige große Übung Ankündigung

Mehr

Wie subtrahiert man ungleichnamige Brüche? Wie addiert man gemischte Zahlen? muss man Brüche auf den Hauptnenner bringen?

Wie subtrahiert man ungleichnamige Brüche? Wie addiert man gemischte Zahlen? muss man Brüche auf den Hauptnenner bringen? A Was ist ein Hauptnenner? A Für welche Rechenarten muss man Brüche auf den Hauptnenner bringen? A9 Wie subtrahiert man ungleichnamige Brüche? A0 Wie addiert man gemischte Zahlen? A A A A Wie nennt man

Mehr

Intensivübung zu Algorithmen und Datenstrukturen

Intensivübung zu Algorithmen und Datenstrukturen Intensivübung zu Algorithmen und Datenstrukturen Silvia Schreier Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Übersicht Programmierung Fallunterscheidung Flussdiagramm Bedingungen Boolesche

Mehr

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2 39 Subtraktion 155 39 Subtraktion Allgemein Bezeichnungen: Minuend Subtrahend = Differenz Die Subtraktion zweier Zahlen wird stellenweise ausgeführt Dabei kann es vorkommen, dass eine größere Zahl von

Mehr

Inhalt. Zahlendarstellungen

Inhalt. Zahlendarstellungen Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

4. Zahlendarstellungen

4. Zahlendarstellungen 121 4. Zahlendarstellungen Wertebereich der Typen int, float und double Gemischte Ausdrücke und Konversionen; Löcher im Wertebereich; Fliesskommazahlensysteme; IEEE Standard; Grenzen der Fliesskommaarithmetik;

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

Grundlagen der Technischen Informatik. 13. Übung

Grundlagen der Technischen Informatik. 13. Übung Grundlagen der Technischen Informatik 13. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 13. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Arithmetik VHDL - Funktionen

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Hello World! Eine Einführung in das Programmieren Variablen

Hello World! Eine Einführung in das Programmieren Variablen Hello World! Eine Einführung in das Programmieren Variablen Görschwin Fey Institute of Embedded Systems Hamburg University of Technology Slide 2 Wie werden Daten in Programmen gespeichert und manipuliert?

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Lösung 2. Übungsblatt

Lösung 2. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr