Step 0: Bestehende Analyse-Plattform

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Step 0: Bestehende Analyse-Plattform"

Transkript

1 Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien im Kontext des Data Warehouse (Oracle) 11:30-12:00 Hadoop & SQL (metafinanz) 12:00-12:45 Mittagpause 12:45-13:15 "Suchen und Finden" - Der Discovery-Prozess (Oracle) 13:15-13:45 Vorgehen Projekt (metafinanz) 13:45-14:00 Gemeinsamer Abschluss "Fragen und Optionen" 1

2 Step 0: Bestehende Analyse-Plattform High Density Data Oracle Database Oracle BI Enterprise Edition Dashboard Ad-Hoc Query Acquire Organize Analyze Decide 2

3 Step 1: Tiefergehende Analyse der bestehenden Daten (Advanced Analytics) High Density Data Oracle Database Spatial and Graph Advanced Analytics Oracle BI Enterprise Edition Dashboard Ad-Hoc Query Segmentierung Locality Acquire Organize Analyze Decide 3

4 Step 2: Neue Techniken für Volume and Variety Low Density Batch Data High Density Data Hadoop Oracle Database Spatial and Graph Oracle BI Enterprise Edition Dashboard Ad-Hoc Query Segmentierung Locality Aggregate Pre-Analyze Advanced Analytics Beziehungen Meinungen Aktivitäten Acquire Organize Analyze Decide 4

5 Step 3: Neue Techniken für Velocity Low Density Batch Data High Density Data Hadoop Oracle Database Spatial and Graph Oracle BI Enterprise Edition Dashboard Ad-Hoc Query Segmentierung Locality Streaming Data Aggregate Pre-Analyze Event Processing Advanced Analytics Act Model Real Time Decisions Beziehungen Meinungen Aktivitäten Empfehlungen Aktionen Acquire Organize Analyze Decide 5

6 Step 4: Neue Muster finden / Analysieren Endeca Information Discovery Low Density Batch Data Streaming Data Acquire High Density Data Hadoop Aggregate Pre-Analyze Event Processing Organize Oracle Database Spatial and Graph Advanced Analytics Act Analyze Model Oracle BI Enterprise Edition Real Time Decisions Decide Dashboard Ad-Hoc Query Segmentierung Locality Beziehungen Meinungen Aktivitäten Empfehlungen Aktionen Neue Aspekte entdecken 6

7 Hadoop oder relationale Datenbank? Entwicklungsreife der Werkzeuge Performance der Datenverarbeitung Security Die Fähigkeit Daten schnell entgegen zu nehmen Wirtschaftlichkeit bei der Speicherung von Low Value Daten Die Leichtigkeit ETL-Prozesse zu bauen Vollständigkeit der Quelldaten (zu viele Lücken oder nicht) Unterschiedlichkeit der Datenstrukturen Komplexität des Datenmanagements Deployment Business verstehen Modelle prüfen Daten Daten verstehen Modelle bilden Daten aufbereiten 7

8 Hadoop oder relationale Datenbank? Vorteile auf beiden Seiten Hadoop Relationale Systeme Extrem schnelle Laden der Daten in einen Hadoop-Data Store. Daten werden praktisch ohne näheren Struktur-Syntax-Check einfach abgekippt. Bei Änderung der Quelldaten-Strukturen, kaum Einfluss auf ETL-Strecken (die Änderungen muss nur das Lesen berücksichtigen). Das Map Reduce Framework arbeitet massiv parallel. Die geringe Strukturierung der Daten kommt dieser hohen Parallelisierung sehr entgegen. Überschaubaren Kosten für Storage und Rechenleistung für die z. T. sehr hohen Datenmengen. Sind strukturiert und ermöglichen Schema on Write, also Prüfung von Daten im Zuge der Speicherung. Hohe Zahl gut entwickelter Werkzeugen für einfache, reibungslose und performante Verarbeitung bzw. Datenanalyse. Anwender können ohne besondere Hürden mit einfachen Zugriffen auf einem standardisierten Datenmaterial ad hoc und multidimensional analysieren. Daten sind i. d. Regel qualitätsgesichert, überprüft und die Analyseverfahren sind erprobt. 8

9 Unternehmen adaptieren Technologie in Phasen Geschäftlicher Nutzen Hadoop-Systeme in separaten Projekten parallel neben RDBMS Erfahrungen sammeln Zugriffsbarriere mit SQL Überwinden -> Beschäftigung mit Hive / HiveQL -> Performarmance- Fragen 1 1) Zentrales DWH und klassisches ETL Hadoop wird als Vorsystem begriffen 2) BI Tool zieht Daten aus beiden Welten: Konsolidierte Sicht 3) Führendes Hadoop-System zieht Daten verschiedenen Quellen ab 2 Master Access Ein zusammenhängendes System ohne die jeweiligen Nachteile 3 Single Logical System Parallel Deployment System Reife 9

10 Ziel-Szenario / Technische Komponenten HADOOP und RDBMS im technischen Verbund (auch bezogen auf Hardware) SQL als durchgängige Access-Sprache Durchgängige Verwaltungsschicht -> Wo liegen welche Daten -> Metadaten-Information 10

11 Externe Daten Interne Daten Architekturen und Szenarien Klassisches BI Kunden Lieferanten Produkte Mitarbeiter Lager Verkäufe Buchhaltung Log Files Web-Clicks Mails Call-Center Verträge Berichte Kurse Webservices Kaufdaten Integration Harmonisierung Prüfen HDFS Enterprise Information Stammdaten Referenzdaten Umsätze / Fakten Relational Database Oracle 12c (DWH) nosql DB Hodoop Loader H a d o o p User View Kennzahlen Sandbox Event Processing SQL Realtime Decision Interactive Dashboards Reporting & Publishing Guide Search &Experiences Realtime Decisions Map Reduce Framework Predictive Analytics & Mining 11

12 Externe Daten Interne Daten Architekturen und Szenarien Klassisches BI Kunden Lieferanten Produkte Mitarbeiter Lager Verkäufe Buchhaltung Log Files Web-Clicks Mails Call-Center Verträge Berichte Kurse Webservices Kaufdaten Integration Harmonisierung Prüfen HDFS Enterprise Information Stammdaten Referenzdaten Umsätze / Fakten Relational Database Oracle 12c (DWH) nosql DB Hodoop Loader H a d o o p User View Kennzahlen Sandbox Event Processing SQL Realtime Decision Interactive Dashboards Reporting & Publishing Guide Search &Experiences Realtime Decisions Map Reduce Framework Predictive Analytics & Mining 12

13 Oracle s technische Komponenten Recommendations Streamed into HDFS using Flume Web Logs Oracle Big Data Appliance Cloudera Hadoop HDFS MapReduce Exadata Exalytics Endeca Information Discovery Site Activity Customer Profile Load Recommendations Oracle NoSQL Database Oracle Big Data Connectors Load Session& Activity Data Oracle Database Oracle Advanced Analytics Oracle BI Real-Time Decisions Stream Acquire/Organize Analyze Decide 13

14 Oracle SQL Connector for Hadoop Low-latency SQL Queries aus der Datenbank heraus und direkt auf Hive Tabellen Automatische External Table Erstellung für Hive Zugriffe und für generierte Data Pump Files Automatisches Mapping von External Table Definitionen aus Data Files Verschieben von Datenbeständen HDFS nosql DB H a d o o p Hive Map Reduce Framework Relational Database Oracle 12c External Table SQL B e l i e b i g e A n a l y s e n 14

15 Oracle R Connector for Hadoop HIVE Tables als Data Source für R-Analysen Transparent er Support für Sprache R auf HIVE Tabellen Inkrementelle Abfrage-Erstellung Modell-Erstellung in Hadoop => Anwenden des Modells in der Oracle-Datenbank ORD R script {CRAN packages} Hadoop Job Mapper R HDFS R MapReduce R sqoop Hadoop Cluster (BDA) MapReduce Nodes {CRAN packages} HDFS Nodes Big Data Appliance R Client Reducer Oracle Database 15

16 Oracle R Enterprise Predictive Analytics User R Engine Database Server Maschine R Engine(s) managed by Oracle DB R Engine Other R packages SQL Oracle Database R R Engine Other R packages Oracle R Enterprise packages Results User tables Results Oracle R Enterprise packages Lineare Modelle Clusterung Segmentierung Neuronale Netze MapReduce Nodes HDFS Nodes Hadoop Cluster (BDA) 16

17 Mustererkennung komplett in der Datenbank Abhängigkeiten von Event-Folgen MATCH_RECOGNIZE Drehzahl Strom Temperatur SATZNR MESSZEITPUNKT STUECKNR DREHZAHL WATT TEMPERATUR :04: :05: :05: :05: :06: Sensor_Daten R-Analyse ore.connect... cor.matrix <- cbind(drehzahl, Watt,Temperatur) rcorr(cor.matrix) Muster: Gemeinsames Überschreiten von Grenzwerten S-NR PAT SATZNR DREHZAHL WATT C Pattern 17

18 Zusammenhänge in zeitlichen Verläufen erkennen Satzübergreifende Analysen Große Datenmengen Hohe Abfrageperformance Keine Programmierung 18

19 In-Database Analytics Oracle Big Data Platform Oracle Big Data Appliance Optimized for Hadoop, R, and NoSQL Processing Oracle Big Data Connectors Oracle Exadata System of Record Optimized for DW/OLTP Oracle Exalytics Optimized for Analytics & In-Memory Workloads Oracle Event Processing Hadoop Open Source R Oracle NoSQL Database Applications Oracle Big Data Connectors Oracle Data Integrator Oracle Advanced Analytics Data Warehouse Oracle Database Oracle Enterprise Performance Management Oracle Business Intelligence Applications Oracle Business Intelligence Tools Oracle Endeca Information Discovery Embeds Times Ten Stream Acquire Organize Discover & Analyze Real Time Decisions 19 19

20 Big Data Appliance Hardware + Software Full Rack Configuration Hardware 216 Intel Xeon Processors 864 GB total memory 48 GB per node 648TB total raw storage capacity 216 3TB 7200RPM Drives 40Gb/sec InfiniBand Network 10Gb/sec Data Center Connectivity Software Cloudera CDH Cloudera Manager Oracle Enterprise Manager Grid Control Plug-In for BDA NoSQL DB Community Edition Open Source R 20

21 Big Data Hardware Business As Usual Physische Installation (10 Racks) Elektriker Netzwerk Engineers Storage Engineers System Admins 286 Stunden 236 Stunden, 616 Kabel 264 Stunden, 864 Kabel 320 Stunden, 576 Kabel 232 Stunden Gesamt: 1338 Personen-Stunden, 677 Zeit-Stunden, 2344 Kabel 21

22 Oracle Big Data Appliance Installation vs. 38 vs Pers.Std. 19 vs. 677 Zeit-Std. 46 vs Kabel Physische Installation (10 Racks) Elektriker Netzwerk Engineers Storage Engineers System Admins 286 Stunden 236 Stunden, 616 Kabel 264 Stunden, 864 Kabel 320 Stunden, 576 Kabel 232 Stunden 16 Stunden 16 Stunden, 32 Kabel 6 Stunden, 14 Kabel Nicht nötig Nicht nötig 22

23 Externe Daten Interne Daten Zusammenfassung Klassisches BI Kunden Lieferanten Produkte Mitarbeiter Lager Verkäufe Buchhaltung Log Files Web-Clicks Mails Call-Center Verträge Berichte Kurse Webservices Kaufdaten Integration Harmonisierung Prüfen HDFS Enterprise Information Stammdaten Referenzdaten Umsätze / Fakten Relational Database Oracle 12c (DWH) nosql DB Hodoop Loader H a d o o p User View Kennzahlen Sandbox Event Processing SQL Realtime Decision Interactive Dashboards Reporting & Publishing Guide Search &Experiences Realtime Decisions Map Reduce Framework Predictive Analytics & Mining 23

24 Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien im Kontext des Data Warehouse (Oracle) 11:30-12:00 Hadoop & SQL (metafinanz) 12:00-12:45 Mittagpause 12:45-13:15 "Suchen und Finden" - Der Discovery-Prozess (Oracle) 13:15-13:45 Vorgehen Projekt (metafinanz) 13:45-14:00 Gemeinsamer Abschluss "Fragen und Optionen" 24

25 25

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für SIs und VARs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Oracle s Strategie Engineered Systems Big Data einmal

Mehr

Oracle EngineeredSystems

Oracle EngineeredSystems Oracle EngineeredSystems Überblick was es alles gibt Themenübersicht Überblick über die Engineered Systems von Oracle Was gibt es und was ist der Einsatzzweck? Wann machen diese Systeme Sinn? Limitationen

Mehr

Oracle R zum Anfassen

Oracle R zum Anfassen Oracle R zum Anfassen Alfred Schlaucher Oracle Deutschland (Data Warehouse) Oliver Bracht Andreas Prawitt Oracle Partner eoda Oracle R zum Anfassen: Die Themen 09:30 Begrüßung 09:45 R Zum Anfassen Einführung

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Exalytics - Deep dive with OBIEE, Timesten and Essbase

Exalytics - Deep dive with OBIEE, Timesten and Essbase Exalytics - Deep dive with OBIEE, Timesten and Essbase Renate Wendlik Senior DWH Consultant Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH Agenda Einleitung Exalytics Konfiguration

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Big Data: Solaranlagen reparieren Waschmaschinen? 2014 IBM Corporation

Big Data: Solaranlagen reparieren Waschmaschinen? 2014 IBM Corporation Big Data: Solaranlagen reparieren Waschmaschinen? Agenda Kurze Vorstellung Der Kunde und der ursprüngliche Ansatz Bisherige Architektur Vorgeschlagene Architektur Neue Aspekte der vorgeschlagenen Architektur

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Big Data und Oracle bringen die Logistik in Bewegung

Big Data und Oracle bringen die Logistik in Bewegung OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln

Mehr

Big Data Neue Erkenntnisse aus Daten gewinnen

Big Data Neue Erkenntnisse aus Daten gewinnen Big Data Neue Erkenntnisse aus Daten gewinnen Thomas Klughardt Senior Systems Consultant 0 Software Dell Software Lösungsbereiche Transform Inform Connect Data center and cloud management Foglight APM,

Mehr

PRODATIS CONSULTING AG. Folie 1

PRODATIS CONSULTING AG. Folie 1 Folie 1 Führend im Gartner Magic Quadranten für verteilte, interagierende SOA Projekte Oracle ist weltweit auf Rang 1 auf dem Markt der Enterprise Service Bus Suiten (ESB) für SOA Software 2010 26,3 %

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Hadoop Eine Erweiterung für die Oracle DB?

Hadoop Eine Erweiterung für die Oracle DB? Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, 18.11.2015, Matthias Fuchs Sensitive Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems

Mehr

<Insert Picture Here> 8. Business Intelligence & Data Warehouse Konferenz

<Insert Picture Here> 8. Business Intelligence & Data Warehouse Konferenz 1 The Safe Harbor The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Office 365 Dynamics 365 Azure Cortana Intelligence. Enterprise Mobility + Security Operations Mgmt. + Security

Office 365 Dynamics 365 Azure Cortana Intelligence. Enterprise Mobility + Security Operations Mgmt. + Security Office 365 Dynamics 365 Azure Cortana Intelligence Enterprise Mobility + Security Operations Mgmt. + Security API Application Availability Bottomless Storage Identity Management Full hybrid

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics Vorstellung IBM Cognos 10.2 Oliver Linder Client Technical Professional Business Analytics Agenda IBM Cognos 10.2 Architektur User Interfaces IBM Cognos Workspace IBM Cognos Workspace Advanced IBM Cognos

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Herbert Rossgoderer Geschäftsführer Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH ISE

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Produktionscontrolling auf dem Weg zur Industrie 4.0

Produktionscontrolling auf dem Weg zur Industrie 4.0 Produktionscontrolling auf dem Weg zur Industrie 4.0 Intelligente Produktion durch Real-Time-Big-Data-Analyse von Sensordaten & Bern, 27.05.2016 Jörg Rieth Jedox vereinfacht Planung, Reporting & Analyse

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY

BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY 08.03.2017 REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer AGENDA 1 / Vorstellung REWE Systems GmbH und inovex

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Jürgen Vester Oracle Deutschland B.V. & Co KG Um was geht es bei Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

A Big Data Change Detection System. Carsten Lanquillon und Sigurd Schacht

A Big Data Change Detection System. Carsten Lanquillon und Sigurd Schacht A Big Data Change Detection System Carsten Lanquillon und Sigurd Schacht Digitale Transformation in Unternehmen u Umfassende Erfassung, Speicherung und Verfügbarkeit von Daten à Big Data Quelle: Rolland

Mehr

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014 Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Verwaltung von OBI Metadaten: XML-Integration die Lösung aller Probleme? DOAG Konferenz und Ausstellung 2013

Verwaltung von OBI Metadaten: XML-Integration die Lösung aller Probleme? DOAG Konferenz und Ausstellung 2013 Verwaltung von OBI Metadaten: XML-Integration die Lösung aller Probleme? DOAG Konferenz und Ausstellung 2013 Michael Weiler, PROMATIS software GmbH Nürnberg, 1 Gliederung OBIEE Metadatenverwaltung Einführung

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Analytik Mittels R als übergreifende Plattform

Analytik Mittels R als übergreifende Plattform Analytik Mittels R als übergreifende Plattform Detlef E. Schröder Oracle DWH Community STCC DB Mitte @DetEgbSchroeder, http://www.oracledwh.de Themen Anforderungen an Datenmanagement R - Grundsätzliches

Mehr

Oracle Business Intelligence (OBIEE) 12c Ein erster Einblick in die neue Reporting-Engine von Oracle

Oracle Business Intelligence (OBIEE) 12c Ein erster Einblick in die neue Reporting-Engine von Oracle Oracle Business Intelligence (OBIEE) 12c Ein erster Einblick in die neue Reporting-Engine von Oracle David Michel Consultant Business Intelligence, Apps Associates GmbH Apps Associates Apps Associates

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH Management Cockpits Business Intelligence für Entscheider Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH email: oliver.roeniger@oracle.com Tel.: 0211 / 74839-588 DOAG, Mannheim, 15.

Mehr

ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover

ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover Schlüsselworte Oracle Data Integrator ODI, Big Data, Hadoop, MapReduce,, HDFS, PIG,

Mehr

Neues von Oracle Gut zu wissen...

Neues von Oracle Gut zu wissen... Neues von Oracle Gut zu wissen... Lorenz Keller Leiter Systemberatung - Server Technology Customer Center - Nord Agenda Neue Produkte Oracle Beehive Oracle Extadata Storage Oracle

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Die IBM Netezza Architektur für fortgeschrittene Analysen

Die IBM Netezza Architektur für fortgeschrittene Analysen Michael Sebald IT Architect Netezza Die IBM Netezza Architektur für fortgeschrittene Analysen 2011 IBM Corporation Was ist das Problem aller Data Warehouse Lösungen? I / O Transaktionaler und analytischer

Mehr

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben!

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben! Take aways Mit Power BI wird Excel zum zentralen Tool für Self- Service BI End-End Self-Service Lösungsszenarien werden erstmals möglich Der Information Worker erhält ein flexibles Toolset aus bekannten

Mehr

IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen

IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen Nahezu 70% aller Data Warehouse Anwendungen leiden unter Leistungseinschränkungen der unterschiedlichsten Art. - Gartner

Mehr

Planung auf Aufbau von SharePoint-Suchinfrastrukturen

Planung auf Aufbau von SharePoint-Suchinfrastrukturen Building & Connecting Know-how 16.-17. Februar 2011, München Planung auf Aufbau von SharePoint-Suchinfrastrukturen Fabian Moritz SharePoint MVP Partner: Veranstalter: Aufbau von Suchplattformen Planung

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

Zend PHP Cloud Application Platform

Zend PHP Cloud Application Platform Zend PHP Cloud Application Platform Jan Burkl System Engineer All rights reserved. Zend Technologies, Inc. Zend PHP Cloud App Platform Ist das ein neues Produkt? Nein! Es ist eine neue(re) Art des Arbeitens.

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für ISVs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Lösungsansatz aus der Praxis Engineered Systems Oracle s Strategie

Mehr

Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467

Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467 Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467 In diesem 5-tägigen Microsoft-Kurs lernen Sie die Implementierung einer Self-Service Business Intelligence (BI) und Big Data

Mehr

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Mission TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Der Weg zu einem datengesteuerten Unternehmen # Datenquellen x Größe der Daten Basic BI & Analytics Aufbau eines

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

Neues aus der nicht-, semi- und relationalen Welt

Neues aus der nicht-, semi- und relationalen Welt Neues aus der nicht-, semi- und relationalen Welt Information Management Thomas Klughardt Senior System Consultant Das Big Data Problem Was bedeutet Big Data? Performancekritisch Echtzeit Cold Storage

Mehr

Darüber hinaus wird das Training dazu beitragen, das Verständnis für die neuen Möglichkeiten zu erlangen.

Darüber hinaus wird das Training dazu beitragen, das Verständnis für die neuen Möglichkeiten zu erlangen. Ora Education GmbH www.oraeducation.de info@oraeducation.de Lehrgang: Oracle 11g: New Features für Administratoren Beschreibung: Der Kurs über fünf Tage gibt Ihnen die Möglichkeit die Praxis mit der neuen

Mehr

R Statistik im Oracle Produktstack

R Statistik im Oracle Produktstack R Statistik im Oracle Produktstack Matthias Fuchs DWH Architect ISE Information Systems Engineering GmbH ISE Information Systems Engineering Gegründet 1991 Mitarbeiteranzahl: 50 Hauptsitz in Gräfenberg,

Mehr

BDCA Kick-Off München,

BDCA Kick-Off München, BDCA Kick-Off München, 3.3.2015 Unser Modus: Sprinter Fakten! Seit 2005! 60+ Mitarbeiter:! Certified Scrum Masters/Product Owners! Certified Java Spring Professionals! Certified MongoDB Devs/Admins! Certified

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Big Data im Retail-Sektor am Beispiel Kassenbondaten

Big Data im Retail-Sektor am Beispiel Kassenbondaten Big Data im Retail-Sektor am Beispiel Kassenbondaten REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer Business Analytics Day, 08.03.2017 AGENDA 1. Vorstellung REWE Systems GmbH und inovex

Mehr

Neues zur Oracle Lizenzierung (Michael Paege, OPITZ CONSULTING Hamburg, DOAG Competence Center Lizenzen)

Neues zur Oracle Lizenzierung (Michael Paege, OPITZ CONSULTING Hamburg, DOAG Competence Center Lizenzen) Neues zur Oracle Lizenzierung (Michael Paege, OPITZ CONSULTING Hamburg, DOAG Competence Center Lizenzen) Neues zur Oracle Lizenzierung, DOAG Nordlichtertreffen, 16. Juni 2009 Seite 1 Geänderte Faktoren

Mehr

Was ist Windows Azure? (Stand Juni 2012)

Was ist Windows Azure? (Stand Juni 2012) Was ist Windows Azure? (Stand Juni 2012) Windows Azure Microsofts Cloud Plattform zu Erstellung, Betrieb und Skalierung eigener Cloud-basierter Anwendungen Cloud Services Laufzeitumgebung, Speicher, Datenbank,

Mehr

Public Cloud im eigenen Rechenzentrum

Public Cloud im eigenen Rechenzentrum Public Cloud im eigenen Rechenzentrum Matthias Weiss Direktor Mittelstand Technologie Oracle Deutschland B.V. & Co.KG Copyright 2016 Oracle and/or its affiliates. All rights reserved. Agenda Oracle Cloud

Mehr

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Schritt für Schritt in das automatisierte Rechenzentrum Converged Management Michael Dornheim Mein Profil Regional Blade Server Category Manager Einführung Marktentnahme Marktreife Bitte hier eigenes Foto

Mehr

OXO³ technische Aspekte der Oracle EMEA internen BI Implementierung

OXO³ technische Aspekte der Oracle EMEA internen BI Implementierung OXO³ technische Aspekte der Oracle EMEA internen BI Implementierung Bojan Milijaš (bojan.milijas@oracle.com) Senior Business Analyst (OCP) ORACLE Deutschland GmbH Kennen Sie das Sprichwort

Mehr

Windows Azure für Java Architekten. Holger Sirtl Microsoft Deutschland GmbH

Windows Azure für Java Architekten. Holger Sirtl Microsoft Deutschland GmbH Windows Azure für Java Architekten Holger Sirtl Microsoft Deutschland GmbH Agenda Schichten des Cloud Computings Überblick über die Windows Azure Platform Einsatzmöglichkeiten für Java-Architekten Ausführung

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Oracle Fusion Middleware Ordnung im Ganzen Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Begriffe & Ordnung Fusion Middleware Wann, was, warum Beispiel für

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Oracle Corporation

Oracle Corporation 1 2012 Oracle Corporation ORACLE PRODUCT LOGO Neues von Oracle Lorenz Keller Leiter Systemberatung Gut zu wissen DOAG Regionalgruppe Bremen am 20. Februar 2012 2 2012 Oracle Corporation Agenda Neue Produkte

Mehr

SharePoint 2016 was kommt auf uns zu? SharePoint & Office 365 Community Zentralschweiz

SharePoint 2016 was kommt auf uns zu? SharePoint & Office 365 Community Zentralschweiz SharePoint 2016 was kommt auf uns zu? SharePoint & Office 365 Community Zentralschweiz Inhalt Wo liegt der Fokus von SharePoint 2016? Experiences Infrastruktur SharePoint Migration auf 2016 Wie sehen die

Mehr

Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community. Organisatorisches. Gesamtübersicht

Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community. Organisatorisches. Gesamtübersicht Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community Bei den Seminaren der Oracle Data Warehouse Gruppe steht die Wissenvermittlung im Vordergrund. Die Themen werden anhand

Mehr

Einführung in Big Data und Hadoop (mit verschiedenen Live Demos) Eintägiges Intensivseminar

Einführung in Big Data und Hadoop (mit verschiedenen Live Demos) Eintägiges Intensivseminar Einführung in Big Data und Hadoop (mit verschiedenen Live Demos) Eintägiges Intensivseminar Die Referenten sind keine exklusiven Trainer, sondern Berater aus dem Projektgeschäft, die auch Trainings durchführen.

Mehr

APEX (Hoch) Verfügbar? Ernst Leber

APEX (Hoch) Verfügbar? Ernst Leber (Hoch) Verfügbar? Ernst Leber 22.11.2017 1 Im Überblick Technologie-orientiert Branchen-unabhängig Hauptsitz Ratingen 240 Beschäftigte Ausbildungsbetrieb Inhabergeführte Aktiengesellschaft Gründungsjahr

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

Compliance erlaubt keine Wartezeit

Compliance erlaubt keine Wartezeit Compliance erlaubt keine Wartezeit Schnelle Analyse-Verfahren bei der HVB Unicredit AG Anwarul Haq Khan, 26. Mai 2015 Agenda (Stichpunkte) Wer ist Unicredit-HVB AG Compliance - Was ist das? Was waren die

Mehr

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de Big Data Analytics: Herausforderungen und Systemansätze Prof. Dr. Erhard Rahm http://dbs.uni-leipzig.de 2 Massives Wachstum an Daten Gartner: pro Tag werden 2.5 Exabytes an Daten generiert 90% aller Daten

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Was ist Big Data? DOAG Business Intelligence Community Informiert zu BI und Big Data

Was ist Big Data? DOAG Business Intelligence Community Informiert zu BI und Big Data Was ist Big? DOAG Business Intelligence Community Informiert zu BI und Big 2017 Interaktion: Jetzt bitte Vorurteile abladen Definierte Methodik, strukturiert Lange erprobt Alles über SQL machbar Datenqualität?

Mehr

POWER BI DAS neue BI Tool von Microsoft!? Wolfgang Strasser twitter.com/wstrasser

POWER BI DAS neue BI Tool von Microsoft!? Wolfgang Strasser twitter.com/wstrasser POWER BI DAS neue BI Tool von Microsoft!? Wolfgang Strasser wolfgang.strasser@gmx.at twitter.com/wstrasser Danke. About me Wolfgang Strasser Consultant Software, Business Intelligence and DWH SQL Server,

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr