Mathematik und Statistik für Raumplaner I

Größe: px
Ab Seite anzeigen:

Download "Mathematik und Statistik für Raumplaner I"

Transkript

1 Mathematik und Statistik für Raumplaner I Graphentheorie und Kombinatorik Wintersemester 2010/2011 Leiter und Autor: A. Prof. Dr. Wolfgang Feilmayr Fachbereich Stadt- und Regionalforschung 1

2 Grundbegriffe und Definitionen der Graphentheorie Ein ungerichteter Graph (V, E) besteht aus einer Menge von Knoten (Vertices) V = {v i } und einer Menge E = {e i } von ungeordneten Paaren e i = (v i,v j ), den Kanten (Edges) von G. Die Kante e i = (v i,v j ) verbindet die Knoten v i und v j. Auf sich selbst bezogene Kanten e i = (v i,v i ) nennt man Schlingen. Beispiel für einen ungerichteten Graphen (mit 4 Knoten): V1 V3 V2 V4 Die Anzahl der Kanten, die zu einem Knoten inzident sind (dort zusammentreffen), heißt Grad des Knoten. Zwei Kanten heißen adjazent (benachbart), wenn sie einen gemeinsamen Knoten besitzen. Ein Graph heißt planar, wenn seine Knoten und Kanten so in einer Ebene liegen, daß sich zwei Kanten nur in einem Knoten kreuzen. 2

3 Sind in einem Graphen je zwei verschiedene Knoten durch eine Kante verbunden, so heißt der Graph vollständig. Eben oder planar kann ein vollständiger Graph nur dann sein, wenn er höchstens 4 Knoten besitzt. Maximaler planarer Graph Ein Knoten vom Grad 1 heißt ein Endpunkt des Graphen. Eine Kante, die in einem Endpunkt endet, heißt eine Endkante. Die Anzahl der Knoten mit ungeradem Grad ist stets gerade. Eine Kantenfolge in einem Graphen ist eine endliche Folge von Kanten, sodaß je zwei aufeinanderfolgende Kanten einen Knoten gemeinsam haben. Die Kantenfolge ist offen, wenn Anfangs- und Endpunkt nicht identisch sind, sonst heißt sie geschlossen. Ein Weg oder eine Bahn ist eine offene Kantenfolge, in der außerdem alle Knoten verschieden sind. Die Anzahl der Kanten in 3

4 einer Kantenfolge wird als Länge der Kantenfolge bezeichnet, der Weg kleinster Länge zwischen zwei Knoten v i und v j ist der Abstand d (v i,v j ) dieser Knoten. Ein Kreis oder Zyklus ist ein geschlossener Kantenzug, bei dem bis auf Anfangs- und Endknoten alle Knoten verschieden sind. Beispiele: V6 V5 V4 V1 V2 e 1 - e 2 - e 2 - e 5 : e 1 - e 2 - e 3 - e 4 - e 5 - e 1 : e 1 - e 2 - e 3 - e 4 - e 6 : e 1 - e 2 - e 3 - e 4 - e 8 : offene Kantenfolge geschlossene Kantenfolge Weg oder Bahn Kreis oder Zyklus Ein Teilgraph (Subgraph) G 1 (V 1, E 1 ) eines gegebenen Graphen G (V, E) besitzt eine Teilmenge V 1 ε V seiner Knoten und eine Teilmenge E 1 ε E seiner Kanten. Behält man beim gegebenen Graphen G alle seine 4

5 Knoten zurück, entfernt jedoch eine oder mehrere Kanten, so erhält man einen spannenden Teilgraph (partiellen Graphen) von G. Entfernt man einen oder mehrere Knoten und alle Kanten, die mit diesem(n) Knoten inzident sind, so erhält man eine Untergraphen von G. Ein Graph heißt zusammenhängend, wenn sich je zwei verschiedene Knoten durch zumindest einen Weg miteinander verbinden lassen. Ein isolierter Teilgraph ist ein Teil eines Graphen ohne direkte Kantenverbindung zu diesem. 5

6 Beispiele: 6

7 Bestehen Graphen aus Kanten, denen nichtsymmetrische Beziehungen zugrunde liegen (Abwasserflüsse in Entsorgungsnetzen oder Einbahnen in Verkehrssystemen), so spricht man von gerichteten Graphen. Hier ist zusätzlich jede Kante orientiert. Die Orientierung wird durch einen Richtungspfeil ausgedrückt. Ein symmetrischer Graph, bei dem alle Kanten entgegengesetzt parallel sind, darf jedoch nicht mit dem scheinbar äquivalenten ungerichteten Graphen verwechselt werden. Beispiele: 7

8 Ein Graph heißt Baum, wenn gilt, dass für je zwei seiner Knoten nur jeweils ein Weg existiert, der diese Knoten verbindet. Ist ein Baum vollständig, so ist die Zahl der Kanten immer um eins geringer als die Zahl der Knoten (E = V-1). Ist ein spannender Teilgraph G 1 eines Graphen G zugleich Baum, so spricht man von einem spannenden Baum oder einem Gerüst. Beispiel: 8

9 Besteht ein Baum nur aus gerichteten Kanten und existiert ein einziger Knoten, zu dem keine Kante führt, so spricht man von einem Wurzelbaum oder Aboreszenz. Knoten von denen keine Kante wegführt, nennt man Endknoten oder Blätter. Wurzelbäume eignen sich zur Darstellung (1) hierarchischer Strukturen und (2) Verteilungsstrukturen In vielen Anwendungsbereichen der Graphentheorie werden den einzelnen Kanten Werte zugeordnet. Man spricht dann von bewerteten Graphen. Als Beispiele seien Transportkapazitäten oder Entfernungen in Infrastrukturnetzen angeführt. 9

10 Ausgewählte Maßzahlen der etzstruktur 1. Index (zyklomatische Zahl) = e - v + q e v q Anzahl der Kanten Anzahl der Knoten Anzahl der Teilgraphen Bei isolierten Teilnetzen (Subgraphen) und Bäumen, die laut Definition keine geschlossenen Kantenzüge enthalten, nimmt der Index als Maßzahl für den zyklischen Grad eines Graphen den Wert 0 an, mit zunehmender Zyklenzahl im Graphen entsprechende ganzzahlige Werte. 2. Index = e/v Der Index ergibt sich aus dem Verhältnis zwischen der Kanten- und der Knotenzahl eines Graphen. Ähnlich wie beim Index m charakterisieren hohe Indexwerte komplizierte etzstrukturen, niedrige Werte einfache etzstrukturen: Bäume und isolierte Teilgraphen haben Werte < 1. Man spricht dann auch von verästelten etzen. Der Wert 1 gilt für etze mit nur einem 10

11 geschlossenen Kantenzug (wenn man von Schlingen absieht). Hohe Werte von gelten für ausgedehnte etze mit hoher Kantenzahl. Man spricht dann auch von vermaschten etzen. 3. Index = e / (½(v * (v-1)) Der Index gibt das Verhältnis zwischen der tatsächlichen und der maximal möglichen Kantenzahl in einem Graphen an. Der Wert 1 gilt für vollständige Graphen, Werte nahe bei 0 charaktersieren verästelte etze. Anmerkung: Die Maximalzahl von Kanten in einem vollständigen Graphen beträgt v * (v-1), wenn keine Mehrfachkanten zwischen einzelnen Knoten und keine Schlingen zugelassen sind. Bei vielen Anwendungen bewerteter und gerichteter Graphen (beispielsweise zwei Straßen zwischen zwei Standorten) müssen aber diese Restriktionen aufgegeben werden. 11

12 Beispiele: = = 3 = = 0 β = 7/5 β = 3/5 γ = 7/10 γ = 3/10 4. Index (Durchmesser) = x max y d(x,y) d(x,y) x max y kürzeste Länge (Kantenzahl) zwischen x und y x und y sind die voneinander weitest entfernten Knoten Der Parameter bezeichnet die topologische Länge oder die Ausdehnung des Graphen, d.h. die Kantenzahl im kürzesten Kantenzug zwischen den am weitesten voneinander entfernten Knoten. 12

13 Beispiele: d = 2 d = 4 5. Index α(e) (Assoziationsindex, Königszahl) Dieser Index beschreibt für einen bestimmten Knoten die maximale Anzahl der Kanten zwischen dem betreffenden Knoten und jedem beliebigen Knoten im etz. Er ist somit ein Maß für topologische Distanzen und deutet an, daß Knoten mit einem niedrigen Assoziationsindex eine zentrale Stellung im etz einnehmen. 13

14 Matrixanalyse Gerichtete Graphen können arithmetisch in Form der sogenannten Adjazenzmatrix A={a ij } dargestellt werden. a ij = 1, wenn eine Kante zwischen den Knoten i und j existiert, ansonsten ist a ij = A = In der k-ten Potenz A k ("(k-1)-mal mit sich selbst multipliziert") der Adjazenzmatrix gibt das Element 14

15 a ij (k) die Anzahl der gerichteten Kantenfolgen der Länge k von i nach j an. Beispiel: A (2) = A (3) = Es existieren beispielsweise ein gerichteter Weg der Länge 2 von Knoten 2 zu Knoten 1 oder 2 gerichtete Wege der Länge 3 von 4 nach 3. Anwendungen der Graphentheorie in der Raumplanung und Regionalwissenschaft Wie kaum eine andere mathematische Disziplin hat die Graphentheorie Eingang in die Raumplanung und Regionalwissenschaft gefunden. Die Anwendungsgebiete reichen dabei von einfachen Formalisierungen bis zu komplexen Algorithmen und Modellen. Im Rahmen der Lehrveranstaltung "Mathematik und Statistik" kann nur auf die wichtigsten Anwendungen hingewiesen werden; eine Detaillierung einzelner Verfahren wird in speziellen Lehrveranstaltungen (z.b. Methoden der Regionalanalyse; Kleinräumige Standortbewertung) geboten. 15

16 1. Einfache Formalisierungen Graphen zur Abbildung von Infrastrukturnetzen: Knoten sind einzelne Standorte; Kanten sind Leitungen der Infrastruktur (Verkehr, Ver- und Entsorgung); Bewertungen sind Kapazitäten, Transportströme, Interaktionen, Entfernungen. Graphen zur Abbildung von Grenznetzen: Knoten sind ausgewählte geografische Punkte; Kanten sind Grenzen; Bewertungen sind Überwindungswiderstände. 2. Komplexe Algorithmen und Modelle Kürzeste-Wege-Algorithmen: Berechnung von "Kürzesten Wegen" (in den Dimensionen "Entfernung" oder "Zeit") zwischen einzelnen Standorten aus Entfernungsmatrizen. Diese Matrizen sind eine wichtige Voraussetzung für Modelle der Lagegunst und von Interaktionsbeziehungen. Strömungsmodelle: Ermittlung maximaler Ströme; Ermittlung kostenminimaler Ströme in Leitungsnetzen. Modelle optimaler Routensuche: Briefträgerproblem; Travelling-Salesman- Problem. 16

17 Grundbegriffe und Defintionen der Kombinatorik 1. Das Summenzeichen i1 a i = a 1 + a a Es gilt: i1 (a i + b i ) = i1 a i + i1 b i i1 ca i = c i1 a i i1 (a i b i ) i1 a i i1 b i 17

18 2. Das Produktzeichen i1 a i = a 1 a 2... a es gilt: i1 (a i b i ) = i1 a i i 1 b i i1 ca i = c i 1 a i i1 i =! -Faktorielle Definition: 0! = 1 Beispiel: 5! = 5 x 4 x 3 x 2 x 1 = 120 Produktregel der Kombinatorik Sind n Entscheidungen zu treffen und die Entscheidung jeder Stufe 1, 2, 3,..., lässt jeweils m 1, m 2, m 3,..., m n Möglichkeiten zu, so erhält man die Gesamtszahl der Entscheidungsmöglichkeiten, indem man die Anzahl der 18

19 Entscheidungsmöglichkeiten jeder einzelnen Stufe miteinander multipliziert: k = m 1. m 2. m 3.,,,.m n Beispiel: Drei Patienten kommen in ein Wartezimmer mit 6 Stühlen. Wieviele Möglichkeiten gibt es für diese Leute, auf den Stühlen Platz zu nehmen? Der erste Patient hat 6 Stühle (Möglichkeiten) zur Auswahl, der zweite nur noch 5 Stühle und der dritte Patient kann dann nur noch unter 4 Stühlen auswählen. Es gibt also =120 verschiedene Sitzordnungen. Summenregel der Kombinatorik Haben die beiden unvereinbaren Ereignisse E 1 oder E 2 genau m 1 bzw. m 2 Möglichkeiten für ihr Auftreten, dann gibt es für das zusammengesetzte Ereignis E 1 oder E 2 genau m 1 + m 2 Möglichkeiten. Beispiel: Lisa spielt mit ihrer Puppe. Sie will aus einer Kiste mit 2 gelben und 3 roten Hosen sowie 2 schwarzen und 4 blauen Jacken eine Kleiderkomposition für ihre Puppe zusammenstellen. Wieviele Möglichkeiten hat sie dazu? Für die Auswahl der Hosen gibt es = 5, für die Jacken = 6 Möglichkeiten (Summenregel). Insgesamt hat Lisa dann 5. 6 = 30 Möglichkeiten, ihre Puppe anzukleiden (Produktregel). 19

20 Permutationen Permutationen sind definiert als beliebige Anordnungen einer Menge M von vorgegeben Elementen. M = {a,b,c,d} Permutationen: abcd abdc acbd.. 1. Permutationen ohne Wiederholungen P =! P... Anzahl der Permutationen von Elementen ohne Wiederholungen 2. Permutationen mit Wiederholungen P w =! / (w 1! w 2!...) P w... Anzahl der Permutationen von Elementen mit Wiederholungen w i... Wiederholungen des Elementes i Beispiel: M = {a,a,a,b,b,c,d,d,d,d} P 10w = 10! / (3! 2! 1! 4!) =

21 Variationen Variationen sind definiert als Auswahl von K Elementen aus einer Menge M von Elementen unter Berücksichtigung ihrer Anordnung. 1. Variationen ohne Wiederholungen V (K) =! / ( - K)! V (K)... Variationen der Klasse K von Elementen ohne Wiederholungen Beispiel: Bei der Bepflanzung einer Straße stehen für 3 Baumscheiben 10 Baumarten zur Verfügung. Wieviele Möglichkeiten der Bepflanzung gibt es, wenn kein Baum doppelt vorkommen darf? V 10 (3) = 10! / 7! = 10*9*8 = Variationen mit Wiederholungen V w (K) = K V w (K)...Variationen der Klasse K von Elementen mit Wiederholungen Beispiel: Zahl der verschiedenen Tipmöglichkeiten im Fußballtoto: V 3w (12) = 3 12 =

22 Kombinationen Kombinationen sind definiert als Auswahl von K Elementen aus einer Menge M von Elementen ohne Berücksichtigung ihrer Anordnung. 1. Kombinationen ohne Wiederholungen C (K) =! K!( K)! K C (K)... Zahl der Kombinationen von Elementen der Klasse K ohne Wiederholungen Beispiel: Zahl der Wettmöglichkeiten beim Lotto 6 aus 45: C 45 (6) = 45! / (6! 39!) = Kombinationen mit Wiederholungen C w (k) = K K 1 C w (k)... Anzahl der Kombinationen von Elementen der Klasse K mit Wiederholungen Beispiel: 22

23 In einem Urlaubsort werden (täglich) 10 geführte ganztägige Wanderungen angeboten. Wieviele Kombinationsmöglichkeiten bestehen bei einem 7- tägigen Urlaub, wenn täglich eine Wanderung unternommen wird? C 10w (7) = 16! / (7! 9!) = Anwendungen der Kombinatorik in der Raumplanung und Regionalwissenschaft Spezifische Anwendungen der Kombinatorik sind in der Raumplanung und Regionalwissenschaft eher selten. Die verwendeten Beispiele zeigen aber von den vielfältigen Anwendungsmöglichkeiten der Kombinatorik bei Auswahlproblemen aller Art. Als Grundlage der Statistik und vor allem der Wahrscheinlichkeitstheorie hat die Kombinatorik ihren Platz in der angewandten Mathematik. 23

24 Übungsbeispiele Graphentheorie und Kombinatorik 1. Gegeben ist folgender ungerichter Graph: Ermitteln Sie die Kennzahlen,, und sowie für alle Knoten die Königszahl. Zeichnen Sie einen spannenden Baum des Ausgangsgraphen! 24

25 2. Gegeben ist folgender bewertete ungerichtete Graph: Ermitteln Sie den Indizes! 3. Ermitteln Sie für den gegebenen Graphen die Adjazenzmatrix und stellen Sie fest (1) wieviele Kantenfolgen der Länge 2 von Knoten 3 nach 4 bzw. von 1 nach 5 führen, (2) wieviele Kantenfolgen der Länge 3 es zwischen den Knoten 6 und 2 gibt. 4. Zeigen Sie (mit Hilfe kombinatorischer Verfahren), daß die Zahl der Kanten in einem ungerichteten, vollständigen Graphen gleich ist (n(n-1)/2) (n... Knotenzahl). 5. Wieviele Möglichkeiten gibt es beim Lotto 6 aus 45 einen Dreier (Vierer, Fünfer) zu tippen? 6. Im neuen Studienplan gilt es 6 Wahlfächer aus einem Katalog von 22 Möglichkeiten auszuwählen. (a) wieviele Möglichkeiten gibt es insgesamt? (b) wieviele Möglichkeiten gibt es, wenn man die 4 Lehrveranstaltungen der Dozenten Blaas und Feilmayr unbedingt vermeiden möchte? (c) wieviele Möglichkeiten gibt es, wenn die 3 Veranstaltungen von Prof. Schönbäck unbedingt dabei sein sollten? 25

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr Graphentheorie Algebraic Graph Theory von Chris Godsil und Gordon Royle Kapitel 1.1 1.3 Seminararbeit von Katharina Mayr 01210559 Universität Graz Insitut für Mathematik und wissenschaftliches Rechnen

Mehr

1 Beispiele für Graphen

1 Beispiele für Graphen Beispiele für Graphen 1 Beispiele für Graphen 1. Kreuzungsproblem : 3 Häuser sollen mit einem Wasser-, Gas- und Elektroanschluß verbunden werden, wobei keine Kreuzung entstehen darf. Abbildung 1: Kreuzungsproblem

Mehr

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat.

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat. Chr.Nelius: Graphentheorie (WS 2018/19) 8 Bipartite Graphen 26 8: Bipartite Graphen In einer Schulklasse mit 24 Schülern s 1,s 2,s 3,...,s 24 wurde eine Mathe Arbeit geschrieben. Um das Ergebnis bildlich

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

A B = {(a,b) a A, b B}

A B = {(a,b) a A, b B} Binäre Relationen Def: A, B zwei Mengen. Das kartesische Produkt von beiden ist A B = {(a,b) a A, b B} Eine MengeR A B heißt (zweistellige) Relation. Anstatt (a,b) R schreibt man oft auch arb. 1 SindR,S

Mehr

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S Minimale Formale Grundlagen Graphentheorie Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt Minimale

Mehr

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen Übersicht Graphen beschreiben Objekte und Beziehungen zwischen ihnen geeignet für Modellierung verschiedener Aufgaben betrachten endliche, ungerichtete und endliche, gerichtete Graphen Graphen bestehen

Mehr

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht 1. Einführung Kapitelübersicht 1. Einführung Grundbegriffe und Bezeichnungen Beispiele Bäume gerichtete Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 15 Das Königsberger Brückenproblem Beispiel

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Anwendungen von Graphen

Anwendungen von Graphen Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke elektrische Schaltpläne Entity-Relationship Diagramme Beweisbäume endliche Automaten Syntaxbäume für Programmiersprachen Entscheidungsbäume

Mehr

Elementare Definitionen. Anwendungen von Graphen. Formalisierung von Graphen. Formalisierung von Digraphen. Strassen- und Verkehrsnetze

Elementare Definitionen. Anwendungen von Graphen. Formalisierung von Graphen. Formalisierung von Digraphen. Strassen- und Verkehrsnetze Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke Elementare Definitionen Ein Graph besteht aus Knoten und Kanten, die die Knoten verbinden. elektrische Schaltpläne Entity-Relationship

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

1. Einige Begriffe aus der Graphentheorie

1. Einige Begriffe aus der Graphentheorie . Einige Begriffe aus der Graphentheorie Notation. Sei M eine Menge, n N 0. Dann bezeichnet P n (M) die Menge aller n- elementigen Teilmengen von M, und P(M) die Menge aller Teilmengen von M, d.h. die

Mehr

Zählen perfekter Matchings in planaren Graphen

Zählen perfekter Matchings in planaren Graphen Zählen perfekter Matchings in planaren Graphen Kathlén Kohn Institut für Mathematik Universität Paderborn 25. Mai 2012 Inhaltsverzeichnis Motivation Einführung in Graphentheorie Zählen perfekter Matchings

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen Folie 1 von 20 Lernmodul 2 Graphen Folie 2 von 20 Graphen Übersicht Motivation Ungerichteter Graph Gerichteter Graph Inzidenz, Adjazenz, Grad Pfad, Zyklus Zusammenhang, Trennende Kante, Trennender Knoten

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Grundlagen: Begriffe zu Graphen

Grundlagen: Begriffe zu Graphen l o a UNIVERSITÄT KONSTANZ September 18 LEHRSTUHL FÜR PRAKTISCHE INFORMATIK Prof Dr D Wagner / Annegret Liebers Grundlagen: Begriffe zu Graphen Das erste Lehrbuch zur Graphentheorie war [K ön6 (Der Nachdruck

Mehr

Ferienkurs zum Propädeutikum Diskrete Mathematik. Technische Universität München

Ferienkurs zum Propädeutikum Diskrete Mathematik. Technische Universität München Ferienkurs zum Propädeutikum Diskrete Mathematik Andreas Würfl Stefan König Technische Universität München WS 09/10 Übersicht 1 Binäre Relationen 2 Elementares Zählen 3 Partitionen zählen 4 Erzeugende

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Netzwerke: Optimierung und Maßzahlen

Netzwerke: Optimierung und Maßzahlen Netzwerke: Optimierung und Maßzahlen Graph X für folgende Beispiele: Knoten v1 bis v7 Kante e(v i,v j ) in Minuten Die Graphentheorie als Instrument der Netzwerkanalyse Grundbegriffe und Eigenschaften

Mehr

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring Kürzeste Wege in Graphen Orte mit Straßenverbindungen Orte als Knoten eines Graphen Straßenverbindungen als Kanten eines Graphen Ungerichteter Graph G = (V,E) Kanten Knoten Knotenmenge V = {,,n} oder {,,n

Mehr

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/42 Graphische Darstellung von Zusammenhängen schon an vielen Stellen

Mehr

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen André Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen 8 Grundbegriffe der Graphentheorie für die Kante, die die beiden Knoten und verbindet. Der linke Graph in Bild. kann

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 9 Graphen Version vom 13. Dezember 2016 1 / 1 Vorlesung Fortsetzung 13. Dezember

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

Zur Erstellung von Verkehrsgraphen. Zur Erstellung von Verkehrsgraphen für den Individualverkehr

Zur Erstellung von Verkehrsgraphen. Zur Erstellung von Verkehrsgraphen für den Individualverkehr Zur Erstellung von Verkehrsgraphen Die Graphentheorie als Instrument der Netzwerkanalyse Grundbegriffe und Eigenschaften zur Abbildung topologischer Sachverhalte Beispiele Abbildung von Infrastruktur-

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 2: Einführung in die Graphentheorie - Teil 2 Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. März 2018 1/48 OPERATIONEN

Mehr

Unendliche Graphen. Daniel Perz 24. Dezember Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind.

Unendliche Graphen. Daniel Perz 24. Dezember Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind. Unendliche Graphen Daniel Perz 24. Dezember 2011 1 Definition Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind. Definition 2. Ein Graph G=(V,E) heißt Strahl, wenn gilt

Mehr

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E

Mehr

Einführung in die Graphentheorie. Monika König

Einführung in die Graphentheorie. Monika König Einführung in die Graphentheorie Monika König 8. 11. 2011 1 Vorwort Diese Seminararbeit basiert auf den Unterkapiteln 1.1-1.3 des Buches Algebraic Graph Theory von Chris Godsil und Gordon Royle (siehe

Mehr

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq Vorlesung 3: Graphenalgorithmen Markus Püschel David Steurer Peter Widmayer PDF download goo.gl/ym3spq Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Gerichtete Graphen und Abhängigkeiten

Mehr

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014 Der Fünf-Farben-Satz Lukas Schweighofer Feb.2014 1 Contents 1 Vorwort 3 2 Graphentheoretische Grundlagen 4 3 Satz 2 (Eulerscher Polyedersatz) 8 4 Satz 3 9 5 Der Fnf-Farben-Satz 10 5.1 Beweis 1..............................

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1 Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung) Tutorium 3 Grundbegriffe der Informatik (7. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Motivation Kap. 6: Graphen

Motivation Kap. 6: Graphen Motivation Kap. 6: Graphen Warum soll ich heute hier bleiben? Graphen sind wichtig und machen Spaß! Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Was gibt es

Mehr

Programmierkurs Python

Programmierkurs Python Programmierkurs Python Stefan Thater Michaela Regneri 2010-0-29 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen für Graphen Tiefen- und Breitensuche Nächste Woche: mehr Algorithmen 2 Was

Mehr

Minimal spannender Baum

Minimal spannender Baum Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri FR.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Sommersemester 011 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen

Mehr

Übungsaufgaben Graphentheorie, Wintersemester 2011/12

Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Frank Göring 25. Januar 2012 Zusammenfassung Übungsaufgaben zur Graphentheorievorlesung. 1 Bis 19.10.2011 1. Wir hatten einen Graphen G als zusammenhängend

Mehr

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert: KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008 Graphentheorie Rainer Schrader Färbungen Zentrum für Angewandte Informatik Köln 28. Januar 2008 1 / 57 2 / 57 wir wollen versuchen, die Knoten eines Graphen zu färben dabei dürfen keine zwei benachbarten

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Kantengraphen und Planare Graphen. Seminararbeit

Kantengraphen und Planare Graphen. Seminararbeit Kantengraphen und Planare Graphen Seminararbeit in Mathematisches Seminar für LAK 621.378 SS 2018 vorgelegt von Anna Maria Gärtner bei: Baur, Karin, Univ.-Prof. Dr.phil. Graz, 2018 Inhaltsverzeichnis 1

Mehr

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten Graphentheorie Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten gerichteter Graph (DiGraph (directed graph) E: Teilmenge E

Mehr

2. Unendliche Mengen endliche vs. unendliche Mengen, abzählbare vs. überabzählbare Mengen

2. Unendliche Mengen endliche vs. unendliche Mengen, abzählbare vs. überabzählbare Mengen Diskrete Mathematik LVA 405.020 C. Fuchs Inhaltsübersicht 31.01.2018 Inhaltsübersicht Die diskrete Mathematik beschäftigt sich, im Gegensatz zur Analysis, mit diskreten anstatt kontinuierlichen (stetigen)

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Digraphen, DAGs und Wurzelbäume

Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 1 Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 2 Eingangs- und Ausgangsgrad Bei einer gerichteten Kante e = (u,v) E heißt u Startknoten von

Mehr

Notizen zu Transformationen und Permutationen. T (A) = {f : A A}

Notizen zu Transformationen und Permutationen. T (A) = {f : A A} Transformationen Notizen zu Transformationen und Permutationen Ist A eine Menge, so ist die Menge T (A) = {f : A A} bezüglich der Komposition (Hintereinanderausführung) als Operation und der identischen

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil II Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 07.

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 02. Mai 2017 [Letzte Aktualisierung: 10/07/2018,

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Mustererkennung: Graphentheorie

Mustererkennung: Graphentheorie Mustererkennung: Graphentheorie D. Schlesinger TUD/INF/KI/IS D. Schlesinger () ME: Graphentheorie 1 / 9 Definitionen Ein Graph ist ein Paar G = (V, E) mit der Menge der Knoten V und der Menge der Kanten:

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr