Allgemeine Chemie - Teil: Anorganische Chemie

Größe: px
Ab Seite anzeigen:

Download "Allgemeine Chemie - Teil: Anorganische Chemie"

Transkript

1 - Teil: Anorganische Chemie Inhalt 1. Einführung 2. Stoffe und Stofftrennung 3. Atome und Moleküle 4. Der Atomaufbau 5. Wasserstoff 6. Edelgase 7. Sauerstoff 8. Wasser und Wasserstoffperoxid 9. Ionenbindung und Salze 10. Atombindung 11. Metallbindung 12. Das chemische Gleichgewicht 13. Säuren und Basen 14. Redox-Reaktionen Folie 1

2 Literatur Einführend E. Riedel, Allgemeine und anorganische Chemie degruyter, 7. Auflage 1999 C.E. Mortimer, U. Müller, Chemie Thieme, 8. Auflage 2003 P.W. Atkins, J.A. Beran, Chemie Einfach alles Wiley-VCH, 2. Auflage 1998 M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham, Allgemeine und Anorganische Chemie, Spektrum, 1. Auflage 2004 Weiterführend E. Riedel, Anorganische Chemie degruyter, 6. Auflage 2004 A.F. Hollemann, N. Wiberg, Lehrbuch der anorganischen Chemie degruyter, 102. Auflage 2007 J.E. Huheey, E.A. Keiter, R. Keiter, Anorganische Chemie degruyter, 3. Auflage 2003 Folie 2

3 1. Einführung Was ist Chemie? Die Chemie ist die Lehre von den Stoffen, von ihrem Aufbau, ihren Eigenschaften, und von den Umsetzungen, die andere Stoffe aus Ihnen entstehen lassen (Linus Carl Pauling 1956, Nobelpreise: Chemie 1954, Frieden 1962) Beispiel SiO Mg 2 MgO + Si (Pulver) Chemischer Prozess (z.b. Reduktion) Natürliche Quarzkristalle Si (Einkristall, Wafer) Physikalischer Prozess (z.b. Rekristallisation) 12 Wafer für die Halbleiterproduktion Folie 3

4 1. Einführung Die Chemie ist eine bis heute exponentiell wachsende Wissenschaft! Anzahl der in den Chemical Abstracts Weit mehr als 50 Millionen Verbindungen und (CAS) bis 2003 referierten Biosequenzen sind heute (2010) in der CAS - Datenbank registriert: wissenschaftlichen Originalarbeiten: Biosequenzen 41% ~ 26 Millionen Abstracts Polymere 3% Legierungen 2% Organische Verb. 47% Zeitliche Entwicklung der Anorganische Verb. 2% Veröffentlichungen pro Jahr Koordinationsverb. 5% Zeitliche Entwicklung der Größe der CAS Datenbank Start der Datenbank Mill. Substanzen Mill. Substanzen Mill. Substanzen Folie 4

5 2. Stoffe und Stofftrennung Als Stoffe bezeichnet man Körper, deren chemische und physikalische Eigenschaften von Größe und Gestalt bzw. Form unabhängig sind Beispiel: Edelstahl Bohrer, Messer, Rahmen, Schere, Schreibfeder... Stoffe Heterogene Systeme Homogene Systeme (mikroskopisch unterscheidbar) (mikroskopisch einheitlich) Fest-fest Gemenge (Granit) Legierungen (Messing) Fest-flüssig Suspension (Kalkmilch) Lösungen (Kochsalzlösung) Fest-gasförmig Aerosol (Rauch) - Flüssig-flüssig Emulsion (Milch) Lösungen (Ethanol in Wasser) Flüssig-gasför. Aerosol (Nebel, Schaum) Lösungen (Sauerstoff in Wasser) Reine Stoffe Folie 5

6 2. Stoffe und Stofftrennung Physikalische Trennung heterogener Systeme 1. Dichteunterschiede Liht Leichtere Flüssigkeit ikit fest-fest Aufschlämmen (Goldwäscherei) fest-flüssig Sedimentation (1 G) Zentrifugation ( G) Schwerere Flüssigkeit 2. Teilchengrößenunterschiede fest-fest Sieben Sedimentation fest-flüssig Filtrieren (Glasfiltertiegel) flüssig-flüssig Scheiden (Scheidetrichter) Glasfiltertiegel Glasfritte Stopfen Saugstutzen fest-gasförmig Filtrieren (Luftfilter) Saugflasche Filtrat Folie 6

7 Zerlegung homogener Systeme 2. Stoffe und Stofftrennung 1. Physikalische Methoden Verdampfen und Kondensation: Meerwasser Regenwasser Destillation: Ethanol/H 2 O Ethanol + H 2 O Abkühlen: Salzlösungen Salzkristalle Kondensation und Verdampfen: Luft N 2, O 2, Edelgase Adsorption und Desorption Gaschromatografie Lösung verdampfbarer Substanzen Flüssigkeitschromatografie Lösung fester Substanzen Papierchromatografie Lösung fester Substanzen (ß-Carotine) Zentrifugation (von Gasen) 235/ UF UF 6 + UF 6 2. Chemische Methoden Fällungsreaktionen Mg 2+, Hg 2+ (aq)+s 2- HgS +M Mg 2+ (aq) Gasreinigung Trocknung von Edelgasen oder N 2 über Phosphorpentoxid P 4 O 10 +6HO 2 4HPO 3 4 Folie 7

8 Einteilung der Stoffe 2. Stoffe und Stofftrennung Heterogene Stoffe Stoffaufbau aus verschiedenen Phasen Homogene Stoffe Stoffausbau aus einer einzigen Phase 1. Lösungen Phasenaufbau aus verschiedenen Molekülarten 2. Reine Stoffe Phasenaufbau aus einer einzigen i Molekülart a. Verbindungen Molekülaufbau aus verschiedenen Atomarten b. Elemente Molekülaufbau aus einer einzigen Atomart Alle chemischen Verbindungen lassen sich durch Dissoziationsprozesse bei genügend hohen Temperaturen in die einzelnen Elemente zerlegen: 400 C 2 HgO 2 Hg + O 2 MgO 6000 C Mg + O (Keine Bildung von O 2, da Sauerstoff bei 6000 K fast zu 100% dissoziert vorliegt Folie 8

9 Gliederung 3. Atome und Moleküle 3.1 Gesetz von der Erhaltung der Massen Gesetz der konstanten Proportionen 3.3 Gesetz der multiplen Proportionen 3.4 Gesetz der äquivalenten Proportionen 3.5 Dalton sche Atomhypothese 3.6 Volumenverhältnisse bei chemischen Reaktionen 3.7 Relative Atommassen 3.8 Molare Massen Absolute Atommassen Folie 9

10 3.1 Gesetz von der Erhaltung der Massen Bei allen chemischen Reaktion bleibt die Gesamtmasse der Reaktionsteilnehmer konstant (Antoine Lavoisier 1774) Experimentelle Bestätigung durch genaue Messungen der Masse von Edukten und Produkten (Hans Landolt 1908) Massenänderung < 10-5 % Aber: Chemische Reaktionen sind von Energieumsatz E begleitet Energie/Masse Äquivalenz: E=mc 2 (Albert Einstein 1915) Stark exotherme Reaktion: E = 500 kj Massenänderung ~ 10-9 % Massenänderung bei chemischen Reaktionen liegen jenseits der erreichbaren Wägegenauigkeit Folie 10

11 3.2 Gesetz der konstanten Proportionen Das Massenverhältnis zweier sich zu einer chemischen Verbindung vereinigenden Elemente ist konstant (Joseph Louis Proust 1799) Hoffman scher Zersetzungsapparat: Volumenverhältnis H/O = 2:1 (H 2 O) Massenverhältnis H/O = 1:7.936 Wasser-Elektrolyse Weitere Beispiele für konstante Massenverhältnisse Fe/S = 1:0.57 (FeS) Mg/O = 1:0.666 (MgO) Na/Cl = 1:1.542 (NaCl) H/N = 1:4.632 (NH 3 ) Folie 11

12 3.3 Gesetz der multiplen Proportionen Die Massenverhältnisse zweier sich zu chemischen Verbindungen vereinigender Elemente stehen im Verhältnis einfacher ganzer Zahlen zueinander (John Dalton 1803) Beispiele für multiple Massenverhältnisse Stickstoffoxide heute bekannt N/O = 1:0.571 = 1:1x0.571 N 2 O Distickstoffmonoxid N/O = 1:1.142 = 1:2x0.571 NO Stickstoffmonoxid N/O = 1:1.713 = 1:3x0.571 N 2 O 3 Distickstofftrioxid N/O = 1: = 1:4x0.571 NO 2 Stickstoffdioxid N/O = 1:2.855 = 1:5x0.571 N 2 O 5 Distickstoffpentoxid Kohlenstoffoxide C/O = 1:1.333 = 1:1x1.333 CO Kohlenmonoxid C/O = 1:2.666 = 1:2x1.333 CO 2 Kohlendioxid Folie 12

13 3.4 Gesetz der äquivalenten Proportionen Elemente vereinigen sich stets im Verhältnis bestimmter Verbindungsmassen oder ganzzahliger Vielfache dieser Massen zu chemischen Verbindungen (J.B. Richter 1791) Vergleich der Massenverhältnisse von Stickstoff und Sauerstoff in den Stickstoff- oxiden mit den Massenverhältnissen, nach denen Stickstoff t und Sauerstoff mit Wasserstoff reagieren zeigt, dass diese sich durch Vielfache davon darstellen lassen Noch einmal die Stickstoffoxide NH 3 : H 2 O 1. N/O = 1:0.571 = (3x4.632):(1x7.936) ~ 1.0 N:0.5 O 2. N/O = 1: = (3x4.632):(2x7.936) ~ 1.0 N:1.0 O 3. N/O = 1:1.713 = (3x4.632):(3x7.936) ~ 1.0 N:1.5 O 4. N/O = 1:2.284 = (3x4.632):(4x7.936) ~ 1.0 N:2.0 O 5. N/O = 1:2.855 = (3x4.632):(5x7.936) ~ 1.0 N:2.5 O Begriff der Äquivalentmassen Folie 13

14 3.5 Dalton sche Atomhypothese Atome als kleinste Teile der Materie (John Dalton 1808) 1. Elemente sind nicht bis ins unendliche teilbar, sondern bestehen aus kleinsten, nicht weiter zerlegbaren Teilchen, den sogenannten Atomen 2. Alle Atome eines Elementes sind gleich (Masse und Gestalt) 3. Atome verschiedener Elemente haben unterschiedliche Eigenschaften 2 A + B A 2 B A + B AB 2 A + 3 B A 2 B 3 A+2B AB 2 2 A + 5 B A 2 B 5 usw. Relative Atommassen sind so nicht bestimmbar, da noch unbekannt ist, in welchem Zahlenverhältnis sich die Atome zu Verbindungen vereinigen Folie 14

15 3.6 Volumenverhältnisse bei chemischen Reaktionen Beobachtung an Gasen Jede Menge eines Stoffes entspricht, wenn der Stoff gasförmig ist oder sich verdampfen lässt, bei bestimmten Druck und bestimmter Temperatur ein bestimmtes Gasvolumen! Stöchiometrische Massengesetze Volumengesetze Das Volumenverhältnis zweier sich zu einer chemischen Verbindung vereinigender gasförmiger Elemente ist konstant und lässt sich durch einfache ganze Zahlen darstellen. Beispiele 2 Volumina Wasserstoff + 1 Volumen Sauerstoff 2 Volumina Wasserdampf 1 Volumen Wasserstoff + 1 Volumen Chlor 2 Volumina Chlorwasserstoff Folie 15

16 3.7 Relative Atommassen Die relativen Atommassen ergeben sich aus den experimentell bestimmten Massenverhältnissen bei chemischen Reaktionen (siehe Kapitel 3.2) Massenverhältnis im Wasser: H/O = 1:7.936 Atomzahlverhältnis Wasser: H 2 O 1 O = H Definition eines Bezugspunkt notwendig: Das Kohlenstoffisotop 12 C wurde 1961 von der IUPAC als Bezugspunkt gp gewählt und hat die relative Atommasse A r = Element Rel. Atommasse A r Wasserstoff u Chlor u Sauerstoff u Stickstoff u Kohlenstoff u A r (C) > 12 Definition der Atommasseneinheit: 1 u = 1/12 m( 12 C-Atom) Elemente bestehen aus mehreren Isotopen! Kohlenstoff enthält z.b. auch 13 C und 14 C Folie 16

17 3.8 Molare Massen Die Menge in Gramm eines Elementes, die dem Zahlenwert der relativen Atommasse entspricht, enthält stets die gleiche Zahl von Atomen, nämlich N A Atome Die Masse eines Mols nennt man die molare Masse M. Die Stoffmenge ergibt sich demnach zu: n = m/m Die entsprechende Teilchenzahl ist: N=nN. N A M = Molare Masse [g/mol] m = Masse [g] n = Stoffmenge [mol] N A = Avogadro-Konstante [Teilchen/mol] N = Teilchenzahl Berechnung von molaren Massen: M(H 2 O) = 2 M(H) + M(O) = 2*1.008 g/mol g/mol = g/mol M(CO 2 ) = M(C) + 2 M(O) = g/mol + 2* g/mol = g/mol Folie 17

18 3.9 Absolute Atommassen Die absoluten Atommassen ergeben sich aus der Division der molaren Massen durch die Avogadrozahl N A Bestimmung der Avogadrokonstante notwendig m 4M(Cu) Dichte = gcm -3 V N 3 A a 4M(Cu) N A = mol -1 3 ρa a = Gitterkonstante von Cu = cm = 3.62 Å Elementarzelle von Kupfer (kubisch-flächenzentriert) a Beispiele m( 12 C) = M( 12 C)/N A m( 1 H) = M( 1 H)/N A = 12.0 gmol -1 /N A = gmol -1 /N A = g = g Folie 18

19 3.9 Absolute Atommassen Die absoluten Atommassen lassen sich mit Hilfe der atomaren Masseneinheit u berechnen Atomare Masseneinheit 1 u = 1/12. m( 12 C) = g Element RlAt Rel. Atommasse AM l]ab r Molare Masse [g/mol] Abs. Atommasse [10-24 g] Wasserstoff u Chlor u Sauerstoff u Stickstoff u Kohlenstoff u In der Praxis werden nur relative Atom- und Molekülmassen bzw. Atom- und Molekulargewichte benutzt. Der Begriff Gewicht ist eigentlich unzulässig, da das Gewicht von der Schwerebeschleunigung abhängt, die Masse dagegen nicht. Schwerebeschleunigung am Äquator: Erde 9.80 ms -2 Mond 1.6 ms -2 Folie 19

20 4. Der Atomaufbau Gliederung 4.1 Elementarteilchen 4.2 Atomkerne und chemische Elemente 4.3 Isotope 4.4 Massendefekt - Stabilität der Materie Radioaktiver Zerfall 4.6 Kernreaktionen 4.7 Herkunft und Häufigkeit der Elemente 4.8 Quantentheorie nach Planck 4.9 Atomspektren Bohr sches Atommodell 4.11 Der Wellencharakter von Elektronen 4.12 Eigenfunktionen der Schrödinger-Gleichung 4.13 Die Quantenzahlen 4.14 Energie der Orbitale Aufbau des Periodensystems Folie 20

21 4.1 Elementarteilchen Elementarteilchen sind kleinste Bausteine der Materie, die aus nicht noch kleineren Einheiten zusammengesetzt sind Historische Entdeckungen in der Teilchenphysik 1808 J. Dalton Atomhypothese 1897 JJ J.J. Thomson Elektronen + Ionen 1909 R.A. Millikan Bestimmung der Elementarladung 1913 E. Rutherford Proton 1932 J. Chadwick Neutron 1934 W. Pauli Neutrino-Postulat (ß-Zerfall) 1940 Mesonen, Baryonen (Höhenstrahlung Teilchenbeschleuniger) 1964 M. Gell-Mann Quark-Postulat 1995 Fermi-Lab Nachweis des Top-Quarks 2011 CERN Nachweis des Higgs-Boson Folie 21

22 Aufbau der Materie 4.1 Elementarteilchen Molekül Atom Eigenschaften der atomaren Bausteine Teilchen Elektron Proton Neutron Atomkern Atomhülle Nukleonen Protonen + Neutronen Quarks (u + d) Strings? Elektronen Symbol e p n Masse g g g MeV MeV MeV Ladung -e +e C C 0 Elementarladung e = C Massen lassen sich gemäß E = mc 2 auch durch Energien ausdrücken mit 1 ev = J bzw. 1 MeV = J Folie 22

23 4.1 Elementarteilchen Das Standardmodell der Teilchenphysik (Ladung) (Spin) Fermionen = Elektron e 0,511 MeV, -e, 1/2 Myon µ 105,7 MeV, -e, 1/2 Tau 1777 MeV, -e, 1/2 Leptonen + Elektron-Neutrino e < 2,2 ev, 0, 1/2 Myon-Neutrino µ < 0,17 MeV, 0, 1/2 Tau-Neutrino < 15,5 MeV, 0, 1/2 Antiteilchen Up u 2,4 MeV, +2/3 e, 1/2 Down d 4,8 MeV, -1/3 e, 1/2 Charme c 1270 MeV, +2/3 e, 1/2 Strange s 104 MeV, -1/3 e, 1/2 Top t MeV, +2/3 e, 1/2 Quarks + Bottom b Antiteilchen 4200 MeV, -1/3 e, 1/2 Kraft Starke Kraft Elektromagnetismus Schwache Kraft Gravitation Träger Gluonen Photon W- und Z-Boson Graviton (postuliert) Wirkt auf Quarks Quarks und geladene Quarks und alle Teilchen Leptonen Leptonen Verantwortlich Zusammenhalt der Chemie, Elektrizität, Radioaktivität, Planetensysteme, für Nukleonen e Magnetismus Kernfusion Galaxien(haufen) e Folie 23

24 4.2 Atomkerne und chemische Elemente Ein chemisches Element besteht aus Atomkernen mit gleicher Protonenzahl (Kernladungszahl oder Ordnungszahl Z) Nomenklatur 1H 1 Proton Massenzahl Ladung 2He 2 Protonen E Ordnungszahl Atomzahl 3Li 3P Protonen Eindeutig durch Protonen- und Neutronenzahl charakterisierte Atomsorte heißen Nuklide 1 H = 1 Proton 2 H = 1 Proton + 1 Neutron (Deuterium) 3 H = 1 Proton + 2 Neutronen (Tritium) 4 He = 2 Protonen + 2 Neutronen Die Ladung der Atome wird durch die Zahl der Elektronen bestimmt Hydrogeniumkation H + = 1 Proton Wasserstoffatom H = 1 Proton + 1 Elektron Hydridanion H - = 1 Proton + 2 Elektronen Folie 24

25 4.3 Isotope Nuklide mit gleicher Protonenzahl und verschiedener Neutronenzahl heißen Isotope Element Ordnungszahl Nuklidsymbol Protonenzahl Neutronenzahl Nuklidmasse Atomzahlanteil 1 Wasserstoff H 1 H 2 H 1 0 1, , ,0141 0,015 3 H 1 2 Spuren 2 Helium 3 He 2 1 3,0160 0,00013 He 4 He 2 2 4, , Lithium 6 Li 3 3 6,0151 7,42 Li 7 Li 3 4 7, ,58 4 Beryllium 9 Be 4 5 9, ,0 Be (Reinelement) 5 Bor 10 B , ,78 B 11 B , ,22 6 Kohlenstoff C 12 C 13 C , , ,0034 1,11 14 C 6 8 Spuren Folie 25

26 4.3 Isotope Die mittlere Atommasse eines Elementes erhält man aus den Atommassen der Isotope unter Berücksichtigung der natürlichen Isotopenhäufigkeit A r (E) = X. 1 A r (N 1 )+ X 2. A r (N 2 ) X n. A r (N n ) X 1 + X X n = 1 X n = Atomzahlanteil Nuklid N n Für Kohlenstoff ergibt sich demnach: A r (C) = ( u u)/100 = u Bei den meisten Elementen handelt es sich um Mischelemente, wobei Kerne mit 2, 8, 20, 28, 50 und 82 Protonen besonders stabil sind Hohe Anzahl stabiler Isotope 50 Sn Isotope: 112 Sn, 114 Sn, 115 Sn, 116 Sn, 117 Sn, 118 Sn, 119 Sn, 120 Sn, 122 Sn, 124 Sn Die Isotopenverteilung in einem Mischelement hängt stark von der Herkunft ab, da durch eine Vielzahl physikalischer bzw. geologischer Prozesse Isotopen- anreicherung auftreten kann Altersbestimmung, z.b. mit Hilfe vom 14 C-Gehalt) Folie 26

27 4.4 Massendefekt - Stabilität der Materie Die Masse der Atomkerne aller Nuklide ist geringer als die Summe der Massen der einzelnen Kernbausteine (Massendefekt = Kernbindungsenergie) Beispiel: 4 He-Kern Berechnete Masse = 2 p + 2 n = u Experimentell gefunden = u Massendefekt = u (~0.75%) Differenz = E = mc 2 Die Bildung von g He-Kernen aus Protonen und Neutronen liefert ca kj Zum Vergleich C + O 2 CO kj/mol Zur Erzeugung von kj Energie müssen 82.2 t C verbrannt werden! Verschmelzung von Kernbausteinen zu Atomkernen Kernfusion Folie 27

28 4.4 Massendefekt - Stabilität der Materie Die Vergrößerung der Nukleonenzahl führt auch zu einer Vergrößerung der Kernkräfte erreicht, die jedoch nur zwischen benachbarten Nukleonen wirksam werden Leichte Atomkerne N/Z ~ 1.0 Schwere Atomkerne N/Z ~ 1.6 Die Zunahme der Protonenzahl, deren abstoßende Wirkungen weitreichend sind und die zwischen allen Protonen des Kernes wirken, führt zu einer Lockerung des Zusammenhaltes zwischen den Kernbausteinen. Oberhalb einer bestimmten Protonenzahl sind Atomkerne daher nicht mehr stabil Aussendung von Kernteilchen (z.b. He-Kerne) Radioaktivität Folie 28

29 4.4 Massendefekt - Stabilität der Materie Die Stabilität der Atomkerne und Nukleonen wird durch die starke Kraft verursacht, die der abstoßenden Coulomb-Kraft zwischen den Protonen entgegenwirkt Reichweite der starken Kraft ~ m, Stärke der starken Kraft >> abstoß. Coulomb-Kraft t 1/2 energie/nukleon Teilchen Halbwertszeit Zerfallsprodukt Kernbindungs- Konsequenz Elektron stabil - - elementar Proton > a -Strahlung - nicht elementar Neutron 10.4 min p+e+ + e - freie Neutronen existieren nicht 56 Fe-Kern stabil MeV Kernfusion bis = Maximum Fe liefert Energie 238 U-Kern a 234 Th + 4 He ( -Strahlung) 7.5 MeV Kernspaltung liefert Energie Folie 29

30 4.5 Radioaktiver Zerfall Der radioaktive Zerfallsprozess folgt einer Kinetik 1. Ordnung, d.h. die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt ist proportional zur Gesamtzahl der vorhandenen Kerne N dn/dt = -k. N mit k = Zerfallskonstante dn/n = -k. dt und t = Zeit Integration ergibt: lnn - lnn 0 = -k. t ln(n 0 /N) = k. t Halbwertszeit t 1/2 : N = N 0 /2 ln2 = k. t 1/2 t 1/2 = (ln2)/k = 0.693/k ) Atome N (%) radioaktiven Zahl der Altersbestimmung ( 14 C-Methode) Halbwertszeiten t 1/2 Folie 30

31 4.6 Kernreaktionen Kernreaktionen stellen die Primärenergiequelle im Kosmos dar und sind für die Entstehung der Elemente verantwortlich Kernfusion Stellare Energieerzeugung 1 H 4 He 12 C 56 Fe Supernovaexplosionen r-prozess 256 Lr Thermonukleare Waffen 2 H + 3 H 4 He + n Folie 31

32 4.6 Kernreaktionen Kernreaktionen werden in Form der Kernspaltung für die Erzeugung elektrischer Energie genutzt Kernspaltung Erdwärme ( 238 U, 232 Th, 40 K) Atomwaffen ( 235 U, 239 Pu) Kernkraftwerke ( 235 U, 239 Pu) 235 U + n 90 Kr Ba + 2n 1 g 235 U liefert kj, was der Energiemenge entspricht, die bei der Verbrennung von 2.4 t C frei werden Folie 32

33 4.7 Herkunft und Häufigkeit der Elemente Alle Elemente schwerer als Wasserstoff sind durch Kernfusionsprozesse entstanden Urknall > K 90% H, 10% He, Spuren von Li Sterne > K Wasserstoffbrennen 4 1 H 4 He + 2 e + + e MeV > K Heliumbrennen 3 4 He 12 C MeV > K Kohlenstoffbrennen 12 C + 4 He 16 O MeV 16 O + 4 He 20 Ne MeV... bis 56 Fe (energieärmster Kern) Supernovae > K Bildung der schweren Elemente bis 256 Lr (Beobachtet: 1054 Chinesen, 1572 Tycho Brahe, 1604 Johannes Kepler) Heutige Verteilung der Elemente im Kosmos: 88.6% H, 11.3% He, 0.1% Metalle Folie 33

34 4.7 Herkunft und Häufigkeit der Elemente Die Häufigkeitsverteilung der Elemente in der irdischen Atmos-, Bio-, Hydro-, Kryound Lithossphäre unterscheidet sich deutlich von der kosmischen Elementverteilung Ursache: Differenzierungsprozesse 1. Bildung des Planetensystems Zentrum: Sonne mit H und He Peripherie: Planeten und Monde mit H, He und Metallstaub 2. Bildung der Planeten innere Planeten: klein mit geringer Schwerkraft Elemente > Li Kern: schwere Elemente Fe, Ni und andere Metalle Kruste: leichte Elemente Silicate, Aluminosilicate äußere Planeten: groß mit hoher Schwerkraft leichte Elemente: H, He, CH 4, NH Entwicklung der Planetenatmosphären (primordiale heutige Atmosphäre) Venus: CO 2 /N 2 /H 2 O CO 2 /N 2 H 2 O(g) 2 H + O Erde: CO 2 /N 2 /H 2 O N 2 /O 2 /Ar CO 2 Carbonate CO 2 C + O 2 (biol. Aktiv.) H 2 O(g) H 2 O(l) (Ozeane) Mars: CO 2 /N 2 /H 2 O CO 2 /N 2 H 2 O(g) H 2 O(s) Folie 34

35 4.7 Herkunft und Häufigkeit der Elemente Häufigkeit der Elemente in der Erdhülle (Atmos-, Bio-, Hydro-, Kryo- und Lithossphäre) in Gewichtsprozent Häufigkeit [%] 48.9 O 26.3 Si Element(e) 10-1 Al, Fe, Ca, Na, K, Mg (1 ) H, Ti, Cl, P Mn, F, Ba, Sr, S, C, N, Zr, Cr Rb, Ni, Zn, Ce, Cu, Y, La, Nd, Co, Sc, Li, Nb, Ga, Pb, Th, B (1 ppm) Pr, Br, Sm, Gd, Ar, Yb, Cs, Dy, Hf, Er, Be, Xe, Ta, Sn, U, As, W, Mo, Ge, Ho, Eu Tb, I, Tl, Tm, Lu, Sb, Cd, Bi, In < 10-5 (0.1 ppm) Hg, Ag, Se, Ru, Te, Pd, Pt, Rh, Os, Ne, He, Au, Re, Ir, Kr... von links nach rechts mit abnehmender Häufigkeit (A.F. Hollemann, N. Wiberg) Folie 35

36 4.8 Quantentheorie nach Planck Elektromagnetische Strahlung wird als Teilchenstrom beschrieben, wobei die Energie eines Teilchens nicht beliebige Werte annehmen kann, sondern ein Vielfaches eines Quants (kleinster Energiewert) ist (Max Planck 1900) E = h mit h = Js (Planck sches Wirkungsquantum) und = Frequenz [s -1 ] E = hc/ Lichtgeschwindigkeit: g c = = ms -1 Die Energie eines Lichtquants (Photons) ist somit proportional zur Frequenz bzw. umgekehrt proportional zur Wellenlänge Berechnung der Photonenzahl für 1 W (1 Js -1 ) Photonen der Wellenlänge 550 nm Energie eines Photons: E = hc/ = hc/ m = 4*10-19 J pro Photon Anzahl Photonen: Gesamtenergie/Energie eines Photons =1Js -1 /4*10-19 J=25* Photonen s -1 Folie 36

37 4.9 Atomspektren Bei der Zerlegung von Licht treten diskrete Absorptions- bzw. Emissionslinien im Spektrum auf (charakteristische Linien für jedes Element) Spalt Prisma Grundlage der Spektralanalyse der Sterne und der Atomabsorptionsspektros- kopie (AAS) Sonnen- und Sternenlicht Fraunhofer-Linien (Joseph von Fraunhofer 1820) = [s -1 ] mit n = 3, 4, 5, 6... (Frequenzen der Balmer- Linien) Wasserstoffbrenner Emissionslinien (J.J. J Balmer 1885) n Folie 37

38 4.10 Bohr sches Atommodell Erster Versuch zur Beschreibung der Elektronenhülle (Niels Bohr 1913) Bohr s Modell für das H-Atom - Kern viel schwerer als Elektron ( in Ruhe) - Elektron (m e, e) kreist um den Kern in einem Bahnradius r mit der Bahngeschwindigkeit v - Elektron unterliegt der Zentrifugalkraft: FZ= m e v 2 /r - Elektron wird vom Kern angezogen: F el = e 2 /4 0 r 2 - Für stabile Bahnen gilt: F Z = -F el Bohr s Postulat Nicht alle Bahnen sind erlaubt, sondern nur solche, bei denen der Bahndrehimpuls L = m. r. v ein Vielfaches n des gequantelten Drehimpulses h/2 ist Energie des Elektrons 1. Bahn h/2 K L M 2. Bahn 2h/2 3. Bahn 3h/ mee 1 E n hcr n 8ε 0h n = /n 2 J mit n = 1, 2, 3,... R = Rydberg-Konstante (Ionisierungsenergie von Wasserstoff) Folie 38

39 4.10 Bohr sches Atommodell Erklärung des Linienspektrums des H-Atoms E E = h = E 2 -E 1 = = n - [J] n = J 2 2 n 2 n1 Paschen-Serie n = J 18 Balmer-Serie n = J = [s -1 ] h 2 2 n - 2 n1 1-1 = [s ] n2 n1 n=1 Lyman-Serie J Mit dem Bohr schen Modell lassen sich exakt nur Atome mit einem Elektron beschreiben (H, He +, Li 2+, Be 3+,...) Folie 39

40 4.11 Der Wellencharakter von Elektronen Jedes bewegte Teilchen besitzt auch Welleneigenschaften (Louis debroglie 1924) Schwingende Saite Gleichsetzen von E = hc/ und E = mc 2 ergibt h λ debroglie Wellenlänge mc Elektronen verhalten sich auf ihrer Bahn um den Kern wie eine stehende Welle (zeitlich unveränderliche Welle) A max Bedingungen für eine stehende Welle x = 0 Kreisbahn: n = 2 r Saite: Amplitude A = 0 für x = 0, l 2 l mit n 0,1, 2, nh, mvr n d A( x) 2 2 2π 4 A( x) 2 dx (Quantelung des Drehimpulses) Eigenfunktionen:A(x) = A max sin(2 x+d) x = l 0 Folie 40

41 4.11 Der Wellencharakter von Elektronen Elektronenwolken sind dreidimensional schwingende Systeme, deren mögliche Schwingungszustände dreidimensional stehende Wellen sind Beschreibung der Welleneigenschaften des Elektrons durch (Erwin Schrödinger 1927) 2 δ Ψ 2 δx 2 δ Ψ 2 δy 2 δ Ψ 2 δz 2 8π m [E 2 h V(x, y,z)] Ψ(x, y,z) 0 Homogene Differentialgleichung 2. Ordnung Lösungen sind Wellenfunktion (x,y,z) analog der Amplitudenfunktion bei der schwingenden Saite E = Energie, V = potentielle Energie, m = Masse des Elektrons, h = Planck sches Wirkungsquantum Bid Bei den Wellenfunktionen Wll (x,y,z) ( )handelt es sich um e-funktionen Folie 41

42 4.12 Eigenfunktionen der Schrödinger-Gleichung Bei den Lösungen einer Differentialgleichung handelt es sich um sogenannte Eigenfunktionen (bei der Schrödinger-Gleichung heißen diese Wellenfunktionen) Darstellung der Wellenfunktion Verwendung von Polarkoordinaten r, und (Analog zu Längen- ( ) und Breitengrad ( ) bei der Erdkugel) n,l,m sind Indizes n,l,m (r,, )= R n,l (r). l,m ( ). m ( ) für die Wellenfunktionen z r x y Das Quadrat dieser Funktionen beschreibt die räumliche Aufenthaltswahr- scheinlichkeit des Elektrons in einem Potentialfeld, z.b. um einen Atomkern 2 n,l,m = rel. Wahrscheinlichkeit das Elektron am Ort (r,, ) anzutreffen Randbedingung 2 n,l,m soll überall stetig, eindeutig und endlich sein Gesamtwahrscheinlichkeit 2 n,l,mdv = 1 (mit v = Volumen) Das Volumenelement, in dem die Aufenthaltswahrscheinlichkeit des Elektrons 95% beträgt, wird als Atomorbital bezeichnet Folie 42

43 4.12 Eigenfunktionen der Schrödinger-Gleichung s-funktionen (s-orbitale) n = 1, 2, 3,... und l, m = / 2 / a 1 s 1,0,0 0 ) e r a / 2 r / 2 2 s 2,0,0 0 ( ) (1 r / a 0 ) e a 4 2 a0 0 0 ( e kein winkelabhängiger gg Anteil rotationssymmetrisch kein Vorzeichenwechsel keine Knotenebene 1s Funktion 2s Funktion 3s Funktion Folie 43

44 4.12 Eigenfunktionen der Schrödinger-Gleichung p-funktionen (p-orbitale) n = 2, 3,... und l = 1, m = -1, 0, 1 2 p x 2,1,1 1 ( 2a 2 3/ 2 r / 2 a 0 ) ( r / 2a0 ) e 3 0 winkelabhängiger gg Anteil nicht rotationssymmetrisch ein Vorzeichenwechsel eine Knotenebene 3 sin cos 2 Aussehen der Orbitale für l = 1 und alle zulässigen m Beim Übergang zu Aufenthaltswahrscheinlichkeiten verzerren sich ihdie Kugeln zu Keulen Folie 44

45 4.12 Eigenfunktionen der Schrödinger-Gleichung d-funktionen (d-orbitale) n = 3, 4, usw. und l = 2, m = -2, -1, 0, 1, 2 winkelabhängiger Anteil in 2 Raumrichtungen komplexere räumliche Verteilung Zwei Vorzeichenwechsel zwei Knotenebenen Beim Übergang zu Aufenthaltswahrhilihkit gibt es wieder Verzerrungen, doch bleibt die Symmetrie scheinlichkeiten erhalten Folie 45

46 4.12 Eigenfunktionen der Schrödinger-Gleichung f-funktionen (f-orbitale) n = 4, 5, usw. und l = 3, m = -3, -2, -1, 0, 1, 2, 3 winkelabhängiger Anteil in 3 Raumrichtungen noch komplexere räumliche Verteilung Drei Vorzeichenwechsel drei Knotenebenen m = 0 und m = 1 m = 2 und m = 3 Folie 46

47 4.13 Die Quantenzahlen Die drei Indizes der Lösungsfunktionen der Schrödinger-Gleichung werden als Quantenzahlen bezeichnet Die erste Quantenzahl n wird als Hauptquantenzahl bezeichnet und definiert die verschiedenen Hauptenergieniveaus (Schalen) des Atoms (analog den Bahnen im Bohr schen Modell) Energie Vakuum laufende Nr. Bezeichnung Energie n = 1 K-Schale E 1 (Grundzustand) E 1 n=2 L-Schale 1/4 E 1 n = 3 M-Schale 1/9 E 1 + 1/4 E N 1 L n = 4 N-Schale 1/16 E 1+ 1/9 E 1+ 1/4 E 1 n = 5 O-Schale 1/25 E 1 + 1/16 E 1 + 1/9 E 1 + 1/4 E 1 K Atomkern Folie 47

48 4.13 Die Quantenzahlen Die zweite Quantenzahl l wird als Nebenquantenzahl oder Bahndrehimpulsquantenzahl bezeichnet Sie definiert verschiedene Unterenergieniveaus (Unterschalen), die aufgrund verschiedener Bahndrehimpulse entstehen Sie macht sich in der Feinaufspaltung der Spektrallinien bemerkbar (wenn man Atomemissionsspektrum mit hoher Auflösung vermisst) Schale K L M N n l Bezeichnung 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f (Die Kürzel stammen aus der Spektroskopie: sharp, principal, diffuse, fundamental) Es gilt: l =0 0, 1, 2,... n-1 Bahndrehimpuls: L l(l 1) h 2π Folie 48

49 4.13 Die Quantenzahlen Die dritte Quantenzahl m l wird als Magnetquantenzahl bezeichnet, da sich in einem Magnetfeld die Unterenergieniveaus weiter unterscheiden lassen Der durch die Nebenquantenzahl festgelegte Bahndrehimpuls kann nur bestimmte, gequantelte Orientierungen zur Richtung des Magnetfeldes einnehmen In der Spektroskopie wird die Aufspaltung der Spektrallinien im Magnetfeld als Zeeman-Effekt bezeichnet l m l Anzahl der Zustände s-zustand (Orbital) p-zustände (Orbitale) d-zustände (Orbitale) fZ f-zustände (Orbitale) Es gilt: m l = -l... +l l m l = +1 m l = 0 m l = -1 Richtung des Magnetfeldes p-orbitale (l = 1) Folie

50 4.13 Die Quantenzahlen Die Spinquantenzahl m s ist eine vierte Quantenzahl, die den Eigendrehimpuls der Elektronen, die im Magnetfeld 2 Orientierungen annehmen können, berücksichtigt Die beiden Quantenzustände des Elektrons (Spinorientierungen) m s werden durch Pfeile symbolisiert: m s = +1/2 (spin-up) bzw. m s = -1/2 (spin-down) Schale n l m l Anzahl der m s Anzahl der Orbitale e - -Zustände K /2 2 2 L / /2 6 8 M / / /2 10 N / / / /2 14 Folie 50

51 4.14 Energie und Besetzung der Orbitale Atomorbitale wasserstoffähnlicher Atome (nur 1 Elektron!) Alle Orbitale einer Schale besitzen die gleiche Energie (sind entartet) Schale n s p d f l = 1 l = 2 l = 3 l = 4 Energ gie N 4 M 3 4s 4p 4d 4f 3s 3p 3d L 2 K 1 2s 2p 1s Folie 51

52 4.14 Energie und Besetzung der Orbitale Mehrelektronenatome Die Orbitale einer Schale besitzen nicht mehr dieselbe Energie (Aufhebung der Entartung durch Elektron-Elektron-Wechselwirkung) 3s 3p 3d d-orbitale Energie p-orbitale s-orbital M-Schale des Wasserstoffatoms M-Schale eines Mehrelektronenatoms Folie 52

53 4.14 Energie und Besetzung der Orbitale Das Schema zur Besetzung der Unterschalen ergibt sich aus der Abhängigkeit der Energie der Unterschalen von der Ordnungszahl Änderung der Energie der Unter- Schale schale mit wachsender Ordnungszahl Q 7s 7p P 6s 6p 6d O 5s 5p 5d 5f N 4s 4p 4d 4f M 3s 3p 3d L 2s 2p K 1s s p d f Unterschale Beispiele: 1s 2s 2p 3s 3p 1s 2s 2p 3s 3p 4s 3d 4p 5s Folie 53

54 4.14 Energie und Besetzung der Orbitale Die Besetzung der Zustände (Orbitale) mit Elektronen geschieht gemäß dem Pauli- Prinzip und der Hund schen Regel Pauli-Prinzip (Wolfgang Pauli 1925) In einem Atom dürfen keine zwei Elektronen (Fermionen) in allen vier Quanten- zahlen übereinstimmen: Hund sche Regel (Friedrich Hund 1927) Entartete, also energetisch gleichwertige, Orbitale gleichen Typs werden so besetzt, dass sich die maximale Anzahl ungepaarter Elektronen gleichen Spins ergibt: p x p y p z p x p y p z p-orbitale Niedrigere Energie Höhere Energie Folie 54

55 4.15 Aufbau des Periodensystems Bei der Auffüllung der Atomorbitale mit Elektronen kommt es zu periodischen Wiederholungen gleicher Elektronenanordnungen auf der jeweils äußersten Schale Atom Orbitaldiagramm Elektronenkonfiguration Gruppe H 1s 1 He 1s 2 [He] Edelgase Li 1s 2 2s 1 [He]2s 1 Alkalimetalle Be 1s 2 2s 2 [He]2s 2 Erdalkalimetalle B 1s 2 2s 2 2p 1 [He]2s 2 2p 1 Borgruppe C 1s 2 2s 2 2p 2 [He]2s 2 2p 2 Kohlenstoffgruppe N 1s 2 2s 2 2p 3 [He]2s 2 2p 3 Stickstoffgruppe O 1s 2 2s 2 2p 4 [He]2s 2 2p 4 Chalkogene F 1s 2 2s 2 2p 5 [He]2s 2 2p 5 Halogene Ne 1s 2 2s 2 2p 6 [Ne] Edelgase 1s 2s 2p Folie 55

56 4.15 Aufbau des Periodensystems Gruppen Zn H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr Be 12 Mg 20 Ca 38 Sr 56 Ba 88 Ra Al Sc 39 Y 57 La 89 Ac Ti 40 Zr 72 Hf 104 Rf V 41 Nb 73 Ta 105 Db Cr 42 Mo 74 W 106 Sg Mn 43 Tc 75 Re 107 Bh Fe 44 Ru 76 Os 108 Hs Co 45 Rh 77 Ir 109 Mt Ni 46 Pd 78 Pt 110 Ds Cu 47 Ag 79 Au Zn 48 Cd 80 Hg Rg Cn 5 B Ga 49 In 81 Tl 2 Zn He Si 32 C Ge 50 Sn N 15 P 33 As 51 Sb O 16 S 34 Se 52 Te Pb Bi Po F 17 Cl 35 Br 53 I 85 At Ne 18 Ar 36 Kr 54 Xe 86 Rn Ce 90 Th 59 Pr 91 Pa 60 Nd 92 U 61 Pm 93 Np 62 Sm 94 Pu 63 Eu 95 Am 64 Gd 96 Cm Hauptgruppenelemente Nebengruppenelemente (Übergangsmetalle) g Lanthanoiden, Actinoiden 65 Tb 97 Bk 66 Dy 98 Cf 67 Ho 99 Es 68 Er 100 Fm 69 Tm 101 Md 70 Yb 102 No s- und p-block Elemente d-block Elemente f-block Elemente 71 Lu 103 Lr 6 7 Folie 56

57 4.15 Aufbau des Periodensystems Periodische Eigenschaften: Ionisierungsenergie Die Ionisierungsenergie g I eines Atoms ist die Energie, die benötigt wird, um ein Elektron aus dem höchsten besetzten Niveau zu entfernen: A A + + e - : +I Sie ist für alle Elemente negativ, es kostet also immer Energie ein Elektron zu ent- fernen Sie nimmt innerhalb der Gruppen des PSE von oben nach unten ab (zunehmende Größe und Abschirmung) Sie nimmt innerhalb der Perioden des PSE mit steigender Ordnungszahl zu (aber nicht monoton) Folie 57

58 4.15 Aufbau des Periodensystems Periodische Eigenschaften: Elektronenaffinität Die Elektronenaffinität E A eines Atoms ist die Energie, die frei wird, wenn es ein Elektron aufnimmt A+ e - A - : -E A In den meisten Fällen wird bei der Anlagerung geines Elektrons also Energie frei Ihre Größe hängt von der Anziehungs- kraft des Kerns und von der Elektron- Elektron-Abstoßung ab Für die Anlagerung eines 2. Elektrons muss immer Energie aufgewendet werden, d.h. E A ist positiv (Abstoßung zwischen e - und A - ) Li -66 Na -59 K -55 Rb -53 Cs -52 Be -6 B -33 E A in kjmol -1 C -128 N ~0 O -147 F -334 Ne -6 Folie 58

59 Gliederung 5. Wasserstoff 5.1 Isotope und physikalische Eigenschaften 5.2 Darstellung und Reaktivität 5.3 Technische Verwendung H-NMR-Spektroskopie 5.5 Wasserstofftechnologie Folie 59

60 5.1 Isotope und physikalische Eigenschaften Wasserstoff ist das häufigste Element im Universum und der primäre Brennstoff der stellaren Energieerzeugung (und einer zukünftigen Energiewirtschaft?) Isotop Rel. Häufigkeit T b [ C] T m (N 2 O) [ C] T b (N 2 O) H % Anreicherung D % beim Verdampfen T % D 2 O/H 2 O-Verhältnis Klimaanalyse von Eisbohrkernen H 2 hat unter Normbedingungen eine sehr geringe Dichte von g/l (Luft: 1.30 g/l) starker Auftrieb Ballone/Zeppeline H 2 hat ein großes Diffusionsvermögen in vielen Materialien Speicherung in Pd möglich Folie 60

61 5.2 Darstellung und Reaktivität Darstellung a) Im Labor Zn + 2 HCl ZnCl 2 + H 2 (2 H e - H 2 ) CaH H 2 O Ca(OH) H 2 (2 H - H e - ) b) Technisch 2 H 2 O 2 H 2 + O 2 (Wasserelektrolyse) CH 4 +HO 2 3H 2 +CO (Steam-Reforming) Rf C + H 2 O H 2 + CO (Kohlevergasung zu Wassergas) C nh 2n+2 C n-1 H 2n + H 2 + C (Thermische Crackung von KWs) Reaktivität Molekularer Wasserstoff ist bei RT recht reaktionsträge: H diss = 436 kj/mol Die stark exotherme Knallgasreaktion H 2 + O 2 2 H 2 O muss aktiviert werden T > 400 C, UV-Licht, Funken, Pt-Katalysator... Atomarer Wasserstoff ist sehr reaktionsfähig und reduziert die Oxide edler Metalle, wie CuO, SnO 2, PbO und Bi 2 O 3, zu den Metallen Bildung von H-Atomen: Mikrowellen, Lichtbogen, bei 3000 C 9% dissoziert Folie 61

62 5.3 Technische Verwendung Hydrierung, Reduktionsmittel, Treibstoff, Ammoniaksynthese, Energiespeicherung 1. Hydrierung von C=C Bindungen Härtung von Pflanzenölen (Margarine) R-CH=CH-R + H 2 R-CH 2 -CH 2 -R 2. Reduktionsmittel Synthese von Metallen WO H 2 W + 3 H 2 O 3. Ammoniaksynthese Haber-Bosch Verfahren N H 2 2 NH 3 4. Treibstoff für Raumfahrzeuge Space Shuttle Flüssigtank 2 H 2 + O 2 2 H 2 O Feststoffraketen 8Al+3NHClO 4 4 4AlO NH 3 +3HCl Steuertriebwerke 2 NO 2 + CH 3 N 2 H 2 N CO H 2 O + H 2 5. Energiespeicherung i Wasserstofftechnologie Folie 62

63 5.4 1 H-NMR-Spektroskopie In der NMR-Spektroskopie (engl.: Nuclear Magnetic Resonance) zur Aufklärung molekulare Strukturen untersucht man den Kernspin m I des Protons Prinzip Das Proton bzw. der 1 H-Kern besitzt einen Eigendrehimpuls (Kernspin) wie das Elektron P = (I(I+1))ћ mit I = 1/2 2 Zustände: m I = +1/2 und m I = -1/2 Ohne Magnetfeld Gleiche Energie Mit Magnetfeld Energiedifferenz E E Kernspin-Tomographie (Relaxationszeit angeregter 1 H-Kerne) E= 100 MHz E= 300 MHz Magnetfeldstärke B 0 E= 500 MHz h ΔE hν γ 2π B 0 für B 0 = Tesla tritt Resonanz bei = 500 MHz (Radiowellen) auf Folie 63

64 5.5 Wasserstofftechnologie H 2 wird zum Schlüssel der zukünftigen Energieversorgung (sobald die fossilen Brennstoffe knapp werden) Aufbau einer Brennstoffzelle 1. Kontrollierte Kernfusion in magnetisch gekapselten Plasmen (KFA Jülich, MPI Garching) 2 H+ 3 H 4 He + n Zentrale Energieerzeugung 2. Brennstoffzellen 2 H 2 + O 2 2 H 2 O kj/mol ( Strom ) Anode: H 2 + H 2O 2 H 3O e - Kathode: 1/2 O H 3 O e - 3 H 2 O Dezentrale Energieerzeugung + Elektro-KFZ Anode Kathode H 2 -Erzeugung: H 2 -Transport: H 2 -Speicherung: Elektrolyse (Solarzellen) Pipelines, Tankschiffe Flüssigtanks Folie 64

65 Gliederung 6. Edelgase 6.1 Ursprung und physikalische Eigenschaften 6.2 Gewinnung 6.3 Edelgasverbindungen 6.4 Das VSEPR Modell 6.5 Verwendung 6.6 Gasentladungslampen Xe-NMR-Spektroskopie Folie 65

66 6.1 Vorkommen und physikalische Eigenschaften Edelgase sind inerte, farb-, geruch- und geschmacklose einatomige Gase, die in Sternen und in der Atmosphäre vorkommen He Helios (Sonne) Kernfusion Ne Neos (neu) Kernfusion Ar Argos (träge) 40 K+e - (K-Einfang) 40 Ar Kr Kryptos (verborgen) 235 U 90 Kr Ba + n Xe Xenos (fremd) Rn Radius (Strahl) 226 Ra 222 Rn + 4 He Edelgas Elektronenkonfiguration T m [ C] T b [ C] IE [ev] [kj/mol] Vol-% in Luft He 1s Ne [He]2s 2 2p Ar [Ne]3s 2 3p ! Kr [Ar]3d 10 4s 2 4p Xe [Kr]4d 10 5s 2 5p Rn [Xe]4f 14 5d 10 6s 2 6p Folie 66

67 Aus Erdgas und Luft 6.2 Gewinnung He: aus Erdgas (bis zu 7 Vol-%! radioaktiver Zerfall von U und Th im Erdinnern) Rn: aus dem Zerfall von Ra-Salzen Ne, Ar, Kr, Xe: Durch Fraktionierung verflüssigter Luft (Linde-Verfahren) Vorgehen 1. Verflüssigung grektifikation 1. Fraktion: He/Ne/N 2 2. Fraktion: N 2 /Ar 3. Fraktion: Ar/O 2 4. Fraktion: O 2 /Kr/Xe 3. Entfernung von O 2 und N 2 durch chemische Methoden Folie 67

68 6.3 Edelgasverbindungen Das Dogma, dass Edelgase keine Verbindungen eingehen, gilt nicht für Kr, Xe und Rn (Neil Bartlett, Rudolf Hoppe 1962) Die Ionisierungsenergie von Krypton und Xenon ist gering genug, dass Reaktion mit einem starken Oxidationsmittel (F 2 ) möglich ist Kr + F 2 KrF 2 (linear, metastabil) Xe + F 2 XeF 2 (linear) Xe + 2 F 2 XeF 4 (quadratisch-planar) Xe + 3 F 2 XeF 6 (verzerrt oktaedrisch) XeF 6 + H 2 O 2 HF + XeOF 4 (quadratisch-pyramidal) XeOF H 2 O 4 HF + XeO 3 (trigonal-pyramidal) 2 XeO OH - XeO Xe + O H 2 O Ba 2 XeO 6 +2HSO 2 4 2BaSO 4 +2HO+XeO (tetraedrisch) Folie 68

69 6.4 Das VSEPR Modell Das Valence Shell Electron Pair Repulsion Modell besagt, dass sich Elektronenpaare abstoßen und deshalb so weit wie möglich voneinander entfernt anordnen Anzahl der Valenzelektronenpaare Anordnung Beispiel bindend frei der Atome 2 0 linear BCl BeCl trigonal-planar BF gewinkelt NO tetraedrisch CH ti trigonal-pyramidal id l NH gewinkelt H 2 O g 2 Folie 69

70 6.4 Das VSEPR Modell Anzahl der Valenzelektronenpaare Anordnung Beispiel bindend frei der Atome 5 0 trigonal-bipyramidal PF wippenförmig SF T-förmig BrF linear XeF oktaedrisch SF quadratisch-pyramidal id IF quadratisch-planar XeF 4 Folie 70

71 Die vier VSEPR Regeln 6.4 Das VSEPR Modell Nitrylkation Stickstoffdioxid Nitritanion 1. Bindende und nicht bindende Elektronenpaare versuchen sich wegen ihrer gegenseitigen Abstoßung möglichst weit voneinander zu entfernen (mehrfach- bindende Elektronenpaare brauchen nicht berücksichtigt werden, d.h. Doppelund Dreifachbindungen werden als Einheit betrachtet). 2. Die Abstoßungskraft einer Einfachbindung ist kleiner als die eines freien Elektronenpaares oder einer Mehrfachbindung. 3. Die Abstoßungskraft einer ZL-Bindung erniedrigt sich mit wachsendem Elektronegativitätsunterschied von Z und L. 4. Die gegenseitige elektronische und sterische Abstoßungskraft negativ polarisierter Liganden in ZL n wächst mit abnehmenden Radius von Z bzw. mit zunehmenden Radius von L. Folie 71

72 6.5 Verwendung In Lichtquellen, Excimer-Laser, Ballone, Atemgas, als Schutzgas, Kühlmittel, Lichtquellen Ar, Kr, Xe in Glühlampen Ar, Ne, Kr, Xe in Gasentladungslampen 2. Excimer-Laser und Plasmabildschirme Ar 2 * 2 Ar + h (126 nm) Kr 2 * 2 Kr + h (146 nm) Xe 2 * 2 Xe + h (172 nm) 3. Füllung von Ballonen Geringe Dichte von He ~ g/l 4. Atemgas He-O 2 Atemgas für Tieftaucher (He löst sich schlechter in Blut als N 2 ) Folie 72

73 6.6 Gasentladungslampen Lichterzeugung basiert auf der Emission angeregter Atome, wie Hg, Na, oder den Edelgasen in der Gasphase Prinzip der Lichterzeugung Kathode e - e - + A A e - A + + e - A* Glasrohr Nutzbares Spektrum Atomare Hg Emission A* A + h UV h UV + Leuchtstoff h visible Elektrode Leuchtstoff Hg In Leuchtstofflampen Atom Elektronen wird 3-5 mg flüssiges Hg eingefüllt, das während des Betriebs gasförmig vorliegt Kappe Leuchtstoffe: Anorganische Festkörperverbindungen Oxide, Sulfide, Nitride BaMgAl 10 O 17 :Eu 2+ LaPO 4 :Ce 3+,Tb 3+ Y 2 O 3 :Eu 3+ Sr 5 (PO 4 ) 3 Cl:Eu 2+ CMAl CeMgAl 11 O 19 :Tb 3+ GdMgB 5 O 10 :Ce 3+ Tb 3+ Mn 2+ Folie 73

74 Einsatz in der Chemie und Medizin Xe-NMR-Spektroskopie Medizin Kontrasterhöhung in Kernspin-Tomographie Untersuchungen Verbesserte Bildgebung g von Gefäßen, inneren Organen, Körperhohlräumen (Lunge) Chemie Strukturaufklärung von komplexen Molekülen Folie 74

75 Gliederung 7.1 Vorkommen in der Atmosphäre 7.2 Darstellung und Reaktivität 7.3 Physikalische Eigenschaften 7.4 Atmosphärenchemie 7.5 Sauerstoff in Verbindungen 7.6 Technische Verwendung 7. Sauerstoff Folie 75

76 7.1 Vorkommen in der Atmosphäre Das Vorkommen von Sauerstoff (O 2 und O 3 ) in der Atmosphäre ist das Ergebnis biologischer Aktivität Photosynthese: 6 CO H 2 O C 6 H 12 O O Zusammensetzung von trockener Luft N % 1500 O % Ar 0.93% 1000 CO % Ne % 500 CH 4, Kr, N 2 O, H 2, CO, Xe < 0.001% (< 10 ppm) 0 te [W/m 2 m] leistungsdicht Strahlungsl UV O 3 VIS IR Standardspektrum AM1.5global Sonnenhöhenwinkel 41.8 E total = 1000 W/m 2 Planck'scher Strahler 5800 K ~extraterrestrisches Sonnenspektrum Geochemie, Klimatologie, Paläontologie Sauerstoffisotope 16 O % H 18 2 O reichert sich bei ider Verdunstung in der flüssigen Phase an 17 O 0.038% T-Sensor: Einbau von 18 O in Foraminiferen, Mollusken und Kalk 18 O 0.200% massenspektroskopische Bestimmung des 16 O/ 18 O-Verhältnisses H 2 O CO 2 CO Wellenlänge [nm] Folie 76

77 Darstellung 7.2 Darstellung und Reaktivität Disauerstoff O 2 Trisauerstoff (Ozon) O 3 a) Erhitzen von Edelmetalloxiden a) Photolyse von O 2 oder Funken in O 2 2 HgO Hg + O 2 O 2 2 O. O 2 + O. O 3 2 Ag 2 O 4 Ag + O 2 (Ozonisator, Ozonschicht: Stratosphäre) b) Zersetzung von Peroxiden b) Photolyse von NO 2 in Luft 2 Na O 2 Na O + O NO NO + O. O + O O 3 2 BaO 2 2 BaO + O 2 (Sommersmog: Troposphäre) Reaktivität Disauerstoff ist bei RT recht stabil und reaktionsträge: H diss = 498 kj/mol Trisauerstoff ist thermodyn. instabil und zersetzt sich beim leichten Erwärmen oder in Gegenwart von Katalysatoren wie MnO 2, PbO 2 gemäß 2 O 3 3 O 2 O 2 und O 3 sind starke Oxidationsmittel S+O 2 SO 2 bzw. S+O 3 SO 3 Folie 77

78 7.3 Physikalische Eigenschaften Sauerstoff und Ozon lösen sich gut in Wasser (viel besser als Kohlenwasserstoffe...) Löslichkeit von O 2 in H 2 O bei 25 C und 1 bar ~ 40 mg pro Liter Luft enthält ca. 21% O 2 ~ 8 mg pro Liter Löslichkeit nimmt mit steigender Temperatur ab Kalte Gewässer sind fischreich (Humboldtstrom) Sauerstofffreie Chemie in Lösung erfordert gründliches Spülen mit einem Inertgas (Ar, N 2 ) Giftigkeit von O 2 und O 3 < 8% O 2 Ersticken durch Sauerstoffmangel > 60% O 2 Bildung von schädlichen Hyperoxid O 2 - O 3 ist extrem giftig: MAK-Wert = 0.2 mg/cm 3 ~ 0.1 ppm (parts per million) Folie 78

79 7.4 Atmosphärenchemie Durch die Bildung von O 2 entstand vor ca Mio. Jahren die Ozonschicht Stratosphäre (15-50 km) O h 2 2 O. O 2 + O. h O 3 < 240 nm (UV-C und VUV) < 310 nm (UV-B und UV-C) Cl. + O 3 ClO. + O 2 NO. + O 3 NO 2. + O 2 ClO. + O Cl. + O 2 NO. 2 + O NO. + O 2 Cl. stammt aus den FCKW = Fluorchlorkohlenwasserstoffe z.b. CFCl 3, CF 2 Cl 2 C x F y Cl z C x F y Cl z-1. + Cl. Troposphäre (0 10 km) Abgase: CO, C x H y + O 2 CO 2 + H 2 O 2 NO + O 2 2 NO 2 NO 2 + O 2 NO + O 3 (Sommersmog: O 3 3 > 180 µg/m Luft) Folie 79

80 7.5 Sauerstoff in Verbindungen Sauerstoff bildet Oxide, Peroxide, Hyperoxide (Superoxide) und Ozonide Oxide O 2- (-II) diamagnetisch 4 Li + O 2 2 Li 2 O Li 2 O + H 2 O 2 LiOH 2 Ca + O 2 2 CaO CaO + CO 2 CaCO 3 (Kalk) Peroxide O 2-2 (-I) diamagnetisch 2 Na + O 2 Na 2O 2 2 Na 2O CO 2 2 Na 2CO 3 + O 2 ( Atemgeräte) Ba + O 2 BaO 2 Hyperoxide O - 2 (-1/2) paramagnetisch Me + O 2 MeO 2 Me = K, Rb, Cs Ozonide O - 3 (-1/3) paramagnetisch MeO 2 + O 3 MeO 3 + O 2 Me = K, Rb, Cs Folie 80

81 7.6 Technische Verwendung Disauerstoff (O 2 ) Stahlerzeugung (Reduktion des Kohlenstoffgehaltes: 2 C + O 2 2 CO) Schweißen (Acetylen/O 2 ) Abwasserbehandlung Tik Trinkwassergewinnungi Als Atemgas (vermischt mit N 2 oder He) Medizin (Sauerstoffzelte) Trisauerstoff Ozon (O 3 ) Trinkwasser- und Luftentkeimung (Abtöten von Mikroorganismen) Organische Chemie (Ozonolyse) +H 2 O R 2 C=CR 2 + O 3 R 2 C O CR 2 R 2 C=O + O=CR 2 Synthese von Ketonen O-O O -H 2 O 2 Folie 81

6. Edelgase. Gliederung. 6.1 Ursprung und physikalische Eigenschaften

6. Edelgase. Gliederung. 6.1 Ursprung und physikalische Eigenschaften Gliederung 6. Edelgase 6.1 Ursprung und physikalische Eigenschaften 6.2 Gewinnung 6.3 Edelgasverbindungen 6.4 Das VSEPR Modell 6.5 Verwendung 6.6 Gasentladungslampen 6.7 129 Xe-NMR-Spektroskopie Folie

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 92 Grundlagen der Allgemeinen und Anorganischen Chemie 3. Das Periodensystem der Elemente 93

Mehr

Dr. Stephanie Möller Sommersemester ATOMAUFBAU

Dr. Stephanie Möller Sommersemester ATOMAUFBAU Dr. Stephanie Möller Sommersemester 017 4 ATOMAUFBAU 4. Der Atomaufbau Gliederung 4.1 Elementarteilchen 4. Atomkerne und chemische Elemente 4.3 Isotope 4.4 Radioaktiver Zerfall 4.5 Kernreaktionen 4.6 Herkunft

Mehr

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln Periodensystem Physik und Chemie Sprachkompendium und einfache Regeln 1 Begriffe Das (neutrale) Wasserstoffatom kann völlig durchgerechnet werden. Alle anderen Atome nicht; ein dermaßen komplexes System

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

Periodensystem der Elemente

Periodensystem der Elemente Periodensystem der Elemente 1829: Döbereiner, Dreiergruppen von Elementen mit ähnlichen Eigenschaften & Zusammenhang bei Atomgewicht Gesetz der Triaden 1863: Newlands, Ordnung der Elemente nach steigender

Mehr

Periodensystem der Elemente (PSE)

Periodensystem der Elemente (PSE) Periodensystem der Elemente (PSE) 1 2 H 1.0079 4.0026 3 4 5 6 7 8 9 10 Li 6.941 Be 9.0122 B 10.811 C 12.011 N 14.007 O 15.999 F 18.998 Ne 20.180 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar 22.990 24.305

Mehr

5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5.

5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. 5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. Atomradien 5.6. Atomvolumina 5.7. Dichte der Elemente 5.8. Schmelzpunkte

Mehr

Besetzung der Orbitale

Besetzung der Orbitale Frage Beim Wiederholen des Stoffes bin ich auf die Rechnung zur Energie gestoßen. Warum und zu welchem Zweck haben wir das gemacht? Was kann man daran jetzt erkennen? Was beschreibt die Formel zu E(n),

Mehr

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier)

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) 1 1.0079 H 3 Li 6.941 19 39.098 K 23 50.942 V 27 58.933 Co 73 180.95 Ta 78 195.08 Pt 82 207.2 Pb 21 44.956 Sc 25 54.938 Mn 29 63.546 Cu 33 74.922 As 7 14.007 N 75 186.21 Re 80 200.59 Hg 84 208.98 Po* 55

Mehr

Fakultät Mathematik und Naturwissenschaften, Anorganische Chemie Professur AC I. TU Dresden, 2017 Seminar zum Brückenkurs 2016 Folie 1

Fakultät Mathematik und Naturwissenschaften, Anorganische Chemie Professur AC I. TU Dresden, 2017 Seminar zum Brückenkurs 2016 Folie 1 TU Dresden, 2017 Seminar zum Brückenkurs 2016 Folie 1 Seminar zum Brückenkurs Chemie 2017 Atombau, Periodensystem der Elemente Dr. Jürgen Getzschmann Dresden, 18.09.2017 1. Aufbau des Atomkerns und radioaktiver

Mehr

Chemie für Biologen Wintersemester 2018 Dr. Seraphine Wegner

Chemie für Biologen Wintersemester 2018 Dr. Seraphine Wegner Chemie für Biologen Wintersemester 2018 Dr. Seraphine Wegner Vorlesung Mo + Mi von 10:00 bis 12:00 Uhr ohne Pause Klausur 18. Juli, 12:00-13:00 Uhr Klausureisicht 19. Juli ab 10 Uhr 1 Lehrbuch Chemie,

Mehr

Allgemeine Chemie - Teil: Anorganische Chemie

Allgemeine Chemie - Teil: Anorganische Chemie - Teil: Anorganische Chemie Inhalt 1. Einführung 2. Stoffe und Stofftrennung 3. Atome und Moleküle 4. Der Atomaufbau 5. Wasserstoff 6. Edelgase 7. Sauerstoff 8. Wasser und Wasserstoffperoxid 9. Ionenbindung

Mehr

Anhang 5. Radionuklid A 1. in Bq. Ac-225 (a) Ac-227 (a) Ac Ag Ag-108m (a) Ag-110m (a)

Anhang 5. Radionuklid A 1. in Bq. Ac-225 (a) Ac-227 (a) Ac Ag Ag-108m (a) Ag-110m (a) 1 Anhang 5 Auszug aus der Tabelle 2.2.7.7.2.1 der Anlage zur 15. Verordnung zur Änderung der Anlagen A und B zum ADR-Übereinkommen vom 15. Juni 2001 (BGBl. II Nr. 20 S. 654), getrennter Anlagenband zum

Mehr

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches

Mehr

Anordnung der Elemente nach aufsteigender Atommasse, Gesetz der Periodizität (Lothar Meyer, Dmitri Mendelejew, 1869)

Anordnung der Elemente nach aufsteigender Atommasse, Gesetz der Periodizität (Lothar Meyer, Dmitri Mendelejew, 1869) 1.2 Periodensystem der Elemente Anordnung der Elemente nach aufsteigender Atommasse, Gesetz der Periodizität (Lothar Meyer, Dmitri Mendelejew, 1869) Periode I a b 1 H 1,0 2 Li 6,9 3 Na 23,0 4 5 6 K 39,1

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

MO-Theorie: Molekülorbitale, Bindungsordnung, Molekülorbitaldiagramme von F 2, O 2, N 2, H 2 O, Benzol, Wasserstoffbrückenbindungen

MO-Theorie: Molekülorbitale, Bindungsordnung, Molekülorbitaldiagramme von F 2, O 2, N 2, H 2 O, Benzol, Wasserstoffbrückenbindungen Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen VI Molkülorbitaltheorie II MO-Theorie: Molekülorbitale, Bindungsordnung, Molekülorbitaldiagramme von F 2, O 2, N 2, H 2 O, Benzol,

Mehr

Trace Analysis of Surfaces

Trace Analysis of Surfaces Trace Analysis of Surfaces Metall-Spurenanalyse auf Oberflächen mittels VPD- Verfahren Babett Viete-Wünsche 2 Das Unternehmen Unser Serviceportofolio Die VPD-Analyse 3 Das Unternehmen: 4 Einige unserer

Mehr

3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und

3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und 3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und Reinelemente 3.5. Häufigkeit der Elemente 3.6. Atomare Masseneinheit

Mehr

Allgemeine Chemie - Teil: Anorganische Chemie

Allgemeine Chemie - Teil: Anorganische Chemie - Teil: Anorganische Chemie Inhalt 1. Einführung 2. Stoffe und Stofftrennung 3. Atome und Moleküle 4. Der Atomaufbau 5. Wasserstoff 6. Edelgase 7. Sauerstoff 8. Wasser und Wasserstoffperoxid 9. Ionenbindung

Mehr

Allgemeine Chemie - Teil: Anorganische Chemie

Allgemeine Chemie - Teil: Anorganische Chemie - Teil: Anorganische Chemie Inhalt 1. Einführung 2. Stoffe und Stofftrennung 3. Atome und Moleküle 4. Der Atomaufbau 5. Wasserstoff 6. Edelgase 7. Sauerstoff 8. Wasser und Wasserstoffperoxid 9. Ionenbindung

Mehr

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Aufbau von Atomen Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Wiederholung Im Kern: Protonen + Neutronen In der Hülle: Elektronen Rutherfords Streuversuch (90) Goldatome

Mehr

Thema heute: Aufbau der Materie, Atommodelle Teil 2

Thema heute: Aufbau der Materie, Atommodelle Teil 2 Wiederholung der letzten Vorlesungsstunde: Atomistischer Aufbau der Materie, historische Entwicklung des Atombegriffes Atome Thema heute: Aufbau der Materie, Atommodelle Teil 2 Vorlesung Allgemeine Chemie,

Mehr

1 Chemische Elemente und chemische Grundgesetze

1 Chemische Elemente und chemische Grundgesetze 1 Chemische Elemente und chemische Grundgesetze Die Chemie ist eine naturwissenschaftliche Disziplin. Sie befasst sich mit der Zusammensetzung, Charakterisierung und Umwandlung von Materie. Unter Materie

Mehr

Grundlagen der Chemie

Grundlagen der Chemie 1. Elementarteilchen Elemente Die moderne Atomtheorie geht auf die Arbeiten von JOHN DALTON (1766 1844) zurück. Sie basiert auf den folgenden Gesetzen. Gesetz der Erhaltung der Masse (Lavoisier, 1785)

Mehr

H Wasserstoff. O Sauerstoff

H Wasserstoff. O Sauerstoff He Helium Ordnungszahl 2 Atommasse 31,8 268,9 269,7 0,126 1,25 H Wasserstoff Ordnungszahl 1 Atommasse 14,1 252,7 259,2 2,1 7,14 1 3,45 1,38 Li Lithium Ordnungszahl 3 Atommasse 13,1 1330 180,5 1,0 0,53

Mehr

Atombau, Periodensystem der Elemente

Atombau, Periodensystem der Elemente Seminar zum Brückenkurs Chemie 2015 Atombau, Periodensystem der Elemente Dr. Jürgen Getzschmann Dresden, 21.09.2015 1. Aufbau des Atomkerns und radioaktiver Zerfall - Erläutern Sie den Aufbau der Atomkerne

Mehr

3. Bausteine der Materie: Atomhülle. Form der Atomorbitale. s-orbitale kugelsymmetrische Elektronendichteverteilung

3. Bausteine der Materie: Atomhülle. Form der Atomorbitale. s-orbitale kugelsymmetrische Elektronendichteverteilung 3. Bausteine der Materie: Atomhülle Form der Atomorbitale s-orbitale kugelsymmetrische Elektronendichteverteilung 1s 2s 3d - Orbitale 3. Bausteine der Materie: Atomhülle 3. Bausteine der Materie: Atomhülle

Mehr

Der Aufbau der Atome und das Periodensystem

Der Aufbau der Atome und das Periodensystem Der Aufbau der Atome und das Periodensystem Licht l*n = c Lichtgeschwindigkeit (c = 3.00*10 8 ms -1 ) Wellenlänge Frequenz (1Hz = 1 s -1 ) Wellenlänge, l Elektrisches Feld Farbe, Frequenz und Wellenlänge

Mehr

Orbitale, 4 Quantenzahlen, Hauptquantenzahl, Nebenquantenzahl, magnetische Quantenzahl, Spinquantenzahl

Orbitale, 4 Quantenzahlen, Hauptquantenzahl, Nebenquantenzahl, magnetische Quantenzahl, Spinquantenzahl Wiederholung der letzten Vorlesungsstunde: Das (wellen-)quantenchemische Atommodell Orbitalmodell Orbitale, 4 Quantenzahlen, Hauptquantenzahl, Nebenquantenzahl, magnetische Quantenzahl, Spinquantenzahl

Mehr

PC III Aufbau der Materie

PC III Aufbau der Materie 07.07.2015 PC III Aufbau der Materie (1) 1 PC III Aufbau der Materie Kapitel 5 Das Periodensystem der Elemente Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen

Mehr

Das Periodensystem der Elemente Das Periodensystem: Entdeckung der Elemente

Das Periodensystem der Elemente Das Periodensystem: Entdeckung der Elemente Das Periodensystem der Elemente Das Periodensystem: Entdeckung der Elemente 1 Das Periodensystem: Biologisch wichtige Elemente Das Periodensystem: Einteilung nach Reaktionen Bildung von Kationen und Anionen

Mehr

Allgemeine und Anorganische Chemie

Allgemeine und Anorganische Chemie Allgemeine und Anorganische Chemie Ein Leitfaden fur Studierende der Biologie, Biochemie und Pharmazie Wolfgang Jabs ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum 1. Einfiihrung 1 2. Chemische Grundbegriffe

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das Bohr sche Atommodell: Strahlenabsorption, -emission, Elektromagentische Strahlung, Wellen, Wellenlänge, Frequenz, Wellenzahl. Postulate: * Elektronen bewegen

Mehr

Vom Standardmodell zur dunklen Materie

Vom Standardmodell zur dunklen Materie Vom Standardmodell zur dunklen Materie Atomismus, die Bausteine der Materie Wechselwirkungen und Kräfte Der heilige Gral der Teilchenphysik Offene Fragen Prof. Ch. Berger RWTH Aachen Teilchenphysik und

Mehr

Atomaufbau. Elektronen e (-) Atomhülle

Atomaufbau. Elektronen e (-) Atomhülle Atomaufbau Institut für Elementarteilchen Nukleonen Protonen p (+) Neutronen n (o) Elektronen e (-) Atomkern Atomhülle Atom WIBA-NET 2005 Prof. Setzer 1 Elementarteilchen Institut für Name Symbol Masse

Mehr

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind: Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

14. Atomphysik. Inhalt. 14. Atomphysik

14. Atomphysik. Inhalt. 14. Atomphysik Inhalt 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Stoffgemisch. Reinstoff. Homogenes Gemisch. Heterogenes Gemisch. ( 9. Kl. SG - WSG 1 / 56 ) ( 9. Kl. SG - WSG 2 / 56 ) ( 9. Kl.

Stoffgemisch. Reinstoff. Homogenes Gemisch. Heterogenes Gemisch. ( 9. Kl. SG - WSG 1 / 56 ) ( 9. Kl. SG - WSG 2 / 56 ) ( 9. Kl. Stoffgemisch ( 9. Kl. SG - WSG 1 / 56 ) besteht aus zwei oder mehr verschiedenen Reinstoffen Gemisch unterschiedlicher kleinster Teilchen Trennung durch physikalische Methoden möglich Reinstoff ( 9. Kl.

Mehr

Das Periodensystem der Elemente

Das Periodensystem der Elemente Das Periodensystem der Elemente 1 Das Periodensystem: Entdeckung der Elemente 2 Das Periodensystem: Biologisch wichtige Elemente 3 Das Periodensystem: Einteilung nach Reaktionen Bildung von Kationen und

Mehr

7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) Analytische Anwendungen (Radiometrische Titration)

7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) Analytische Anwendungen (Radiometrische Titration) 7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) (Radiometrische Titration) Der radioaktive Stoff dient als Indikator Fällungsreaktionen Komplexbildungsreaktionen Prinzip einer Fällungstitration:

Mehr

Lösungen der Kontrollaufgaben

Lösungen der Kontrollaufgaben Lösungen der Kontrollaufgaben Lösungen zu den Kontrollaufgaben 1.1 1.) 1000 2.) Glas und PVC ziehen einander an. - Begründung: Da offenbar Hartgummi und PVC gleichartig geladen sind (Abstossung), Glas

Mehr

Stoffmenge. Isotope Radioaktivität. Aufgabe 1-1: Welche Aussagen zum Atomaufbau treffen zu bzw. sind falsch?

Stoffmenge. Isotope Radioaktivität. Aufgabe 1-1: Welche Aussagen zum Atomaufbau treffen zu bzw. sind falsch? Zusammenfassung Atome bestehen aus Protonen (p + ), Elektronen (e - ) und Neutronen (n) Elemente sind durch ihre Ordnungszahl und Massezahl definiert Stoffmenge n ist ein Maß für die Teilchenanzahl (Atome,

Mehr

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Elektronenkonfiguration und Periodensystem a) i) Lithium (Li), Grundzustand ii) Fluor (F), angeregter Zustand iii) Neon (Ne), angeregter Zustand iv) Vanadium (V), angeregter

Mehr

Vom Atombau zum Königreich der Elemente

Vom Atombau zum Königreich der Elemente Vom Atombau zum Königreich der Elemente Wiederholung: Elektronenwellenfunktionen (Orbitale) Jedes Orbital kann durch einen Satz von Quantenzahlen n, l, m charakterisiert werden Jedes Orbital kann maximal

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

14. Atomphysik Physik für E-Techniker. 14. Atomphysik

14. Atomphysik Physik für E-Techniker. 14. Atomphysik 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) woher kommen Zeilen und Spalten?

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) woher kommen Zeilen und Spalten? 1 1.0079 H 3 Li 6.941 19 39.098 K 23 50.942 V 27 58.933 Co 73 180.95 Ta 78 195.08 Pt 82 207.2 Pb 21 44.956 Sc 25 54.938 Mn 29 63.546 Cu 33 74.922 As 7 14.007 N 75 186.21 Re 80 200.59 Hg 84 208.98 Po* 55

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Stern-Gerlach-Versuch, Orbitalmodell, Heisenberg sche Unschärferelation, Schrödinger Gleichung, Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen

Mehr

Stoffgemisch. Reinstoff. Homogenes Gemisch. Heterogenes Gemisch. ( 8. Klasse NTG 1 / 48 ) ( 8. Klasse NTG 2 / 48 ) ( 8. Klasse NTG 3 / 48 )

Stoffgemisch. Reinstoff. Homogenes Gemisch. Heterogenes Gemisch. ( 8. Klasse NTG 1 / 48 ) ( 8. Klasse NTG 2 / 48 ) ( 8. Klasse NTG 3 / 48 ) Stoffgemisch ( 8. Klasse NTG 1 / 48 ) besteht aus zwei oder mehr verschiedenen Reinstoffen Gemisch unterschiedlicher kleinster Teilchen Trennung durch physikalische Methoden möglich Reinstoff ( 8. Klasse

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

4.2 Kovalente Bindung. Theorie der kovalenten Bindung, Gilbert Newton Lewis (1916)

4.2 Kovalente Bindung. Theorie der kovalenten Bindung, Gilbert Newton Lewis (1916) 4.2 Kovalente Bindung Theorie der kovalenten Bindung, Gilbert Newton Lewis (1916) Treten Atome von Nichtmetallen miteinander in Wechselwirkung, kommt es nicht zu einer Übertragung von Elektronen. Nichtmetallatome

Mehr

Übungsaufgaben zum Atomaufbau und Periodensystem mit Lösungen

Übungsaufgaben zum Atomaufbau und Periodensystem mit Lösungen Allgemeine und Anorganische Chemie Übungsaufgaben zum Atomaufbau und Periodensystem mit Lösungen Aufgabe 1: Welche der folgenden Aussagen trifft für alle Atome, einschließlich des Wasserstoffatoms, zu?

Mehr

Brückenkurse Chemie Wintersemester 2015/2016

Brückenkurse Chemie Wintersemester 2015/2016 Fakultät Mathemathik/Naturwissenschaftensname, Professur für Anorganische Chemie I Brückenkurse Chemie Wintersemester 2015/2016 Atombau und chemische Bindung Was kann Chemie heute leisten? Kampf gegen

Mehr

2. Übung Allgemeine Chemie AC01

2. Übung Allgemeine Chemie AC01 Allgemeine und Anorganische Chemie Aufgabe 1: 2. Übung Allgemeine Chemie AC01 Chlor lässt sich gemäß der folgenden Reaktionsgleichung herstellen: MnO 2 + 4 HCl MnCl 2 + Cl 2 + 2 H 2 O 86,9368 g 145,8436

Mehr

14. Atomphysik Aufbau der Materie

14. Atomphysik Aufbau der Materie 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Chrom(VI)-Ersatz auf Zink

Chrom(VI)-Ersatz auf Zink Ulmer Gespräch 1 Chrom(VI)-Ersatz auf Zink Nachbehandlungsverfahren in der Praxis Dr. Rolf Jansen und Patricia Preikschat,, D-64673 Zwingenberg Themen: Wonach wird gesucht? Eigenschaften sechswertiger

Mehr

Kernchemisches Praktikum I Transurane Die Chemie des Neptuniums (Element 93)

Kernchemisches Praktikum I Transurane Die Chemie des Neptuniums (Element 93) Kernchemisches Praktikum I Transurane Die Chemie des Neptuniums (Element 93) Johannes Gutenberg-Universität Mainz Institut für Kernchemie Folie Nr. 1 Die Actiniden (1) 1 3 H Li Be B C N O F Ne 4 Spaltprodukte

Mehr

Grundwissen Chemie 9. Jahrgangsstufe

Grundwissen Chemie 9. Jahrgangsstufe Grundwissen Chemie 9. Jahrgangsstufe 1. Stoffe und Reaktionen Gemisch: Stoff, der aus mindestens zwei Reinstoffen besteht. Homogen: einzelne Bestandteile nicht erkennbar Gasgemisch z.b. Legierung Reinstoff

Mehr

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe BGBl. II - Ausgegeben am 22. Mai 2006 - Nr. 191 1 von 148 Anlage 1 zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 A. Allgemeines Voraussetzungen

Mehr

Quarkorbitale und Quark Orbital Kombinationen

Quarkorbitale und Quark Orbital Kombinationen Naturwissenschaft Clemens Wett Quarkorbitale und Quark Orbital Kombinationen Quantenalgebra der Isotopen Tabelle Wissenschaftliche Studie Quark Orbitale und Quark Orbital Kombinationen Verwendete Literatur

Mehr

HAW Hamburg Fachbereich HWI Hamburg, Prof. Dr. Badura B. Hamraz, O. Zarenko, M. Behrens. Chemie Testat 2. Name: Vorname: Matrikelnummer:

HAW Hamburg Fachbereich HWI Hamburg, Prof. Dr. Badura B. Hamraz, O. Zarenko, M. Behrens. Chemie Testat 2. Name: Vorname: Matrikelnummer: Chemie Testat 2 Name: Vorname: Matrikelnummer: Bearbeitungszeit: 1 Stunde Zugelassene Hilfsmittel: Stifte, unbeschriebenes Papier, ein nichtprogrammierbarer Taschenrechner und ein Periodensystem Bitte

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02 Chemische Bindung locker bleiben Wie halten Atome zusammen? positiv Welche Atome können sich verbinden? power keep smiling Chemische Bindung Die chemischen Reaktionen spielen sich zwischen den Hüllen der

Mehr

1. Man lässt g eines Alkalimetalls mit Wasser reagieren, wobei mol Wasserstoff entsteht.

1. Man lässt g eines Alkalimetalls mit Wasser reagieren, wobei mol Wasserstoff entsteht. Klausur zur Vorlesung LV 18000, AC1 (Anorganische Experimentalchemie) am 27.02.2007 1 1 2 3 4 5 6 7 8 9 10 Σ Note: Vorname: Matr.-Nr.: Nachname: Chemie und Biochemie Lehramt Chemie vertieft Lehramt Chemie

Mehr

Wie sind Atome aufgebaut Welche Informationen enthält das Periodensystem?

Wie sind Atome aufgebaut Welche Informationen enthält das Periodensystem? 2. DIE KLEINSTEN TEILCHEN ARBEITSBLATT 2.1 DER ATOMAUFBAU FRAGE Wie sind Atome aufgebaut Welche Informationen enthält das Periodensystem? Bausteine der Atome Ladung (+, -, 0) Masse (hoch, sehr gering)

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Grundwissenkarten Hans-Carossa-Gymnasium. 9. Klasse. Chemie SG

Grundwissenkarten Hans-Carossa-Gymnasium. 9. Klasse. Chemie SG Grundwissenkarten Hans-Carossa-Gymnasium 9. Klasse Chemie SG Es sind insgesamt 18 Karten für die 9. Klasse erarbeitet. Karten ausschneiden : Es ist auf der linken Blattseite die Vorderseite mit Frage/Aufgabe,

Mehr

Anlage 1. Messzeit: 10 s. Impulszählung (bei Ratemeteranzeige ist S min bei gleicher Messzeit größer als bei Impulszählung)

Anlage 1. Messzeit: 10 s. Impulszählung (bei Ratemeteranzeige ist S min bei gleicher Messzeit größer als bei Impulszählung) Anlage 1 Mindestens erforderliches Oberflächenansprechvermögen von festinstallierten Hand-, Fuß-, Kleider und Ganzkörper-Kontaminationsmessgräten (Schuhdetektor) sowie von tragbaren Kontaminationsmessgeräten

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Brückenkurse Chemie Wintersemester 2016/2017

Brückenkurse Chemie Wintersemester 2016/2017 Fakultät Mathemathik/Naturwissenschaftensname, Professur für Anorganische Chemie I Brückenkurse Chemie Wintersemester 2016/2017 Atombau und Periodensystem Was kann Chemie heute leisten? Kampf gegen noch

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 47 Grundlagen der Allgemeinen und Anorganischen Chemie Fakultät Mathematik/Naturwissenschaften

Mehr

Daltonsche Atomhypothese (1808)

Daltonsche Atomhypothese (1808) Daltonsche Atomhypothese (1808) Chemische Elemente bestehen aus kleinsten, chemisch nicht weiter zerlegbaren Teilchen, den Atomen. Alle Atome eines Elementes haben untereinander gleiche Masse, während

Mehr

1.1 Chemie in Karlsruhe - Karl Weltzien & Lothar Meyer, Karlsruher Kongress ( ) Periodensystem der Elemente

1.1 Chemie in Karlsruhe - Karl Weltzien & Lothar Meyer, Karlsruher Kongress ( ) Periodensystem der Elemente Chemie Vorkurs 2014 1. Allgemeine Grundlagen 1.1 Chemie in Karlsruhe - Karl Weltzien & Lothar Meyer, Karlsruher Kongress (03.-05.09.1860) Periodensystem der Elemente - Fritz Haber, Nobelpreis 1918 Ammoniaksynthese

Mehr

CHEMIE KAPITEL 1 AUFBAU DER MATERIE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2014 / 2015

CHEMIE KAPITEL 1 AUFBAU DER MATERIE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2014 / 2015 CHEMIE KAPITEL 1 AUFBAU DER MATERIE Timm Wilke Georg-August-Universität Göttingen Wintersemester 2014 / 2015 Folie 2 Atombau und Elementarteilchen Folie 3 Atommasse und Stoffmenge Stoffmenge [mol]: 12,000

Mehr

Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007

Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007 Relative Atommassen Stefan Pudritzki Göttingen 8. September 2007 Berechnung der relativen Atommassen Nach dem derzeitigen Kenntnisstand können die relativen Atommassen der chemischen Elemente mit einem

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen R. Brinkmann http://brinkmann-du.de Seite 5..03 Chemische Elemente FOS: Radioaktivität und Strahlenschutz Chemische Elemente und ihre kleinsten Teilchen Der Planet Erde besteht aus 9 natürlich vorkommenden

Mehr

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:

Mehr

Was haben wir gelernt?

Was haben wir gelernt? Was haben wir gelernt? - Gesetze chemischer Reaktionen - Atommodell von Dalton - Elementsymbole - Die atomare Masseneinheit u - Die Avogadro-Zahl und deren Umkehrung - Von Massenverhältnissen zu Teilchenverhältnissen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Atombau und PSE. Das komplette Material finden Sie hier: School-Scout.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Atombau und PSE. Das komplette Material finden Sie hier: School-Scout. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Atombau und PSE Das komplette Material finden Sie hier: School-Scout.de Chemiekonzept Pro Unterrichtsreihen Sekundarstufe I Band 11

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Koordinationschemie der Übergangsmetalle

Koordinationschemie der Übergangsmetalle Koordinationschemie der Übergangsmetalle adia C. Mösch-Zanetti Institut für Anorganische Chemie der Universität Göttingen Empfohlene Lehrbücher Anorganische Chemie 5. Aufl. S. 672-704 und Moderne Anorganische

Mehr

Allgemeine Chemie I Herbstsemester 2011

Allgemeine Chemie I Herbstsemester 2011 Lösung 2 Allgemeine Chemie I Herbstsemester 2011 1. Aufgabe Für die Berechnung der mittleren Atommasse m von Nickel sind die Massen m i der einzelnen Isotope i in ihrer Häufigkeit p i zu berücksichtigen.

Mehr

Atommodelle und Periodensystem

Atommodelle und Periodensystem Atommodelle und Periodensystem 1 Kern-Hülle-Modell (Rutherford) a) Streuversuch V D : α-strahlenquelle dünne Goldfolie aus nur einer Schicht Atome Film B : c Es werden nur wenige Teilchen der α-strahlen

Mehr

Wasser à. Nachweis: Wasser ist

Wasser à. Nachweis: Wasser ist Arbeitsblatt zu Kap. 5. Atome Bausteine der Stoffe 5.1 Elemente und Verbindungen Elektrolyse des Reinstoffes Wasser Wasser à Nachweis: Wasser ist Stoffeinteilung 5.2 Von den Elementen zu den Atomen Synthese

Mehr

Das Periodensystem der Elemente

Das Periodensystem der Elemente Q34 LK Physik 17. November 2015 Aufbau Die ermittelten Zusammenhänge der Elektronenzustände in der Atomhülle sollen dazu dienen, den der Elemente zu verstehen. Dem liegen folgende Prinzipien zugrunde:

Mehr

Lösungen zu den Übungen zur Experimentalvorlesung AC

Lösungen zu den Übungen zur Experimentalvorlesung AC Lösungen zu den Übungen zur Experimentalvorlesung AC 1. Stöchiometrisches Rechnen 1.1. n (S = mol n (S 8 = 0,5 mol 1.. n (P = 8 mol n (P = mol 1.3. m (P =,8 g m (P =,8 g m (P = 1, g 1.. m (1/3 As 3+ =

Mehr

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe BGBl. II - Ausgegeben am 22. Mai 2006 - Nr. 191 1 von 148 Anlage 1 zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 A. Allgemees Voraussetzungen

Mehr

Chemie I für Ingenieure TU Harburg

Chemie I für Ingenieure TU Harburg Chemie I für Ingenieure TU Harburg Bücher D. Forst, M. Kolb, H. Roßwag Chemie für Ingenieure F.A. Cotton, G. Wilkinson Basic Inorganic Chemistry E. Lindner Chemie für Ingenieure G. Hölzel Einführung in

Mehr