Einstieg in die Informatik mit Java

Größe: px
Ab Seite anzeigen:

Download "Einstieg in die Informatik mit Java"

Transkript

1 1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik

2 Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4 Zyklische Ziffern

3 Gliederung 3 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4 Zyklische Ziffern

4 4 / 32 Überblick: was ist Effizienz? In diesem Kapitel betrachten wir verschiedene Aspekte der Effizienz eines Programms Benötigte Rechenzeit Ausnutzung der Performance des Computers Beispiel Parallelrechner mit p Prozessoren: Effizienz(p) = Zeit(1) pzeit(p) Benötigter Speicher Aufwand des Programmierers... 2 Beispiele

5 Gliederung 5 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4 Zyklische Ziffern

6 Asymptotischer Aufwand eines Algorithmus Landau-Symbole 6 / 32 Landau-Symbole: Schreibweise f (n) O(g(n)) für f wächst nicht wesentlich schneller als g (Edmund Landau, Berlin / Göttingen / Jerusalem, ) Die Funktion f (n) ist O(g(n)), für n, genau wenn es Konstanten n 0 und M gibt mit f (n) < M g(n) für alle n > n 0 Alternative Definition: f (n) O(g(n)) genau wenn 0 lim sup n f (n) g(n) < Weitere Varianten siehe

7 Landau-Symbole Beispiele 7 / 32 g(n) ist meist eine einfache Funktion, z.b. O(n), O(n 2 ), O(log n),... Notation Bedeutung wenn das Argument verdoppelt wird, f f wächst dann ändert sich f etwa so: O(1) garnicht f bleibt beschränkt O(n) linear f verdoppelt sich O(n log n) superlinear f wächst auf etwas mehr als das Doppelte O(n 2 ) quadratisch f vervierfacht sich O(n 3 ) kubisch f verachtfacht sich O(2 n ) exponentiell wenn das Argument um 1 erhöht wird, dann verdoppelt sich f

8 8 / 32 Landau-Symbole Anwendung Angaben zum Rechenaufwand eines Algorithmus (asymptotische Komplexität) Angaben zum Speicherbedarf eines Algorithmus Beispiel n n-matrix (Zahlenschema mit n Zeilen und n Spalten) Speicherbedarf O(n 2 ) Rechenaufwand für Addition O(n 2 ) Rechenaufwand für Multiplikation O(n 3 ) n O(n 2 ) O(n 3 )

9 9 / 32 Landau-Symbole Rechenregeln Rechenregeln für den asymptotischen Aufwand: Konstante Faktoren spielen keine Rolle: O(c g(n)) = O(g(n)) für eine reelle Konstante c 0, folglich gilt auch O(log 2 n) = O(ln n) = O(log 10 n) Langsamer anwachsende Terme können vernachlässigt werden, z.b. gilt mit reellen Konstanten a > b und c: O(n a + c n b ) = O(n a ) O(n a + c log n) = O(n a ) O(2 n + c n b ) = O(2 n ) Beispiel: O(2n 3 + 3n n + 799) = O(n 3 )

10 Landau-Symbole Einsatz zum Vergleich von Algorithmen 10 / 32 Beispiel: sortiere n Zahlen x 0, x 1,..., x n 1 Algorithmus 1 (Bubblesort) Algorithmus 2 (Quicksort) n O(n 2 ) O(n log n) Algorithmus ist für n = 10 6 etwa mal schneller Tag / 1 Sekunde

11 11 / 32 Landau-Symbole Vorsicht Aber Vorsicht! Alle Aussagen gelten nur asymptotisch für n, also ab einem (unbekannten) n 0 und mit einem (unbekannten) Faktor M. Für ein kleines n könnte Algorithmus 1 durchaus schneller sein als Algorithmus 2.

12 Gliederung 12 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4 Zyklische Ziffern

13 Eier im Korb - Aus einem alten Rechenbuch 13 / 32 Ein Mann stößt den Korb voller Eier einer Marktfrau um. Die Eier gehen zu Bruch. Der Mann will den Schaden ersetzen und fragt wieviele Eier im Korb waren. Die Marktfrau antwortet: Die genaue Zahl weiß ich nicht. Aber wenn ich immer 2 Eier aus dem Korb genommen habe, dann blieb eines übrig. Genauso, wenn ich immer 3, immer 4, immer 5 oder immer 6 Eier heraus genommen habe. Aber wenn ich immer 7 Eier heraus genommen habe, dann blieb keines übrig. Wieviele Eier waren (mindestens) im Korb?

14 14 / 32 Eier im Korb - Erster Algorithmus Teste alle Zahlen n = 1, 2, 3,... Beginne mit n = 1 Prüfe, ob die Zahl n bei Division durch 2, 3, 4, 5, 6 den Rest 1 ergibt und ob n durch 7 ohne Rest teilbar ist. Ist dies der Fall, dann brich ab und gib das Ergebnis aus. Andernfalls erhöhe n um 1 und prüfe nochmal.

15 Eier im Korb - Erstes Java-Programm 15 / 32 public class Eier { } public s t a t i c void main ( S t r i n g [ ] args ){ i n t i =0; do i ++; while ( i %2!=1 i %3!=1 i %4!=1 i %5!=1 i %6!=1 i %7!=0); System. out. p r i n t l n ( Es waren + i + Eier im Korb. ) ; }

16 16 / 32 Eier im Korb - Zweiter Algorithmus Es kommen nur Zahlen in Frage, die bei Division durch 2, 3, 4, 5, 6 den Rest 1 ergeben. Mit etwas Mathematik stellt man fest: Es kommen nur Zahlen in Frage, die bei Division durch kgv(2, 3, 4, 5, 6) = 60 den Rest 1 ergeben. Also: Teste alle Zahlen n = 1, 61, Beginne mit n = 1 Prüfe, ob n durch 7 ohne Rest teilbar ist. Ist dies der Fall, dann brich ab und gib das Ergebnis aus. Andernfalls erhöhe n um 60 und prüfe nochmal.

17 Eier im Korb - Zweites Java-Programm 17 / 32 public class Eier2 { } public s t a t i c void main ( S t r i n g [ ] args ){ i n t i =1; do i += 60; while ( i%7!= 0 ) ; System. out. p r i n t l n ( Es waren + i + Eier im Korb. ) ; }

18 18 / 32 Vergleich der Effizienz Programm 2 braucht nur 1/60 der Rechenzeit von Programm 1 Beide Programm brauchen nur Bruchteile einer Sekunde Rechenzeit spielt hier keine Rolle Fazit: Die Arbeitszeit des Programmierers für die mathematischen Überlegungen ist verschwendet Übrigens... es waren 301 Eier im Korb!

19 Gliederung 19 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4 Zyklische Ziffern

20 20 / 32 Zyklische Ziffern - Das Problem Finde eine Zahl mit Endziffer 5 Multipliziere sie mit 5 Ist das Produkt gleich der ursprünglichen Zahl, wenn man die 5 am Ende streicht und dafür vorne anfügt? Beispiel: 5 * abcd5 = 5abcd (mit 4 Ziffern a, b, c, d) Verallgemeinerung: ersetze 5 durch Faktor 2 bis 9 Quelle: Jacques Arsac, Computerdenkspiele selbst programmiert, Problem 3

21 21 / 32 Zyklische Ziffern - Erster Algorithmus Teste alle Zahlen n = 1, 2, 3,... Beginne mit n = 1 Prüfe, ob die Zahl n die Bedingung Zyklische Ziffern erfüllt Ist dies der Fall, dann brich ab und gib das Ergebnis aus. Andernfalls erhöhe n um 1 und prüfe nochmal.

22 Zyklische Ziffern - Erstes Java-Programm 22 / 32 public class Z y k Z i f f 1 { } public s t a t i c void main ( S t r i n g [ ] args ){ i n t i =0; do i ++; while ( i 5!= i / ); / / bei 4 Z i f f e r n abcd System. out. p r i n t l n ( Zyklische Z i f f e r n : + i ) ; }

23 23 / 32 Zyklische Ziffern - Probleme mit diesem Programm Unbekannt, ob 4 Stellen abcd nötig sind oder mehr oder weniger Ggf. müssen alle Stellenzahlen durchprobiert werden Reicht der Zahlbereich von int (9 Stellen) aus? Reicht long (19 Stellen)? Rechenzeit???

24 24 / 32 Zyklische Ziffern - Mathematische Idee Führe Ziffernvergleich bei 5 abcd5 = 5abcd durch, beginnend bei der niederwertigsten Ziffer. 5 abcd5 = 5abcd führt wegen 5 5 = 25 zu d = 5 Es entsteht ein Übertrag von 2, der im nächsten Schritt zu berücksichtigen ist 5 abc55 = 5abc5 führt wegen = 27 zu c = 7 Es entsteht ein Übertrag von 2 5 ab755 = 5ab75 führt wegen = 37 zu b = 7 Es entsteht ein Übertrag von 3 usw. (egal wie viele Stellen abcd vorliegen) Der Algorithmus ist zu Ende, wenn die berechnete Ziffer = 5 ist, und der Übertrag = 0 ist

25 25 / 32 Zyklische Ziffern - Zweiter Algorithmus Verallgemeinerung: ersetze 5 durch beliebigen Faktor 2 bis 9 Starte mit Ziffer = Faktor und Übertrag = 0 Berechne das 2-stellige Produkt = Ziffer * Faktor + Übertrag Zerlege Produkt in die niederwertige Ziffer und den höherwertigen Übertrag Wiederhole solange die berechnete Ziffer nicht gleich dem Faktor ist, oder der Übertrag nicht 0 ist

26 Zyklische Ziffern - Zweites Programm 26 / 32 import java. u t i l. ; public class Z y k z i f f 5 { public s t a t i c void main ( String [ ] args ) { Locale. s e t D e f a u l t ( Locale.US ) ; Scanner sc = new Scanner ( System. in ) ; i n t Faktor, Ziffer, Uebertrag =0, Produkt, Stellen =0; System. out. p r i n t ( Mit welchem Faktor s o l l m u l t i p l i z i e r t werden? ) ; Faktor = sc. nextint ( ) ; / / Faktor einlesen Z i f f e r = Faktor ; / / n i e d e r w e r t i g s t e Z i f f e r = Faktor System. out. p r i n t l n ( Das Ergebnis l a u t e t ( rueckwaerts gelesen! ) : ) ; do { System. out. p r i n t ( Z i f f e r ) ; / / a k t u e l l e Z i f f e r ausdrucken S t e l l e n ++; / / S t e l l e n z a h l bei j e d e r Ausgabe erhoehen Produkt = Z i f f e r Faktor + Uebertrag ; / / neues Produkt, z w e i s t e l l i g Z i f f e r = Produkt % 10; / / neue Z i f f e r = n i e d e r s t e S t e l l e des Produkts Uebertrag = Produkt / 10; / / neuer Uebertrag = hoechste S t e l l e des Produk } / / wiederholen, wenn eine der beiden... while ( Z i f f e r!= Faktor Uebertrag!= 0 ) ; / /... Abbruch Bedingungen v e r l e t z t i s t System. out. p r i n t l n ( ) ; System. out. p r i n t l n ( Es hat + S t e l l e n + S t e l l e n ) ; } }

27 Zyklische Ziffern - Ergebnisse 27 / 32 c:\b\java>java Zykziff5 Mit welchem Faktor soll multipliziert werden? 5 Das Ergebnis lautet (rueckwaerts gelesen!): Es hat 42 Stellen

28 Zyklische Ziffern - Ergebnisse 28 / 32 Mit welchem Faktor soll multipliziert werden? Es hat 18 Stellen Mit welchem Faktor soll multipliziert werden? Es hat 28 Stellen Mit welchem Faktor soll multipliziert werden? Es hat 6 Stellen Mit welchem Faktor soll multipliziert werden? Es hat 58 Stellen Mit welchem Faktor soll multipliziert werden? Es hat 22 Stellen Mit welchem Faktor soll multipliziert werden? Es hat 13 Stellen Mit welchem Faktor soll multipliziert werden? Es hat 44 Stellen

29 29 / 32 Zyklische Ziffern - Laufzeit des zweiten Algorithmus 42 Schleifendurchläufe etwa 10 Operationen pro Schleife theoretisch etwa 10 7 Sekunden auf einem handelsüblichen PC mit Java-Overhead (Interpretation, Startup) deutlich unter 1 Sekunde

30 30 / 32 Zyklische Ziffern - Laufzeit des ersten Algorithmus Er benötigt Schleifendurchläufe = etwa Operationen Schnellster Rechner zzt. (2009, Quelle: etwa Flops (Floating point Operationen pro Sekunde) Dieser braucht etwa Sekunden zur Lösung Sekunden = etwa Jahre (1 Jahr = Sekunden = etwa Sekunden)... aber das Universum existiert erst etwa Jahre seit dem Urknall!

31 31 / 32 Zyklische Ziffern - Laufzeitvergleich der beiden Algorithmen Der erste Algorithmus braucht Jahre auf dem schnellsten Rechner der Erde Der zweite Algorithmus braucht einen Bruchteil einer Sekunde auf einem handelsüblichen PC Fazit: Nachdenken über mathematische Hintergründe hat sich gelohnt

32 Zyklische Ziffern - Wann sind Computer schnell genug für den ersten Algorithmus? Der erste Algorithmus braucht Jahre auf dem heute schnellsten Rechner der Erde Supercomputer wurden im letzten Jahrzehnt fast um den Faktor 1000 schneller (Quelle: In 70 Jahren wäre das (theoretisch!!!) ein Faktor Im Jahre 2080 bräuchte der schnellste Computer der Erde noch 1 Monat (sehr theoretisch!!!) 32 / 32

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 20 Einstieg in die Informatik mit Java Rekursion Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Überblick 2 Rekursion 3 Rekursive Sortieralgorithmen 4 Backtracking

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 26 Einstieg in die Informatik mit Java Felder, mehrdimensional Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 26 1 Überblick: mehrdimensionale Felder 2 Vereinbarung

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 28 Einstieg in die Informatik mit Java Algorithmen Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 28 1 Überblick 2 Algorithmus 3 Grundalgorithmen in Java 4 Flussdiagramme

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Hochschule Niederrhein Einführung in die Programmierung Prof. Dr. Nitsche. Bachelor Informatik WS 2015/16 Blatt 3 Beispiellösung.

Hochschule Niederrhein Einführung in die Programmierung Prof. Dr. Nitsche. Bachelor Informatik WS 2015/16 Blatt 3 Beispiellösung. Zahldarstellung Lernziele: Vertiefen der Kenntnisse über Zahldarstellungen. Aufgabe 1: Werte/Konstanten Ergänzen Sie die Tabelle ganzzahliger Konstanten auf einem 16- Bit- System. Die Konstanten in einer

Mehr

Programmiervorkurs WS 2012/2013. Schleifen und Methoden

Programmiervorkurs WS 2012/2013. Schleifen und Methoden Programmiervorkurs WS 2012/2013 Schleifen und Methoden Ein Befehl soll mehrfach ausgeführt werden, z.b.: public class MyCounter { System.out.println(1); Ein Befehl soll mehrfach ausgeführt werden, z.b.:

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8

Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8 Java 8 Elmar Fuchs Grundlagen Programmierung 1. Ausgabe, Oktober 2014 JAV8 5 Java 8 - Grundlagen Programmierung 5 Kontrollstrukturen In diesem Kapitel erfahren Sie wie Sie die Ausführung von von Bedingungen

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Grundlagen Übersicht 1 Kommentare 2 Bezeichner für Klassen, Methoden, Variablen 3 White Space Zeichen 4 Wortsymbole 5 Interpunktionszeichen 6 Operatoren 7 import Anweisungen 8 Form

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Primitive Datentypen

Primitive Datentypen Primitive Datentypen 2 Arten von Datentypen: primitive Datentypen (heute) Objekte (später) Java ist streng typisiert, d.h. für jede Variable muß angegeben werden was für eine Art von Wert sie aufnimmt.

Mehr

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen 3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen Sortierproblem Eingabe: Folge von n natürlichen Zahlen a 1, a 2,, a n, die Folge

Mehr

Grundzüge der Informatik Zahlendarstellungen (7)

Grundzüge der Informatik Zahlendarstellungen (7) Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda e0225646@student.tuwien.ac.at Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Programmieren I. Kontrollstrukturen. Heusch 8 Ratz 4.5. www.kit.edu. Institut für Angewandte Informatik

Programmieren I. Kontrollstrukturen. Heusch 8 Ratz 4.5. www.kit.edu. Institut für Angewandte Informatik Programmieren I Kontrollstrukturen Heusch 8 Ratz 4.5 KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Arten von Kontrollstrukturen

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 20 Einstieg in die Informatik mit Java Literalkonstanten Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Ganzzahlige Konstanten 2 Gleitkommakonstanten 3 Zeichenkonstanten

Mehr

Welcher Bruch liegt genau zwischen den Brüchen 1 9 und 1 10? Um diese Frage zu beantworten, musst du das arithmetische Mittel berechnen!

Welcher Bruch liegt genau zwischen den Brüchen 1 9 und 1 10? Um diese Frage zu beantworten, musst du das arithmetische Mittel berechnen! 1 Wie viele rationale Zahlen liegen zwischen folgenden Zahlen? a) 0 und 1 c) 0 und 0,001 b) 0 und 0,1 d) 0,001 und 0,0001 2 Welche rationalen Zahlen sind hier dargestellt? 3 In Kürze werden die Luftballons

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

TI-89. Gleichungssysteme

TI-89. Gleichungssysteme TI-89 Gleichungssysteme Hans Berger 005 Lineare Gleichungssysteme Der TI-89 kann beliebige Objekte in Variable speichern, auch ganze Gleichungen. Man kann somit beliebige Gleichungen z.b. in g1, g, g3,

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 4 Einführung in die Programmiersprache Java (Teil II)... 4-2 4.4 Strukturierte Programmierung... 4-2 4.4.1 Strukturierung im Kleinen... 4-2 4.4.2 Addierer (do-schleife)... 4-3 4.4.3 Ein- Mal- Eins

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

ModProg 15-16, Vorl. 13

ModProg 15-16, Vorl. 13 ModProg 15-16, Vorl. 13 Richard Grzibovski Jan. 27, 2016 1 / 35 Übersicht Übersicht 1 Supercomputing FLOPS, Peak FLOPS Parallelismus Praktische Aspekte 2 Klausur von 2009 2 / 35 Supercomputing: HPC Modellierung

Mehr

Grundlagen der Informatik Algorithmen und Komplexität

Grundlagen der Informatik Algorithmen und Komplexität Grundlagen der Informatik Algorithmen und Komplexität Prof. Dr. Bernhard Schiefer (basierend auf Unterlagen von Prof. Dr. Duque-Antón) bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Inhalt Einleitung

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

SOI 2013. Die Schweizer Informatikolympiade

SOI 2013. Die Schweizer Informatikolympiade SOI Die Schweizer Informatikolympiade Lösung SOI Wie schreibe ich eine gute Lösung? Bevor wir die Aufgaben präsentieren, möchten wir dir einige Tipps geben, wie eine gute Lösung für die theoretischen

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Brainfuck. 1 Brainfuck. 1.1 Brainfuck Geschichte und Umfeld. 1.2 Esoterische Programmiersprachen

Brainfuck. 1 Brainfuck. 1.1 Brainfuck Geschichte und Umfeld. 1.2 Esoterische Programmiersprachen Brainfuck 1 Brainfuck 1.1 Brainfuck Geschichte und Umfeld Brainfuck ist eine sogenannte esoterische Programmiersprache. Sie wurde 1993 vom Schweizer Urban Müller entworfen mit dem Ziel, eine Sprache mit

Mehr

Algorithmen & Programmierung. Rekursive Funktionen (1)

Algorithmen & Programmierung. Rekursive Funktionen (1) Algorithmen & Programmierung Rekursive Funktionen (1) Berechnung der Fakultät Fakultät Die Fakultät N! einer nichtnegativen ganzen Zahl N kann folgendermaßen definiert werden: d.h. zur Berechnung werden

Mehr

Übung Grundlagen der Programmierung. Übung 03: Schleifen. Testplan Testergebnisse

Übung Grundlagen der Programmierung. Übung 03: Schleifen. Testplan Testergebnisse Übung 03: Schleifen Abgabetermin: xx.xx.xxxx Name: Matrikelnummer: Gruppe: G1 (Prähofer) G2 (Prähofer) G3 (Wolfinger) Aufgabe Punkte gelöst abzugeben schriftlich abzugeben elektronisch Aufgabe 03.1 12

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben Algorithmen und Algorithmisierung von Aufgaben 2-1 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Bruchrechnen in Kurzform

Bruchrechnen in Kurzform Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Übungen zur Vorlesung Einführung in die Informatik Wintersemester 2010/11

Übungen zur Vorlesung Einführung in die Informatik Wintersemester 2010/11 Übungen zur Vorlesung Einführung in die Informatik Wintersemester 2010/11 Fakultät für Informatik Lehrstuhl 1 Dr. Lars Hildebrand Carla Delgado-Battenfeld Fatih Gedikli Tobias Marschall Benjamin Schowe

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr. Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger

Mehr

Algorithmen und Programmierung II

Algorithmen und Programmierung II Algorithmen und Programmierung II Vererbung Prof. Dr. Margarita Esponda SS 2012 1 Imperative Grundbestandteile Parameterübergabe String-Klasse Array-Klasse Konzepte objektorientierter Programmierung Vererbung

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Objektorientierte Programmierung OOP Programmieren mit Java

Objektorientierte Programmierung OOP Programmieren mit Java Übungen: 6 Schleifen Objektorientierte Programmierung OOP Programmieren mit Java 1. do-schleife 2. while-schleife 3. a) c) Verschiedene for-schleifen 6 Schleifen Übungen 4. for-schleife: halber Tannenbaum

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 5 Referenzdatentypen - Felder... 5-2 5.1 Eindimensionale Felder - Vektoren... 5-3 5.1.1 Vereinbarung... 5-3 5.1.2 Referenzen sind keine Felder... 5-4 5.1.3 Kopieren eindimensionaler Felder... 5-6

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Tafelübung 04 Referenzen, Overloading, Klassen(hierarchien) Clemens Lang T2 18. Mai 2010 14:00 16:00, 00.152 Tafelübung zu AuD 1/13 Organisatorisches Nächster Übungstermin

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4

Mehr

Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: (evtl. fallen Zeilen weg, wenn das zugehörige Bit des Multiplikators 0 ist).

Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: (evtl. fallen Zeilen weg, wenn das zugehörige Bit des Multiplikators 0 ist). 4-1 4. Algorithmen auf Zahlen Themen: Multiplikation von binären Zahlen Matrixmultiplikation 4.1 Multiplikation ganzer Zahlen Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: n=8: aaaaaaaa

Mehr

2 Einfache Rechnungen

2 Einfache Rechnungen 2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,

Mehr

Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Summenregel. Allgemeiner

Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Summenregel. Allgemeiner Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Fragestellung: Wie viele verschiedene Möglichkeiten gibt es, Elemente auszuwählen, z. B. Anzahl verschiedener möglicher Passwörter, IPAdressen, Zahlenkombinationen

Mehr

JAVA - Suchen - Sortieren

JAVA - Suchen - Sortieren Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

620.900 Propädeutikum zur Programmierung

620.900 Propädeutikum zur Programmierung 620.900 Propädeutikum zur Programmierung Andreas Bollin Institute für Informatik Systeme Universität Klagenfurt Andreas.Bollin@uni-klu.ac.at Tel: 0463 / 2700-3516 Lösung der Aufgaben (1/2) Lösung Aufgabe

Mehr

Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen

Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Rekursionsgleichungen Landau-Symbole Kapitel 8 Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Kapitel 8 Rekursionsgleichungen p./42 Landau-Symbole () Modellierung

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 4 Anweisungen... 4-2 4.1 Strukturierte Programmierung... 4-2 4.1.1 Geschichte... 4-2 4.1.2 Strukturierung im Kleinen... 4-2 4.2 Einige Beispielanwendungen... 4-4 4.2.1 Addierer (do-schleife)...

Mehr

12. September 2012 Kompexität. Analyse von Algorithmen (Ziele) Empirische Analyse Beispiel Schlussfolgerungen

12. September 2012 Kompexität. Analyse von Algorithmen (Ziele) Empirische Analyse Beispiel Schlussfolgerungen Komplexität von Algorithmen Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 12. September 2012 ODE/FHTBM Komplexität von Algorithmen 12. September 2012 1/41 (Ziele)

Mehr

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen...

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen... Suchen und Sortieren In diesem Kapitel behandeln wir Algorithmen zum Suchen und Sortieren Inhalt 1. Grundlagen... 2 2. Sortieren... 6 1.1. Vertauschen... 13 1.2. Selektion... 16 1.3. Einfügen... 19 1.4.

Mehr

Jürgen Roth Didaktik der Linearen Algebra & Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra & Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 3: Modellieren & Angewandte Mathematik 3.1 Inhalte

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42

Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42 Vektoren Jörn Loviscach Versionsstand:. April 29, 23:42 Rechnen mit Pfeilen Bei den komplexen Zahlen haben wir das Rechnen mit Pfeilen schon kennen gelernt. Addition und Subtraktion klappen in drei wie

Mehr

Rekursive Funktionen

Rekursive Funktionen Um Rekursion zu verstehen, muss man vor allem Rekursion verstehen. http://www2.norwalk-city.k12.oh.us/wordpress/precalc/files/2009/05/mona-lisa-jmc.jpg Rekursive Funktionen OOPM, Ralf Lämmel Was ist Rekursion?

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

KV Software Engineering Übungsaufgaben SS 2005

KV Software Engineering Übungsaufgaben SS 2005 KV Software Engineering Übungsaufgaben SS 2005 Martin Glinz, Silvio Meier, Nancy Merlo-Schett, Katja Gräfenhain Übung 1 Aufgabe 1 (10 Punkte) Lesen Sie das Originalpapier von Dijkstra Go To Statement Considered

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Rückblick Datentypen (int, long, double, boolean, String) Variablen und Variablendeklarationen

Mehr

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Dynamische Programmierung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Effizienz von Algorithmen

Effizienz von Algorithmen Effizienz von Algorithmen Letzte Bearbeitung: Jan 211 Ein wichtiger Aspekt bei Algorithmen sind seine "Kosten". Wir wollen uns hier ausschließlich mit der Laufzeit des gewählten Algorithmus beschäftigen.

Mehr

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays)

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) 1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.3. Anweisungen und Kontrollsttukturen - 1 - 3. Anweisungen und Kontrollstrukturen

Mehr

Alignment-Verfahren zum Vergleich biologischer Sequenzen

Alignment-Verfahren zum Vergleich biologischer Sequenzen zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen

Mehr