Klausur Informationstheorie und Codierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Klausur Informationstheorie und Codierung"

Transkript

1 Klausur Informationstheorie und Codierung WS 2013/ Name: Vorname: Matr.Nr: Ich fühle mich gesundheitlich in der Lage, die Klausur zu schreiben Unterschrift: Aufgabe A1 A2 A3 Summe Max. Punkte Erreichte Pkt. Note Hinweise: Dieses Deckblatt muss mit den Lösungsblättern abgegeben werden Täuschungsversuche führen zur Bewertung der Prüfungsleistung als "nicht ausreichend" (5.0) Erlaubte Hilfsmittel: Formelsammlung, eine Seite DIN A4 beidseitig Es darf kein eigenes Papier verwendet werden. Verwenden Sie nicht die Farbe Rot. Klausurdauer: 120 min. Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str. 46/ Wolfenbüttel

2 Aufgabe 1 Quellencodierung 2 Präfixfreier Code 1. Wann gilt ein Code C als Präfixfrei? Nennen Sie zwei Beispiele. 2. Wie lautet die Ungleichung von Kraft und was bedeutet sie? 3. Ein binärer Baum habe 5 Endknoten, deren Abstände von der Wurzel sind: 1, 2, 3, 4 Existiert dieser Baum? Wenn ja stellen Sie diesen Baum dar. Prof. Dr. Ing. Lilia Lajmi 1

3 Entropie Codierung Es sollen binäre Bilder (Schwarz/Weiss) der Größe 4x4 codiert werden. 4. Wie viele Bits werden bei einer binären Codierung pro Bildpunkt benötigt? Begründen Sie Ihre Antwort 1P 5. Welche Bedeutung hat die Entropie H einer Quelle Q (Keine Formel)? 1P 6. Wann hat die Entropie einer Quelle Q mit N Symbolen ihren Maximum und welchen Wert erreicht sie dann? 7. Bestimmen Sie die relativen Häufigkeiten schwarzer und weißer Bildpunkte in dem Oben dargestellten Bild. Bestimmen Sie dann die Entropie unter der Annahme, dass diese Häufigkeiten mit den Wahrscheinlichkeiten übereinstimmen. Prof. Dr. Ing. Lilia Lajmi 2

4 Für die Codierung werden zwei benachbarte Bildpunkte zu einem Symbol zusammengefasst. Es entstehen somit folgende Symbole WW, WS, SW und SS. Es wird angenommen, dass benachbarte Bildpunkte statistisch unabhängig voneinander sind. 8. Entwerfen Sie einen Huffman Code welcher jeweils zwei benachbarte Bildpunkte zu einem Symbol zusammengefasst codiert. Bestimmen Sie die mittlere Codewortlänge in Bit pro Bildpunkt. 4P Prof. Dr. Ing. Lilia Lajmi 3

5 9. Entwerfen Sie einen Shannon Code welcher jeweils zwei benachbarte Bildpunkte zu einem Symbol zusammengefasst codiert. Bestimmen Sie die mittlere Codewortlänge in Bit pro Bildpunkt. Welches Verfahren (Shannon oder Huffman) ergibt bessere Ergebnisse? Woran könnte das liegen? 6P Prof. Dr. Ing. Lilia Lajmi 4

6 Aufgabe 2 Binäre Symmetrische Kanäle 5P Gegeben sei ein BSC Kanal mit folgender Kanalmatrix 0,95 0,05 0,05 0,95 1. Wie groß ist die Bitfehlerwahrscheinlichkeit im Kanal? 1P 2. Was beschreibt die Transinformation, eines Kanals und wodurch wird sie beeinflusst? 3. Wie groß ist die Kanalkapazität in Bit pro Symbol, wenn die Eingangs und Ausgangssymbole gleichverteilt sind? Prof. Dr. Ing. Lilia Lajmi 5

7 Aufgabe 3 Kanalcodierung 23P Block Code Bei einem 3,1, Blockcode wird eine binäre 1 in 100 und eine binäre 0 in 011 codiert. 10. Wie groß ist die Hamming Distanz dieses Codes? 11. Wie viele Fehler können damit erkannt bzw. korrigiert werden? 12. Die Bitfehlerwahrscheinlichkeit sei 10. Wie groß ist die Restfehlerwahrscheinlichkeit, wenn der Code zur Fehlerkorrektur verwendet wird? Prof. Dr. Ing. Lilia Lajmi 6

8 Zyklischer Code Ein zyklischer Code mit 7 und 3 besitzt das Generatorpolynom 1 4. Prüfen Sie nach, ob die Binärvektoren und gültige Codewörter sind. 4P 5. Bei der Übertragung des Codewortes tritt der Fehler Wie lautet die Polynomialer Darstellung des empfangenen Binärwortes? Prof. Dr. Ing. Lilia Lajmi 7

9 6. Welches Syndrom ergibt sich bei der Decodierung? 7. Welches Syndrom erwartet man bei einem Fehlermuster e? Vergleichen Sie das Ergebnis mit dem Ergebnis aus Aufgabenteil Ist das Restpolynom vom gesendeten Codewort abhängig? 1P Prof. Dr. Ing. Lilia Lajmi 8

10 9. Wie sieht die Generatormatrix des zyklischen Codes mit dem Generatorpolynom? 10. Bestimmen Sie für das Nachrichtenwort das zugehörige Codewort des separierbaren Codes (Führen Sie alle Schritte der Codierung durch) 4P Prof. Dr. Ing. Lilia Lajmi 9

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Mathematik für Information und Kommunikation

Mathematik für Information und Kommunikation Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Der Huffman Algorithmus

Der Huffman Algorithmus Der Huffman Algorithmus Für das Folgende setzen wir voraus, dass die Quellensymbole q ν einem Alphabet {q μ } = {A, B, C,...} mit dem Symbolumfang M entstammen und statistisch voneinander unabhängig seien.

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Information & Kommunikation - Zusammenfassung

Information & Kommunikation - Zusammenfassung Information & Kommunikation - Zusammenfassung Patrick Pletscher 29 September 2004 Grundlagen der Informationstheorie Entropie als Mass für Unsicherheit Definition der Entropie Die Entropie einer diskreten

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Übung 1: Quellencodierung

Übung 1: Quellencodierung ZHAW, NTM2, Rumc, /7 Übung : Quellencodierung Aufgabe : Huffman-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

JKU Young Scientists Matheseminar

JKU Young Scientists Matheseminar JKU Young Scientists Matheseminar Matheseminar WS 2013/14 Codierung und Information Das grundlegende Problem der Kommunikation besteht darin, an einer Stelle entweder genau oder angenähert eine Nachricht

Mehr

Modulklausur Konstruktion und Analyse ökonomischer Modelle

Modulklausur Konstruktion und Analyse ökonomischer Modelle Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 04.03.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau der Klausur Pflichtaufgabe Maximale Punktzahl: 34 Wahlpflichtaufgabe

Mehr

Inhaltsverzeichnis. 2.6.5 C-Abhängigkeit... 155. 2.6.6 S- und R-Abhängigkeit... 156 2.6.7 EN-Abhängigkeit... 156 2.6.9 M-Abhängigkeit...

Inhaltsverzeichnis. 2.6.5 C-Abhängigkeit... 155. 2.6.6 S- und R-Abhängigkeit... 156 2.6.7 EN-Abhängigkeit... 156 2.6.9 M-Abhängigkeit... VII 1 Grundlagen der Elektrotechnik und Elektronik 1 1.1 Physikalische Größen................................ 1 1.1.1 Die Schreibweise von Gleichungen.................... 2 1.1.2 Ursachen und Wirkungen

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Klausur zur Veranstaltung Industrielle Produktionssysteme im SS 04

Klausur zur Veranstaltung Industrielle Produktionssysteme im SS 04 Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Veranstaltung Industrielle Produktionssysteme im SS 04 Hinweise: Die Klausur

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81 Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,

Mehr

Inhaltsverzeichnis Informations- und Codierungstheorie

Inhaltsverzeichnis Informations- und Codierungstheorie Inhaltsverzeichnis 2 Informations- und Codierungstheorie 1 2.1 Grundlegende Definitionen.................... 2 2.1.1 Diskrete gedächtnislose Informationsquelle....... 2 2.1.2 Das Informationsmaß nach Shannon...........

Mehr

Klausur zur Veranstaltung. Airline- und Airportmanagement. im WS 2008-2009

Klausur zur Veranstaltung. Airline- und Airportmanagement. im WS 2008-2009 , Klausur zur Veranstaltung im WS 2008-2009 Hinweise: Die Klausur besteht aus 13 Seiten (inkl. Deckblatt). Bitte überprüfen Sie, ob Ihr Exemplar komplett ist und lassen Sie sich ansonsten ein neues geben.

Mehr

FH Darmstadt FB Informatik Klausurensammlung Rechnergrundlagen Prof. Komar

FH Darmstadt FB Informatik Klausurensammlung Rechnergrundlagen Prof. Komar Matr.Nr.: Name: Leistungsnachweis Rechnergrundlagen SS 2006 Skripte, Umdrucke, Kopien, handschriftliche Aufzeichnungen und Taschenrechner sind zugelassen. Die Lösungs-Ergebnisse sind ausschließlich auf

Mehr

Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes

Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes Andreas Weinand 1, Wolfgang Sauer-Greff 2, Hans D. Schotten 1 1 Lehrstuhl für Funkkommunikation

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

K L A U S U R D E C K B L A T T

K L A U S U R D E C K B L A T T K L A U S U R D E C K B L A T T Name der Prüfung: Einführung in die Robotik Datum und Uhrzeit: 25.02.2014 um 11Uhr Bearbeitungszeit: : Institut: Neuroinformatik Prüfer: Oubbati Vom Prüfungsteilnehmer auszufüllen:

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung 60 3 Codierung 3 Codierung... 3.3 Code-Sicherung Oft wählt man absichtlich eine redundante Codierung, so dass sich die Code-Wörter zweier Zeichen (Nutzwörter) durch möglichst viele binäre Stellen von allen

Mehr

Ihre Matrikel Nummer: Ihre Unterschrift

Ihre Matrikel Nummer: Ihre Unterschrift Name, Vorname Ihre Matrikel Nummer: Ihre Unterschrift Ihre Klausur Informatik U2 SS 2010 am 30. Juli 2010 Dipl. Inform. (FH) Heidi HannaH Daudistel Bearbeitungszeit: 90 Minuten Die Klausur besteht aus

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

Allgemeine Beschreibung von Blockcodes

Allgemeine Beschreibung von Blockcodes Allgemeine Beschreibung von Blockcodes Bei Blockcodierung wird jeweils eine Sequenz von m q binären Quellensymbolen (M q = 2) durch einen Block von m c Codesymbolen mit dem Symbolumfang M c dargestellt.

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof. Hußmann

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

K L A U S U R D E C K B L A T T

K L A U S U R D E C K B L A T T K L A U S U R D E C K B L A T T Name der Prüfung: Einführung in die Robotik Datum und Uhrzeit: 16.04.2014 um 11Uhr Bearbeitungszeit: : Institut: Neuroinformatik Prüfer: Oubbati Vom Prüfungsteilnehmer auszufüllen:

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1 9 Codes 9.1 Charakterisierung und Klassifizierung Definition: Das Ergebnis einer eindeutigen Zuordnung zweier Zeichen- bzw. Zahlenmengen wird Code genannt. Die Zuordnung erfolgt über eine arithmetische

Mehr

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2!

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2! Bachelor-Kursprüfung International Finance Schwerpunktmodule Finanzmärkte und Außenwirtschaft 6 Kreditpunkte, Bearbeitungsdauer: 90 Minuten SS 2015, 22.07.2015 Prof. Dr. Lutz Arnold Bitte gut leserlich

Mehr

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG DATUM: 13. Juli 2009 FACH: TEILGEBIET: KLAUSURDAUER: Allgemeine Betriebswirtschaftslehre SL-Schein Marketing II 60 Minuten PRÜFER:

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte SS 2013 12.8.2013 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Bearbeiten Sie vier der fünf Aufgaben!

Bearbeiten Sie vier der fünf Aufgaben! Master-Kursprüfung West-East Trade Theory SS 2014 Pflichtmodul Internationale VWL (M.Sc. IVWL) Schwerpunktmodul Außenwirtschaft (M.Sc. VWL) 6 Kreditpunkte Bearbeitungsdauer: 90 Minuten 16.7.2014 Prof.

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12 FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Grundlagen der Multimedia-Anwendungen, Bildverarbeitung, Computergraphik 12.02.2001 Name (bitte in Blockschrift) Matrikelnummer

Grundlagen der Multimedia-Anwendungen, Bildverarbeitung, Computergraphik 12.02.2001 Name (bitte in Blockschrift) Matrikelnummer Fachbereich Angewandte Informatik Musterlösung Matrikelnummer: Fachprüfung: Grundlagen Multimedia (Teil 1) Grundlagen der Multimedia-Anwendungen, Bildverarbeitung, Computergraphik 12.02.2001 Name (bitte

Mehr

2 Informationstheorie

2 Informationstheorie 2 Informationstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundbegriffe Informatik (IT: Information

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte SS 2014 4.8.2014 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Information Security Management System. Klausur Wintersemester 2009/10 Hochschule Albstadt-Sigmaringen

Information Security Management System. Klausur Wintersemester 2009/10 Hochschule Albstadt-Sigmaringen Information Security Management System Klausur Wintersemester 2009/10 Hochschule Albstadt-Sigmaringen Angaben der/des Studierenden Nachname Vorname Matrikel-Nummer Fachbereich Datum FEB-05-2010 Bitte lesen

Mehr

Fehler-korrigierende Codes

Fehler-korrigierende Codes Fehler-korrigierende Codes Prof. Dr. Thomas Risse Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB 8. April 2013 Nummerierung der Kapitel und Abschnitte in [15] sind beibehalten,

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Kryptographie und Codierung für den Mathematikunterricht

Kryptographie und Codierung für den Mathematikunterricht Kryptographie und Codierung für den Mathematikunterricht Pädagogische Hochschule Karlsruhe University of Education École Supérieure de Pédagogie Institut für Mathematik und Informatik Th. Borys Was verstehst

Mehr

Allgemeine Beschreibung (1)

Allgemeine Beschreibung (1) Allgemeine Beschreibung (1) Zunächst soll erklärt werden, wozu ein ISDN Primärmultiplexanschluss gebraucht wird. Dieser wird nur als Anlagenanschluss (Punkt zu Punkt) angeboten. Diese Anschlussart besagt,

Mehr

Sachauseinandersetzung und Begründung der Auswahl

Sachauseinandersetzung und Begründung der Auswahl Unterrichtsentwurf zum Thema Vergleich von Morse- und ASCII-Code Lernziele Die SchülerInnen wenden die Begriffe der mittleren Codewortlänge, Präfixfreiheit und binären Kodierung in der Beschreibung des

Mehr

Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik

Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Prof. Dr.-Ing. D. Meyer Software Engineering SS 2013 Bearbeitungszeit Kurzfragenteil: 30 Minuten Hilfsmittel: keine Name Vorname

Mehr

Signalübertragung und -verarbeitung

Signalübertragung und -verarbeitung ILehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 6. Oktober 008 5Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben.

Mehr

Name: Matr.-Nr. Datum: Bitte beachten Sie:

Name: Matr.-Nr. Datum: Bitte beachten Sie: Beuth-Hochschule Berlin / FH Brandenburg Online-Studiengang Medieninformatik Klausur Mensch-Computer-Kommunikation Wintersemester 2012/2013 Name: Matr.-Nr. Datum: Bitte beachten Sie: - Als einziges Hilfsmittel

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Run Length Coding und Variable Length Coding

Run Length Coding und Variable Length Coding Fachbereich Medieninformatik Hochschule Harz Run Length Coding und Variable Length Coding Referat Matthias Zittlau 11034 Abgabe: 15.01.2007 Inhaltsverzeichnis 1. RLC...1 2.1 Einführung...1 2.2 Prinzip...1

Mehr

Bearbeitungszeit: 120 Minuten. Kommentare kosten Zeit; kommentieren Sie ihr Programm nur da, wo der Code alleine nicht verständlich wäre.

Bearbeitungszeit: 120 Minuten. Kommentare kosten Zeit; kommentieren Sie ihr Programm nur da, wo der Code alleine nicht verständlich wäre. Fakultät IV Elektrotechnik/Informatik Klausur Einführung in die Informatik I für Elektrotechniker Name:... Matr.-Nr.... Bearbeitungszeit: 120 Minuten Bewertung (bitte offenlassen : ) Aufgabe Punkte Erreichte

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 2010

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 2010 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

PRÜFUNG. Grundlagen der Softwaretechnik

PRÜFUNG. Grundlagen der Softwaretechnik Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner PRÜFUNG Grundlagen der Softwaretechnik Name: Matrikelnummer: Note: Prüfungstag: 21.09.2012 Prüfungsdauer:

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

FEHLERKORRIGIERENDE CODES

FEHLERKORRIGIERENDE CODES FEHLERKORRIGIERENDE CODES Inhalt der Vorlesung Jürgen Koslowski @ Institut für Theoretische Informatik Technische Universität Braunschweig Juli 2009 INHALTSVERZEICHNIS -1 Inhaltsverzeichnis 0 Einführung

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte WS 2014/15 23.2.2015 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes:

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes: Codes () Beispiele für die Bedeutung eines n-bit-wortes: Befehl (instruction) Zahl (number) Zeichen (character) Bildelement (pixel) Vorlesung Rechnerarchitektur und Rechnertechnik SS 24 Codes (2) ASCII

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Kanonische Huffman Codes (Canonical Huffman Codes)

Kanonische Huffman Codes (Canonical Huffman Codes) Projektarbeit (Canonical Huffman Codes) SS 2008 Studentin: Michaela Kieneke Dozent: Dr. Heiko Körner 0001010110110110010001110110001111100001101000110111100101111110001111000 1010101110101001011100100101011111110000011001011010100101000101010001010

Mehr

Klausur Software-Engineering SS 2005 Iwanowski 23.08.2005

Klausur Software-Engineering SS 2005 Iwanowski 23.08.2005 Klausur Software-Engineering SS 2005 Iwanowski 23.08.2005 Hinweise: Bearbeitungszeit: 90 Minuten Erlaubte Hilfsmittel: im Anhang, sonst keine Bitte notieren Sie Ihre Antworten ausschließlich auf dem Aufgabenblatt!

Mehr

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Bilddatenformate BMP Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Format: Raster Farben: 1 Bit (s/w), 4 Bit (16 Farben), 8 Bit (256 Farben), 24 Bit (16,7 Mio. Farben) Kompression: Keine (meist) oder

Mehr

Blockweise und symbolweise Codierung

Blockweise und symbolweise Codierung Blockweise und symbolweise Codierung Bei der Übertragungscodierung unterscheidet man zwischen zwei Arten, der symbolweisen und der blockweisen Codierung. Bei symbolweiser Codierung, die im Kapitel 2.4

Mehr

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Semestralklausur zu Modellierung verteilter Systeme

Semestralklausur zu Modellierung verteilter Systeme Name: Vorname: Matr.Nr: Technische Universität München WS 2010/2011 Institut für Informatik Prof. Manfred Broy 09.02.2011 Semestralklausur zu Modellierung verteilter Systeme Allgemeine Hinweise: Schreiben

Mehr

Klausur zur Vorlesung VWL II Makroökonomie (SoSe 13)

Klausur zur Vorlesung VWL II Makroökonomie (SoSe 13) Klausur zur Vorlesung VWL II Makroökonomie (SoSe 13) (Prof. Dr. Jochen Michaelis) Persönliche Angaben Vorname: Nachname: Matrikel-Nr.: Studiengang: Punkteverteilung Aufgabe 1 2 3 oder 4 Bonus Punkte /20

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

Vertraulich. Nachname: Vorname: Matrikel-Nummer: Studiengang: Datum: 30. Januar 2015

Vertraulich. Nachname: Vorname: Matrikel-Nummer: Studiengang: Datum: 30. Januar 2015 Information Security Management System Klausur Wintersemester 2014/15 Hochschule Albstadt-Sigmaringen Nachname: Vorname: Matrikel-Nummer: Studiengang: Vertraulich Datum: 30. Januar 2015 Bitte lesen Sie

Mehr

Aufgabe 1 2 3 4 5 Gesamt. Maximale Punktzahl 26 8 18 24 24 100

Aufgabe 1 2 3 4 5 Gesamt. Maximale Punktzahl 26 8 18 24 24 100 Fakultät für Wirtschaftswissenschaft Lehrstuhl für Betriebswirtschaftslehre, insbesondere Investitionstheorie und Unternehmensbewertung Name : Vorname : Modulklausur: Unternehmensgründung (31581) Termin:

Mehr

Statistik II. Statistik II, SS 2001, Seite 1 von 5

Statistik II. Statistik II, SS 2001, Seite 1 von 5 Statistik II, SS 2001, Seite 1 von 5 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

Marketing IV - Investitionsgüter- und Technologiemarketing (WS 2014/15)

Marketing IV - Investitionsgüter- und Technologiemarketing (WS 2014/15) TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Wirtschaftswissenschaften und Medien Fachgebiet Marketing Univ.-Prof. Dr. rer. pol. habil. Anja Geigenmüller Marketing IV - Investitionsgüter- und Technologiemarketing

Mehr

Auswertung. Klausur Marketing 1 - Grundlagen des Marketing Sommersemester 2014

Auswertung. Klausur Marketing 1 - Grundlagen des Marketing Sommersemester 2014 Note 1,0 Note 1,3 Note 1,7 Note 2,0 Note 2,3 Note 2,7 Note 3,0 Note 3,3 Note 3,7 Note 4,0 Note 5,0 Anzahl Auswertung Klausur Marketing 1 - Grundlagen des Marketing Sommersemester 2014 Teilnehmeranzahl:

Mehr

PRÜFUNG. Grundlagen der Softwaretechnik

PRÜFUNG. Grundlagen der Softwaretechnik Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner PRÜFUNG Grundlagen der Softwaretechnik Musterlösung Name: Matrikelnummer: Note: Prüfungstag:

Mehr

Codierungstheorie. Carsten Damm. Stand: 2. Juli 2010. Vorlesungsskript

Codierungstheorie. Carsten Damm. Stand: 2. Juli 2010. Vorlesungsskript Codierungstheorie Carsten Damm Stand: 2. Juli 2010 Vorlesungsskript Carsten Damm Institut für Informatik Georg-August-Universität Göttingen c Carsten Damm Vorwort Die Codierungstheorie untersucht Verfahren

Mehr

AUFGABEN. Klausur: Modul 31811 Planen mit mathematischen Modellen. Termin: 17.03.2014

AUFGABEN. Klausur: Modul 31811 Planen mit mathematischen Modellen. Termin: 17.03.2014 Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABEN Klausur: Modul 31811 Termin: 17.03.2014 Prüfer: Univ.-Prof. Dr. Andreas

Mehr

Hauptdiplomklausur Informatik Juni 2008: Computer Networks

Hauptdiplomklausur Informatik Juni 2008: Computer Networks Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Juni 2008: Computer Networks Name: Matrikel-Nr.:

Mehr