Kapitel 13: Syndromcodierung / Hamming Codes

Größe: px
Ab Seite anzeigen:

Download "Kapitel 13: Syndromcodierung / Hamming Codes"

Transkript

1 Kapitel 3: Syndromcodierung / Hamming Codes

2 Ziele des Kapitels Lineare Codes Zyklische Codes Copyright M. Gross, ETH Zürich 26, 27 2

3 Parity-Check-Matrix Theorem: Die Minimaldistanz eines linearen Codes mit Parity-Check-Matrix H ist gleich der minimalen Anzahl von Spalten in H, die linear abhängig sind Copyright M. Gross, ETH Zürich 26, 27 3

4 Parity-Check-Matrix Beweis: Wenn H insgesamt t linear abhängige Spalten h i enthält, wobei N i c i h i Mit höchstens t verschiedenen c i, dann ist [c,,c N ] ein Codewort mit minimalem Gewicht wd min Copyright M. Gross, ETH Zürich 26, 27 4

5 Parity-Check-Matrix Umgekehrt, wenn [c,,c N ] ein Codewort mit minimalem Gewicht wd min Dann sind die den Symbolen c i! entsprechenden w Spalten von H linear abhängig Copyright M. Gross, ETH Zürich 26, 27 5

6 Syndromcodierung Wir betrachten das Problem der Fehlerkorrektur für lineare Codes Fehlerkorrektur ist immer komplexer als Fehlerdetektion Der allgemeine Aufwand zum Vergleich eines empfangenen Codewortes mit allen möglichen Einträgen ist O(q K ) Für lineare Codes gibt es ein effizienteres Verfahren in O(q N-K ) Dazu verwenden wir folgende Annahme Copyright M. Gross, ETH Zürich 26, 27 6

7 Syndromcodierung Das Codewort c werde im Kanal durch einen Fehlervektor e in ein Wort (c+e) verfälscht Durch Multiplikation mit H erhalten wir das sogenannte Syndrom s, so dass s T T T T T ( c + e) H c H + e H + e H e H Bei Annahme von Gleichverteilung der Codewörter kann Fehlerkorrektur wie folgt erreicht werden: Wir schätzen e aufgrund von s Wir korrigieren das empfangene Codewort durch Subtraktion Implementierung mittels einer Tabelle, die jedem der O(q N-K ) Syndrome ein Fehlermuster minimalen Gewichts zuweist Copyright M. Gross, ETH Zürich 26, 27 7

8 Syndromcodierung Gegeben: Binärer [5,2] Code mit G Auflisten aller möglichen 2 N-K 8 Syndrome I K Syndrom A Muster ( e) H w w w w 2 n-k Jeder Spalte der Matrix H wird ein Fehlervektor zugeordnet bei dem Bit gesetzt ist Copyright M. Gross, ETH Zürich 26, 27 8

9 Syndromcodierung Syndrom Muster ( e) w w w 2 w Prinzip: Minimales Gewicht w min bezüglich aller mit Syndrom konsistenter Fehlermuster r c + e empfangen T s r H e r e c a Parity-Check Prüfbits (aus der Syndromtabelle) Copyright M. Gross, ETH Zürich 26, 27 9

10 Anmerkungen Bei einem Linearcode entsteht dann und nur dann eine nichterkennbare Verfälschung, wenn w(e) d min ist Dann könnte e ein Kanalcodewort sein Gilt die Bedingungen zur Mindestdistanz, so ist r ein Kanalcodewort, wenn r H T Sollen alle Fehlermuster korrigierbar sein, deren Distanz w(e) s ist, so kann man die Anzahl der (N-K) erforderlichen Kontrollbits berechnen Copyright M. Gross, ETH Zürich 26, 27

11 Anzahl von Kontrollbits Wir berechnen die Mindestanzahl der erforderlichen Kontrollbits Gegeben sei ein Kanalcode mit Codewörtern [c,,c N ] der Länge N, sowie d min Aufgrund von Verfälschungen gibt es N i N! i!( N i)! Binärfolgen der Distanz i Davon sind nur 2 K Folgen Kanalwörter mit Distanz d min Copyright M. Gross, ETH Zürich 26, 27

12 Copyright M. Gross, ETH Zürich 26, 27 2 Anzahl von Kontrollbits Damit alle Fehler s korrigierbar sind, muss gelten Damit ist K berechenbar Es gilt: r N N N K N min 2 d i K i N

13 Anzahl von Kontrollbits Kanalcode mit N7 und d min 3. Berechnen K Ein Fehler korrigierbar, zwei erkennbar K K Das heisst bei 4 Nutzbits erhält man 6 Quellcodewörter sowie 3 Kontrollbits pro Wort Copyright M. Gross, ETH Zürich 26, 27 3

14 Hamming Codes Eine bedeutende Klasse linearer Codes sind die Hamming Codes Für jedes r > gibt es einen Code der Länge N2 r - mit KN-r Informationsbits und d min 3 Je grösser K, desto näher an ist die Rate Jeder Hamming-Code kann einen Fehler pro Block korrigieren Je länger der Block, desto kleiner die tolerierbare Fehlerwahrscheinlichkeit des Kanals Beliebt bei kleinen Fehlerraten Copyright M. Gross, ETH Zürich 26, 27 4

15 Hamming Codes Die (r x (2 r -)) Parity-Check-Matrix kann einfach konstruiert werden Sie besteht aus allen 2 r - vom Nullvektor verschiedenen Spalten Die Reihenfolge der Spalten ist damit noch nicht festgelegt Die Minimaldistanz folgt aus der Tatsache, dass sich keine zwei Spalten von H zu Null addieren, da sie verschieden sind Es gibt jedoch viele Spaltentripel, die linear abhängig sind Copyright M. Gross, ETH Zürich 26, 27 5

16 Praktische Konstruktion Damit kann man einen Hamming-Code wie folgt konstruieren:. Lege r und damit N fest, z. B. r3, N7 2. Schreibe alle 2 r - vom -Vektor verschiedenen Spalten in H 3. Ordne sie strukturell gemäss H[-A T I N-K ] 4. Extrahiere A T aus H[-A T I N-K ] 5. Konstruiere die Generatormatrix G[I K A] Dies ist offensichtlich eine sehr einfache Methode, einen fehlerkorrigierenden Code zu konstruieren Copyright M. Gross, ETH Zürich 26, 27 6

17 Copyright M. Gross, ETH Zürich 26, 27 7 Hamming - Code [7,4] das heisst r3 und N7 Dim(H)rx(2 r -)3x7 Matrix [ ] K N T I A H A -A T

18 Copyright M. Gross, ETH Zürich 26, 27 8 Hamming - Code [ ] A I G K

19 Duale Hamming Codes Interessante Codes erhält man, wenn man die Parity-Check-Matrix eines Codes zur Generatormatrix eines weiteren Codes macht Definition: Ein Code C' ist dual zu einem Code C, wenn die Generatormatrix von C' eine Parity- Check-Matrix von C ist Im dualen Hamming-Code ist die Anzahl der Informationsbits kleiner und die Minimaldistanz sehr gross Es gilt für den dualen Hamming-Code dmin 2 r Copyright M. Gross, ETH Zürich 26, 27 9

Vorlesung Theoretische Grundlagen

Vorlesung Theoretische Grundlagen Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 4. Februar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Erzeugendensystem und Basis

Erzeugendensystem und Basis Erzeugendensystem und Basis Definition Erzeugendensystem und Basis eines Unterraums Sei S F n 2 ein Unterraum. Eine Menge G = {g 1,..., g k } S heißt Erzeugendensystem von S, falls jedes x S als Linearkombination

Mehr

Vorlesung Theoretische Grundlagen Fehlerkorrigierende Codes Jörn Müller-Quade 29. Januar 2013

Vorlesung Theoretische Grundlagen Fehlerkorrigierende Codes Jörn Müller-Quade 29. Januar 2013 Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 29. Januar 2013 I NSTITUT FÜR K RYPTOGRAPHIE UND S ICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238 7 Woche Extra-Material: - Beispiele von Codes 7 Woche: Beispiele von Codes 144/ 238 Hamming-Matrix H(h) und Hammingcode H(h) Wir definieren nun eine Parity-Check Matrix H(h) von einem neuen Code: Parametrisiert

Mehr

Erinnerung: Der Vektorraum F n 2

Erinnerung: Der Vektorraum F n 2 Erinnerung: Der Vektorraum F n 2 Definition Vektorraum F n 2 F n 2 = ({0, 1}n,+, ) mit Addition modulo 2, + : F n 2 Fn 2 Fn 2 und skalarer Multiplikation : F 2 F n 2 Fn 2 definiert einen Vektorraum, d.h.

Mehr

Formelsammlung Kanalcodierung

Formelsammlung Kanalcodierung Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:

Mehr

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3 Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?

Mehr

Fehlerdetektion. Cyclic Redanduncy Check. Grundlagen der Rechnernetze Übertragungssicherung 7

Fehlerdetektion. Cyclic Redanduncy Check. Grundlagen der Rechnernetze Übertragungssicherung 7 Fehlerdetektion Cyclic Redanduncy Check Grundlagen der Rechnernetze Übertragungssicherung 7 Modulo 2 Arithmetik Addition Modulo 2 Subtraktion Modulo 2 Multiplikation Modulo 2 A B A B 0 0 0 1 1 0 1 1 A

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 2. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Hamming-Distanz Fehlererkennung

Mehr

Grundlagen der Rechnernetze

Grundlagen der Rechnernetze Grundlagen der Rechnernetze Übertragungssicherung Übersicht Fehlerdetektion Fehlerkorrektur Flusskontrolle Fehlerkontrolle Framing Grundlagen der Rechnernetze Übertragungssicherung 2 Fehlerdetektion Grundlagen

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Anton Malevich Einführung in die Kodierungstheorie Skript zu einer im Februar 2013 gehaltenen Kurzvorlesung Fakultät für Mechanik und Mathematik Belorussische Staatliche Universität Institut für Algebra

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten:

Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten: Prof. Dr.-Ing. H.G. Musmann INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 67 Hannover Gegeben ist ein systematischer (7,)-Cod. Die drei seiner

Mehr

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Lineare Codes (Ausarbeitung von Benjamin Demes) 1) Was sind lineare Codes

Mehr

Dekohärenz und Grundprinzip der Quantenfehlerkorrektur

Dekohärenz und Grundprinzip der Quantenfehlerkorrektur Dekohärenz und Grundprinzip der Quantenfehlerkorrektur Bachelorarbeit Gregor Wurm, Betreuer: Prof. E. Arrigoni Institut für Theoretische Physik der Technischen Universiät Graz 24. Sept. 2010 Übersicht

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 Modul Diskrete Mathematik WiSe / Ergänzungsskript zum Kapitel 3.4. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung besuchen

Mehr

Die Größe A(n, d) und optimale Codes

Die Größe A(n, d) und optimale Codes Die Größe A(n, d) und optimale Codes Definition Optimaler Code Wir definieren A(n, d) = max{m binärer (n, M, d) Code} Ein (n, M, d)-code heißt optimal, falls M = A(n, d). Bestimmung von A(n, d) ist offenes

Mehr

Fehlerschutz durch Hamming-Codierung

Fehlerschutz durch Hamming-Codierung Versuch.. Grundlagen und Begriffe Wesentliche Eigenschaften der Hamming-Codes für die Anwendung sind: der gleichmäßige Fehlerschutz für alle Stellen des Codewortes und die einfache Bildung des Codewortes

Mehr

Die Hamming-Distanz definiert eine Metrik.

Die Hamming-Distanz definiert eine Metrik. Die Hamming-Distanz definiert eine Metrik. Satz Metrik Hamming-Distanz Die Hamming-Distanz ist eine Metrik auf {0, 1} n, d.h. für alle x, y, z {0, 1} n gilt: 1 Positivität: d(x, y) 0, Gleichheit gdw x

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Gruppe. Kanalcodierung

Gruppe. Kanalcodierung Kanalcodierung Ziele Mit diesen rechnerischen und experimentellen Übungen wird die prinzipielle Vorgehensweise zur Kanalcodierung mit linearen Block-Codes und mit Faltungscodes erarbeitet. Die konkrete

Mehr

Grundlagen der Rechnernetze. Übertragungssicherung

Grundlagen der Rechnernetze. Übertragungssicherung Grundlagen der Rechnernetze Übertragungssicherung Übersicht Fehlerdetektion Fehlerkorrektur Flusskontrolle Fehlerkontrolle Framing Grundlagen der Rechnernetze Übertragungssicherung 2 Fehlerdetektion Grundlagen

Mehr

, 2015W Übungstermin: Do.,

, 2015W Übungstermin: Do., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2015W Übungstermin: Do., 29.10.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Musterlösung zur Aufgabe A1.1

Musterlösung zur Aufgabe A1.1 Abschnitt: 1.1 Zielsetzung der Kanalcodierung Musterlösung zur Aufgabe A1.1 a) Allein durch Abzählen der ISBN Ziffern erkennt man, dass Antwort 2 richtig ist. Die gewichtete Summe über alle Ziffern ergibt

Mehr

Codes on Graphs: Normal Realizations

Codes on Graphs: Normal Realizations Codes on Graphs: Normal Realizations Autor: G. David Forney, Jr. Seminarvortrag von Madeleine Leidheiser und Melanie Reuter Inhaltsverzeichnis Einführung Motivation Einleitung Graphendarstellungen Trellis

Mehr

Klausur Informationstheorie und Codierung

Klausur Informationstheorie und Codierung Klausur Informationstheorie und Codierung WS 2013/2014 23.01.2014 Name: Vorname: Matr.Nr: Ich fühle mich gesundheitlich in der Lage, die Klausur zu schreiben Unterschrift: Aufgabe A1 A2 A3 Summe Max. Punkte

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Fachprüfung. Nachrichtencodierung

Fachprüfung. Nachrichtencodierung Fachprüfung Nachrichtencodierung 14. Juli 2011 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name:... Matr.-Nr.:... Unterschrift:...

Mehr

A1.1: Zur Kennzeichnung aller Bücher

A1.1: Zur Kennzeichnung aller Bücher A1.1: Zur Kennzeichnung aller Bücher Seit den 1960er Jahren werden alle Bücher mit einer 10 stelligen International Standard Book Number versehen. Die letzte Ziffer dieser sog. ISBN 10 Angabe berechnet

Mehr

Kodierungstheorie: Lineare Kodes

Kodierungstheorie: Lineare Kodes Kodierungstheorie: Lineare Kodes Seminararbeit Sommersemester 2015 Bearbeitet von: Sebastian Gombocz (Matrikelnummer: 48947) Christian Löhle (Matrikelnummer: 48913) Betreuer: Prof. Dr. Thomas Thierauf

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

Codierung Fehlerdetektion

Codierung Fehlerdetektion Übersicht Elektromagnetische Wellen Frequenzen und Regulierungen Antennen Signale Signalausbreitung Multiplex Modulation Bandspreizverfahren Codierung Rauschen und Übertragungsfehler Fehlerdetektion Block-Codes

Mehr

Perfekte Codes. Definition Perfekter Code. Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls

Perfekte Codes. Definition Perfekter Code. Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls Perfekte Codes Definition Perfekter Code Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls ( ) d 1 M V n = 2 n. 2 D.h. die maximalen disjunkten Hammingkugeln um die Codeworte partitionieren {0,

Mehr

Kapitel 7: Optimalcodierung und Huffman Coding

Kapitel 7: Optimalcodierung und Huffman Coding Kapitel 7: codierung und Huffman Coding Ziele des Kapitels Auftreten von Fehlern bei zu starker Kompression Konstruktion optimaler Codes Huffman Coding 2 Bisher Theorem (Shannon I): Die mittlere Codewortlänge

Mehr

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC)

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Definitionen: Codewort:= mit zusätzlichen (redundanten) Kontrollbits versehenes Quellwort m:= Länge des Quellwortes (Anzahl der Nutzdatenbits)

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142 5 Woche Perfekte und Optimale Codes, Schranken 5 Woche: Perfekte und Optimale Codes, Schranken 88/ 142 Packradius eines Codes (Wiederholung) Definition Packradius eines Codes Sei C ein (n, M, d)-code Der

Mehr

Definition Information I(p)

Definition Information I(p) Definition Information I(p) Definition I(p) Die Information I(p) eines Symbols mit Quellws p > 0 ist definiert als I(p) = log 1 p. Die Einheit der Information bezeichnet man als Bit. DiMa II - Vorlesung

Mehr

2. Tutorium Digitaltechnik und Entwurfsverfahren

2. Tutorium Digitaltechnik und Entwurfsverfahren 2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

, 2016W Übungstermin: Fr.,

, 2016W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Fachprüfung. Nachrichtencodierung

Fachprüfung. Nachrichtencodierung Fachprüfung Nachrichtencodierung 6. August 2009 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name: Vorname: Matr.-Nr.: Unterschrift:

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

Codes on Graphs: Normal Realizations

Codes on Graphs: Normal Realizations Codes on Graphs: Normal Realizations Autor: G. David Forney Seminarvortrag von Madeleine Leidheiser und Melanie Reuter 1 Inhaltsverzeichnis: 1. Einführung 3 1.1 Motivation 3 1.2 Einleitung 3 2. Graphendarstellungen

Mehr

Informations- und Kodierungstheorie

Informations- und Kodierungstheorie Information Informations- und Kodierungstheorie Ziel: Sichere und effiziente Speicherung und Übertragung von Informationen: Gesendete Information soll unverfälscht beim Empfänger ankommen (räumlich, von

Mehr

A1.1: Zur Kennzeichnung aller Bücher

A1.1: Zur Kennzeichnung aller Bücher Abschnitt: 1.1 Zielsetzung der Kanalcodierung A1.1: Zur Kennzeichnung aller Bücher Seit den 1960er Jahren werden alle Bücher mit einer 10 stelligen International Standard Book Number versehen. Die letzte

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Facetten der Codierungstheorie

Facetten der Codierungstheorie . p. 1/15 Facetten der Codierungstheorie Axel Kohnert, Alfred Wassermann Aachen SPP 1489 Februar 2011 http://codes.uni-bayreuth.de Universität Bayreuth axel.kohnert@uni-bayreuth.de . p. 2/15 Facetten Kombinatorische

Mehr

Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus?

Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Seien [F] B und [F] B die Darstellungsmatrizen von F bezüglich zweier Basen B und B. Weiter sei T die

Mehr

Informationstheorie und Codierung

Informationstheorie und Codierung Informationstheorie und Codierung 5. Fehlerkorrigierende Codierung Grundlagen Fehlererkennung, Fehlerkorrektur Linearcodes, Hamming-Codes Zyklische Codes und technische Realisierung Burstfehlerkorrektur

Mehr

Fehlerkorrektur. Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes

Fehlerkorrektur. Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Fehlerkorrektur Fehlertypen Merksätze: Alle Fehler sind statistisch

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Lösungshinweise zur Klausur. Mathematik für Informatiker III. (Dr. Frank Hoffmann) 18. Februar 2008

Lösungshinweise zur Klausur. Mathematik für Informatiker III. (Dr. Frank Hoffmann) 18. Februar 2008 Lösungshinweise zur Klausur Mathematik für Informatiker III (Dr. Frank Hoffmann) 8. Februar 8 Aufgabe Algebraisches I /6++ (a) Rechnen Sie zunächst nach, dass die Menge B = {,, von Vektoren eine Basis

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Rechnernetze Übung 6 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

21. Dynamic Programming III

21. Dynamic Programming III Approximation 21. Dynamic Programming III FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] Sei ein ε (, 1) gegeben. Sei I eine bestmögliche Auswahl. Suchen eine gültige Auswahl I mit

Mehr

Übung zu Drahtlose Kommunikation. 1. Übung

Übung zu Drahtlose Kommunikation. 1. Übung Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung

Mehr

Praktikum Fehlerreduktionssysteme / Codierungstheorie

Praktikum Fehlerreduktionssysteme / Codierungstheorie Fakultät Elektrotechnik und Informationstechnik Institut für Nachrichtentechnik Lehrstuhl Theoretische Nachrichtentechnik Prof. Eduard Jorswieck, Anne Wolf Praktikum Fehlerreduktionssysteme / Codierungstheorie

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Signale und Codes Vorlesung 6

Signale und Codes Vorlesung 6 Signale und Codes Vorlesung 6 Nico Döttling December 13, 2013 1 / 24 Vergleich Shannon vs. Schranken für Minimaldistanz (1) BSC ρ hat Kapazität 1 H 2 (ρ) Shannon: Es existiert ein (n, k) Code C für BSC

Mehr

Übungsblatt 5 - Musterlösung

Übungsblatt 5 - Musterlösung Universität Mannheim Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Christoph Kuhmünch, Gerald Kühne Praktische Informatik II SS 2000 Übungsblatt 5 - Musterlösung Aufgabe 1: Huffman-Codierung

Mehr

Fehlerkorrektur. Einzelfehler besitze die Wahrscheinlichkeit p. Es gelte Unabhängigkeit der Fehlereinflüsse Für ein Wort der Länge n gelte noch:

Fehlerkorrektur. Einzelfehler besitze die Wahrscheinlichkeit p. Es gelte Unabhängigkeit der Fehlereinflüsse Für ein Wort der Länge n gelte noch: Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Fehlerkorrektur Fehlertypen Merksätze: Alle Fehler sind statistisch

Mehr

in der Mathematik-Ausbildung

in der Mathematik-Ausbildung Fehler-korrigierende in der Mathematik-Ausbildung Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB DMV-Jahrestagung, Erlangen 15.-19.9.2008 Agenda Bedeutung ECC-Speicher HDD

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 7. Februar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 7. Februar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 07.02.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Werbung Vorlesung Algorithmen

Mehr

Fehlererkennung. Fehlererkennung

Fehlererkennung. Fehlererkennung Fehlererkennung Seite 1 Prof. Dr. W. Kowalk Datenübertragung über physikalische Signale mehr oder minder hohe Anfälligkeit gegen Verfälschung der Signale Empfänger interpretiert Signal anders als von Sender

Mehr

Algebraische Codierungstheorie

Algebraische Codierungstheorie Algebraische Codierungstheorie Grundeigenschaften der Codes und ihre wichtigsten Parameterschranken Iryna Feurstein Inhaltsverzeichnis 1 Gegenstand und Aufgabe der Codierungstheorie 1 2 Blockcode 1 2.1

Mehr

Algorithmen für die Speicherhierarchie

Algorithmen für die Speicherhierarchie Lineare Algebra: untere Schranken Lehrstuhl für Effiziente Algorithmen Fakultät für Informatik Technische Universität München Vorlesung Sommersemester 2009 Gliederung 1 2 Zusätzliche Überlegungen Erinnerung

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Übungsblatt Nr. 7. Lösungsvorschlag

Übungsblatt Nr. 7. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 7 svorschlag Aufgabe (K)

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

Hamming-Geometrie der Bitvektoren

Hamming-Geometrie der Bitvektoren Hamming-Geometrie Hamming-Geometrie der Bitvektoren B = {0, } mit den Operationen = Konjunktion ( und ) = Disjunktion ( oder ) oder = Negation ( nicht ) ist die zweielementige boolesche Algebra. (B,, 0)

Mehr

Fehlererkennung und Fehlerkorrektur in Codes

Fehlererkennung und Fehlerkorrektur in Codes Fehlererkennung und Fehlerkorrektur in Codes Blockcodes und Hamming Abstand Untersuchungen zu Codierungen von Informationen, die über einen Nachrichtenkanal übertragen werden sollen, konzentrieren sich

Mehr

Konstruktion von guten linearen Blockcodes

Konstruktion von guten linearen Blockcodes Universität Bayreuth Konstruktion von guten linearen Blockcodes Markus Grassl in Zusammenarbeit mit Greg White, University of Sydney Institut für Algorithmen und Kognitive Systeme Fakultät für Informatik

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

(Network) Coding und Verbindungen zur Systemtheorie

(Network) Coding und Verbindungen zur Systemtheorie (Network) Coding und Verbindungen zur Systemtheorie Anna-Lena Horlemann-Trautmann Algorithmics Laboratory, EPFL, Schweiz 10. Februar 2016 Elgersburg Workshop Klassische Codierungstheorie Einführung Klassische

Mehr

Algebraisches Internet

Algebraisches Internet . p. 1/40 Algebraisches Internet Axel Kohnert Braunschweig Mai 2010 Universität Bayreuth axel.kohnert@uni-bayreuth.de . p. 2/40 Übersicht Designs Network Codes Konstruktion Decodieren I - Designs. p. 3/40

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

3 Codierung diskreter Quellen. Quelle Quellcodierer Kanalcodierer reduziert die benötigte Datenmenge. fügt Daten zur Fehlerkorrektur ein.

3 Codierung diskreter Quellen. Quelle Quellcodierer Kanalcodierer reduziert die benötigte Datenmenge. fügt Daten zur Fehlerkorrektur ein. 3 Codierung diskreter Quellen 3 Einführung 32 Ungleichmäßige Codierung 33 Präfix-Codes 34 Grenzen der Code-Effizienz 35 Optimal-Codierung 3 Zusammenfassung < 24 / 228 > 3 Codierung diskreter Quellen Quelle

Mehr

Leitfaden 20. t = dim V dimu.

Leitfaden 20. t = dim V dimu. Leitfaden 2 Einschub (Nachtrag zur LA I): Komplementärbasen Sei V ein Vektorraum, U ein Unterraum Eine Folge (v,, v t ) von Vektoren aus V heißt linear unabhängig modulo U, falls folgendes gilt: sind p

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes 2016S Gerhard Dorfer 1 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführende Beispiele 4 2 Mathematische Grundlagen 6 3 Fehlererkennung und Fehlerkorrektur für Blockcodes 9 4

Mehr

A1.14: Bhattacharyya Schranke für BEC

A1.14: Bhattacharyya Schranke für BEC A1.14: Bhattacharyya Schranke für BEC Wir betrachten in dieser Aufgabe den systematischen (5, 2) Code mit der 2 5 Generatormatrix der 3 5 Prüfmatrix und den 2 k = 4 Codeworten Am Ausgang des digitalen

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Kanalkodierung. 6 Kanalkodierung Zielstellung. Störungen der übertragenen Daten. 6 Kanalkodierung Zielstellung WS 2018/2019

Kanalkodierung. 6 Kanalkodierung Zielstellung. Störungen der übertragenen Daten. 6 Kanalkodierung Zielstellung WS 2018/2019 Fakultät Informatik Institut Systemarchitektur Professur Datenschutz und Datensicherheit WS 2018/2019 6. Kanalkodierung Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 6 Kanalkodierung Zielstellung en der

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes 2018S Gerhard Dorfer 1 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführende Beispiele 4 2 Mathematische Grundlagen 6 3 Fehlererkennung und Fehlerkorrektur für Blockcodes 9 4

Mehr

Error detection and correction

Error detection and correction Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung

Mehr