Vorlesung Theoretische Grundlagen Fehlerkorrigierende Codes Jörn Müller-Quade 29. Januar 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Theoretische Grundlagen Fehlerkorrigierende Codes Jörn Müller-Quade 29. Januar 2013"

Transkript

1 Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 29. Januar 2013 I NSTITUT FÜR K RYPTOGRAPHIE UND S ICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 Neues Übungsblatt Neues Übungsblatt ist am Montag dem erschienen Abgabe am Freitag dem Lediglich 2 bewertete Aufgaben (insg. 8 Punkte) Jörn Müller-Quade Vorlesung 29. Januar /30

3 Shannon s Noisy Channel Coding Theorem Theorem (Shannon) Für eine Quelle mit der Rate R und einen verrauschten Kanal der Kapazität C, wobei R C, gibt es für jedes ɛ > 0 eine Kanalcodierung so dass die entstehende Übertragungsfehlerrate < ɛ. Existenzbeweis, keine explizite Konstruktion Jörn Müller-Quade Vorlesung 29. Januar /30

4 Explizite Konstruktionen Block-: Codewörter fester Länge. Aufeinanderfolgende Blöcke unabhängig. Faltungscodes: Codewörter beliebig lang. Zeichen vom Vorgeschehen abhängig. Jörn Müller-Quade Vorlesung 29. Januar /30

5 Block-: Grundbegriffe Q: ein endliches Alphabet, heute nur Q = {0, 1}, immer 0 Q Ein Block-Code ist eine Teilmenge C Q n für n N Falls #C = 1, so heißt C trivial Für #Q = 2 heißt C binär, für #Q = 3 terniär, etc. Definition (Hamming Distanz) Für x, y Q n ist d(x, y) := n (1 δ xi,y i ) = #{i i = 1,..., n, x i y i } i=1 die Hamming-Distanz zwischen x und y Jörn Müller-Quade Vorlesung 29. Januar /30

6 Block-: Grundbegriffe Q: ein endliches Alphabet, heute nur Q = {0, 1}, immer 0 Q Ein Block-Code ist eine Teilmenge C Q n für n N Falls #C = 1, so heißt C trivial Für #Q = 2 heißt C binär, für #Q = 3 terniär, etc. Definition (Hamming Distanz) Für x, y Q n ist d(x, y) := n (1 δ xi,y i ) = #{i i = 1,..., n, x i y i } i=1 die Hamming-Distanz zwischen x und y Jörn Müller-Quade Vorlesung 29. Januar /30

7 Block-: Grundbegriffe Q: ein endliches Alphabet, heute nur Q = {0, 1}, immer 0 Q Ein Block-Code ist eine Teilmenge C Q n für n N Falls #C = 1, so heißt C trivial Für #Q = 2 heißt C binär, für #Q = 3 terniär, etc. Definition (Hamming Distanz) Für x, y Q n ist d(x, y) := n (1 δ xi,y i ) = #{i i = 1,..., n, x i y i } i=1 die Hamming-Distanz zwischen x und y Jörn Müller-Quade Vorlesung 29. Januar /30

8 Block-: Grundbegriffe Q: ein endliches Alphabet, heute nur Q = {0, 1}, immer 0 Q Ein Block-Code ist eine Teilmenge C Q n für n N Falls #C = 1, so heißt C trivial Für #Q = 2 heißt C binär, für #Q = 3 terniär, etc. Definition (Hamming Distanz) Für x, y Q n ist d(x, y) := n (1 δ xi,y i ) = #{i i = 1,..., n, x i y i } i=1 die Hamming-Distanz zwischen x und y Jörn Müller-Quade Vorlesung 29. Januar /30

9 Block-: Grundbegriffe Q: ein endliches Alphabet, heute nur Q = {0, 1}, immer 0 Q Ein Block-Code ist eine Teilmenge C Q n für n N Falls #C = 1, so heißt C trivial Für #Q = 2 heißt C binär, für #Q = 3 terniär, etc. Definition (Hamming Distanz) Für x, y Q n ist d(x, y) := n (1 δ xi,y i ) = #{i i = 1,..., n, x i y i } i=1 die Hamming-Distanz zwischen x und y Jörn Müller-Quade Vorlesung 29. Januar /30

10 Minimaldistanz Definition Die Minimaldistanz eines nichttrivialen Block- C ist m(c) := min c1,c 2 C,c 1 c 2 d(c 1, c 2 ) Definition Für einen Code C Q n heißt R(C) := log(#c) log((#q) n ) = die (Informations-) Rate von C log(#c) n log(#q) Jörn Müller-Quade Vorlesung 29. Januar /30

11 Minimaldistanz Definition Die Minimaldistanz eines nichttrivialen Block- C ist m(c) := min c1,c 2 C,c 1 c 2 d(c 1, c 2 ) Definition Für einen Code C Q n heißt R(C) := log(#c) log((#q) n ) = die (Informations-) Rate von C log(#c) n log(#q) Jörn Müller-Quade Vorlesung 29. Januar /30

12 Perfekte Definition Ein Code C mit ungerader Minimaldistanz m(c) heißt perfekt, falls für jedes x Q n genau ein c C gibt, sodass wgt(x c) m(c) 1 2 Jörn Müller-Quade Vorlesung 29. Januar /30

13 Korrekturleistung eines Block- Lemma Ein Block-Code C mit Minimaldistanz m(c) = d kann entweder bis zu d 1 Fehler erkennen oder bis zu d 1 2 Fehler korrigieren. Beweisskizze: Jörn Müller-Quade Vorlesung 29. Januar /30

14 Entwurfsziele für Block- 1 Möglichst hohe Rate, also möglichst viele Bits pro Symbol bzw. pro Codewort 2 Möglichst hohe Minimaldistanz für hohe Korrekturleistung 3 Effizientes Decodieren 1 und 2 sind konkurrierende Ziele Jörn Müller-Quade Vorlesung 29. Januar /30

15 Entwurfsziele für Block- 1 Möglichst hohe Rate, also möglichst viele Bits pro Symbol bzw. pro Codewort 2 Möglichst hohe Minimaldistanz für hohe Korrekturleistung 3 Effizientes Decodieren 1 und 2 sind konkurrierende Ziele Jörn Müller-Quade Vorlesung 29. Januar /30

16 Entwurfsziele für Block- 1 Möglichst hohe Rate, also möglichst viele Bits pro Symbol bzw. pro Codewort 2 Möglichst hohe Minimaldistanz für hohe Korrekturleistung 3 Effizientes Decodieren 1 und 2 sind konkurrierende Ziele Jörn Müller-Quade Vorlesung 29. Januar /30

17 Entwurfsziele für Block- 1 Möglichst hohe Rate, also möglichst viele Bits pro Symbol bzw. pro Codewort 2 Möglichst hohe Minimaldistanz für hohe Korrekturleistung 3 Effizientes Decodieren 1 und 2 sind konkurrierende Ziele Jörn Müller-Quade Vorlesung 29. Januar /30

18 Lineare Block- F q : endlicher Körper mit q = p n Elementen (eindeutig) Definition Ein linearer [n, k]-block Code C ist ein Untervektorraum von F n q der Dimension k Definition Für x F n q definieren wir die Hamming-Metrik (Hamming Gewicht, L 0 -Norm) wgt(x) := d(x, 0) = n (1 δ xi,0) = #{i i = 1,..., n, x i 0} i=1 Heute nur F q = F 2 = {0, 1}. Sei also F = F 2. Jörn Müller-Quade Vorlesung 29. Januar /30

19 Lineare Block- F q : endlicher Körper mit q = p n Elementen (eindeutig) Definition Ein linearer [n, k]-block Code C ist ein Untervektorraum von F n q der Dimension k Definition Für x F n q definieren wir die Hamming-Metrik (Hamming Gewicht, L 0 -Norm) wgt(x) := d(x, 0) = n (1 δ xi,0) = #{i i = 1,..., n, x i 0} i=1 Heute nur F q = F 2 = {0, 1}. Sei also F = F 2. Jörn Müller-Quade Vorlesung 29. Januar /30

20 Lineare Block- Für lineare [n, k]- C gilt R(C) = k n. Lemma Für Block- gilt d(x, y) = wgt(x y) Beweis: d(x, y) = #{i i = 1,..., n, x i y i } = #{i i = 1,..., n, x i y i 0} = wgt(x y) In linearen Block- C entspricht die Minimaldistanz also dem kürzesten Vektor c C Jörn Müller-Quade Vorlesung 29. Januar /30

21 Lineare Block- Für lineare [n, k]- C gilt R(C) = k n. Lemma Für Block- gilt d(x, y) = wgt(x y) Beweis: d(x, y) = #{i i = 1,..., n, x i y i } = #{i i = 1,..., n, x i y i 0} = wgt(x y) In linearen Block- C entspricht die Minimaldistanz also dem kürzesten Vektor c C Jörn Müller-Quade Vorlesung 29. Januar /30

22 Lineare Block- Wie können wir lineare Block- beschreiben? Ist C eine linearer [n, k]-code, so können wir C als Kern einer F (n k) n -Matrix H angeben. C = Ker(H) = {x F n H x = 0} H heißt Prüfmatrix oder Parity-Check-Matrix. Beschreibung über Codierungsabbildung: Für [n, k]-code C können wir F n k -Matrix G angeben sodass C = Bild(G) = {y F n x F k : y = G x} G bildet Informationsworte auf Codeworte ab. Parity-Check-Matrix ist die wichtigere Beschreibungsart, vor allem hinsichtlich Fehlererkennung und Fehlerkorrektur. Jörn Müller-Quade Vorlesung 29. Januar /30

23 Lineare Block- Wie können wir lineare Block- beschreiben? Ist C eine linearer [n, k]-code, so können wir C als Kern einer F (n k) n -Matrix H angeben. C = Ker(H) = {x F n H x = 0} H heißt Prüfmatrix oder Parity-Check-Matrix. Beschreibung über Codierungsabbildung: Für [n, k]-code C können wir F n k -Matrix G angeben sodass C = Bild(G) = {y F n x F k : y = G x} G bildet Informationsworte auf Codeworte ab. Parity-Check-Matrix ist die wichtigere Beschreibungsart, vor allem hinsichtlich Fehlererkennung und Fehlerkorrektur. Jörn Müller-Quade Vorlesung 29. Januar /30

24 Lineare Block- Für gegebene G, H gilt H G = 0. Für x F n heißt s = H x das Fehlersyndrom von x. s hängt nur von einem additiven Fehler, nicht aber vom Codewort selber ab. Ist x = c + e, so ist H x = H (c + e) = H c + H e = H e = s Für gegebenes s heißt (falls eindeutig) das e F n mit wgt(e) = min{wgt(x) x F n, x 0} der Coset-Leader von s. Jörn Müller-Quade Vorlesung 29. Januar /30

25 Lineare Block- Für gegebene G, H gilt H G = 0. Für x F n heißt s = H x das Fehlersyndrom von x. s hängt nur von einem additiven Fehler, nicht aber vom Codewort selber ab. Ist x = c + e, so ist H x = H (c + e) = H c + H e = H e = s Für gegebenes s heißt (falls eindeutig) das e F n mit wgt(e) = min{wgt(x) x F n, x 0} der Coset-Leader von s. Jörn Müller-Quade Vorlesung 29. Januar /30

26 Lineare Block- Für gegebene G, H gilt H G = 0. Für x F n heißt s = H x das Fehlersyndrom von x. s hängt nur von einem additiven Fehler, nicht aber vom Codewort selber ab. Ist x = c + e, so ist H x = H (c + e) = H c + H e = H e = s Für gegebenes s heißt (falls eindeutig) das e F n mit wgt(e) = min{wgt(x) x F n, x 0} der Coset-Leader von s. Jörn Müller-Quade Vorlesung 29. Januar /30

27 Lineare Block- Für gegebene G, H gilt H G = 0. Für x F n heißt s = H x das Fehlersyndrom von x. s hängt nur von einem additiven Fehler, nicht aber vom Codewort selber ab. Ist x = c + e, so ist H x = H (c + e) = H c + H e = H e = s Für gegebenes s heißt (falls eindeutig) das e F n mit wgt(e) = min{wgt(x) x F n, x 0} der Coset-Leader von s. Jörn Müller-Quade Vorlesung 29. Januar /30

28 Parity Parity-Code Idee: Füge einem Informationswort ein Bit hinzu das beschreibt ob die Quersumme des Informationswortes gerade oder ungerade ist 1 1 G = 1 1 H = ( ) Parity- sind [n, n 1]-. Jörn Müller-Quade Vorlesung 29. Januar /30

29 Rate und Minimaldistanz? Rate: R(C) = n 1 n = 1 1 n d.h. R(C) 1 für n. Minimaldistanz: Je zwei Spalten der Parity-Check Matrix sind linear abhängig (trivial) m(c) = 2 Parity können einen Bitfehler erkennen, aber keine Fehler korrigieren Jörn Müller-Quade Vorlesung 29. Januar /30

30 Rate und Minimaldistanz? Rate: R(C) = n 1 n = 1 1 n d.h. R(C) 1 für n. Minimaldistanz: Je zwei Spalten der Parity-Check Matrix sind linear abhängig (trivial) m(c) = 2 Parity können einen Bitfehler erkennen, aber keine Fehler korrigieren Jörn Müller-Quade Vorlesung 29. Januar /30

31 Allgemeine Konstruktion Ist C ein [n, k] Code mit ungerader Minimaldistanz d und Prüfmatrix H, so können wir den parity-erweiterten Code C definierent durch die Prüfmatrix H H = H C hat Minimaldistanz d + 1, da alle Gewichte in C gerade sind.. 0 Jörn Müller-Quade Vorlesung 29. Januar /30

32 Hamming- Definition Hamming sind [2 k 1, 2 k k 1]-, für die je zwei Spalten der Prüfmatrix linear unabhängig sind Beispiel Der [7, 4]-Hamming Code hat folgende Matrizen H = G = Jörn Müller-Quade Vorlesung 29. Januar /30

33 Rate und Minimaldistanz Welche Rate haben Hamming? R(C) = 2k k 1 2 k 1 = 1 k 2 k 1 Welche Minimaldistanz haben Hamming? Je zwei Spalten der Parity-Check Matrix sind linear unabahängig, aber es gibt Tripel von Spalten die linear abhängig sind m(c) = 3 Jörn Müller-Quade Vorlesung 29. Januar /30

34 Rate und Minimaldistanz Welche Rate haben Hamming? R(C) = 2k k 1 2 k 1 = 1 k 2 k 1 Welche Minimaldistanz haben Hamming? Je zwei Spalten der Parity-Check Matrix sind linear unabahängig, aber es gibt Tripel von Spalten die linear abhängig sind m(c) = 3 Jörn Müller-Quade Vorlesung 29. Januar /30

35 Wie decodiert man Hamming? Man sieht am Aufbau der Parity-Check Matrix des Hamming dass im Falle eines 1-Bit Fehler das Syndrom eine Binärdarstellung der Fehlerposition ist Example Gegeben ist das Wort w = ( ) T. Das Syndrom berechnet sich zu 1 s = H w = 1 0 Der Fehler ist also an Position 6 aufgetreten, das regenerierte Codewort ist ĉ = ( ) T. Das decodierte Informationswort ist i = ( ) T. Jörn Müller-Quade Vorlesung 29. Januar /30

36 Perfektheit Theorem Hamming sind perfekt Beweis: Sei C ein [2 k 1, 2 k k 1] Hamming Code. Betrachte Kugeln B(c) mit Radius 1 um einzelne Codewörter c C. Dann #B(c) = k 1 = 2 k = B Der Code C hat Dimension 2 k k 1, also gibt es #C = 2 2k k 1 Codewörter. Für c 1 c 2 sind B(c 1 ) und B(c 2 ) disjunkt. Die Kugelpackung hat B #C Elemente B #C = 2 k 2 2k k 1 = 2 2k 1 = #F 2k 1 2 Alle 1-Kugeln zusammen füllen also den ganzen Raum aus Jörn Müller-Quade Vorlesung 29. Januar /30

37 Allgemeines Decodierproblem Bei Hamming ist effizientes decodieren von 1-Bit fehlerbehafteten Wörtern möglich. Wie steht es darum allgemein? Jörn Müller-Quade Vorlesung 29. Januar /30

38 Wie effizient kann man decodieren? Problem: COSET-WEIGHTS Gegeben: Prüfmatrix H F m n 2, ein Syndrom s F m 2 und Zahl k Frage: Gibt es ein e mit wgt(e) k sodass H e = s? Das zugehörige Suchproblem ist COSET-LEADER Jörn Müller-Quade Vorlesung 29. Januar /30

39 Decodieren ist NP-vollständig Theorem (Berlekamp, McEliece, van Tilborg) COSET-WEIGHTS ist N P-vollständig in [BMT78] Berlekamp, McEliece, van Tilborg: On the Inherent Intractability of Certain Coding Problems Jörn Müller-Quade Vorlesung 29. Januar /30

40 Decodieren ist NP-vollständig Beweis: Zunächst ist klar dass COSET-WEIGHTS NP: Wir raten einen Vektor e F n 2, prüfen ob H e = s und ob wgt(e) w. Dies geht in O(m m) (wird dominiert von Matrix-Multiplikation) Wir zeigen dass COSET-WEIGHTS NP-hart ist durch Reduktion von 3DM auf COSET-WEIGHTS Erinnerung: 3DM ist folgendermaßen definiert Problem: 3DM Gegeben: B, G, U mit #B = #G = #U = n und T B G U Frage: Gibt es ein Matching (perfekte Überdeckung) M T Jörn Müller-Quade Vorlesung 29. Januar /30

41 Decodieren ist NP-vollständig Beweis: Zunächst ist klar dass COSET-WEIGHTS NP: Wir raten einen Vektor e F n 2, prüfen ob H e = s und ob wgt(e) w. Dies geht in O(m m) (wird dominiert von Matrix-Multiplikation) Wir zeigen dass COSET-WEIGHTS NP-hart ist durch Reduktion von 3DM auf COSET-WEIGHTS Erinnerung: 3DM ist folgendermaßen definiert Problem: 3DM Gegeben: B, G, U mit #B = #G = #U = n und T B G U Frage: Gibt es ein Matching (perfekte Überdeckung) M T Jörn Müller-Quade Vorlesung 29. Januar /30

42 Decodieren ist NP-vollständig Beweis: Zunächst ist klar dass COSET-WEIGHTS NP: Wir raten einen Vektor e F n 2, prüfen ob H e = s und ob wgt(e) w. Dies geht in O(m m) (wird dominiert von Matrix-Multiplikation) Wir zeigen dass COSET-WEIGHTS NP-hart ist durch Reduktion von 3DM auf COSET-WEIGHTS Erinnerung: 3DM ist folgendermaßen definiert Problem: 3DM Gegeben: B, G, U mit #B = #G = #U = n und T B G U Frage: Gibt es ein Matching (perfekte Überdeckung) M T Jörn Müller-Quade Vorlesung 29. Januar /30

43 Decodieren ist NP-vollständig Sei (B, G, U, T ) mit #B = #G = #U = n eine Instanz von 3DM. Wir definieren H F 3n T 2 folgendermaßen: Wir identifizieren die Zeilenindizes von H mit Elementen der Mengen B, G und U Für jedes Tripel (b, g, u) T führen wir einen Spalte c in H ein, die jeweils genau an den Stellen b, g und u eine 1, sonst überall 0 stehen hat. Wir können deshalb Spaltenindizes von H mit Tripeln (b, g, u) T identifizieren. Jörn Müller-Quade Vorlesung 29. Januar /30

44 Decodieren ist NP-vollständig Sei (B, G, U, T ) mit #B = #G = #U = n eine Instanz von 3DM. Wir definieren H F 3n T 2 folgendermaßen: Wir identifizieren die Zeilenindizes von H mit Elementen der Mengen B, G und U Für jedes Tripel (b, g, u) T führen wir einen Spalte c in H ein, die jeweils genau an den Stellen b, g und u eine 1, sonst überall 0 stehen hat. Wir können deshalb Spaltenindizes von H mit Tripeln (b, g, u) T identifizieren. Jörn Müller-Quade Vorlesung 29. Januar /30

45 Decodieren ist NP-vollständig Sei (B, G, U, T ) mit #B = #G = #U = n eine Instanz von 3DM. Wir definieren H F 3n T 2 folgendermaßen: Wir identifizieren die Zeilenindizes von H mit Elementen der Mengen B, G und U Für jedes Tripel (b, g, u) T führen wir einen Spalte c in H ein, die jeweils genau an den Stellen b, g und u eine 1, sonst überall 0 stehen hat. Wir können deshalb Spaltenindizes von H mit Tripeln (b, g, u) T identifizieren. Jörn Müller-Quade Vorlesung 29. Januar /30

46 Decodieren ist NP-vollständig Sei (B, G, U, T ) mit #B = #G = #U = n eine Instanz von 3DM. Wir definieren H F 3n T 2 folgendermaßen: Wir identifizieren die Zeilenindizes von H mit Elementen der Mengen B, G und U Für jedes Tripel (b, g, u) T führen wir einen Spalte c in H ein, die jeweils genau an den Stellen b, g und u eine 1, sonst überall 0 stehen hat. Wir können deshalb Spaltenindizes von H mit Tripeln (b, g, u) T identifizieren. Jörn Müller-Quade Vorlesung 29. Januar /30

47 Decodieren ist NP-vollständig Wir setzen nun: w = n und s = ( ) T F 3n 2 Es ist klar: Eine Lösung e F T 2 muss Gewicht n haben, da eine Spalte je Hamming-Gewicht 3 hat und das Syndrom s Gewicht 3n. Wir suchen also nach einem e mit Gewicht genau n. Jörn Müller-Quade Vorlesung 29. Januar /30

48 Decodieren ist NP-vollständig Wir setzen nun: w = n und s = ( ) T F 3n 2 Es ist klar: Eine Lösung e F T 2 muss Gewicht n haben, da eine Spalte je Hamming-Gewicht 3 hat und das Syndrom s Gewicht 3n. Wir suchen also nach einem e mit Gewicht genau n. Jörn Müller-Quade Vorlesung 29. Januar /30

49 Decodieren ist NP-vollständig Wir setzen nun: w = n und s = ( ) T F 3n 2 Es ist klar: Eine Lösung e F T 2 muss Gewicht n haben, da eine Spalte je Hamming-Gewicht 3 hat und das Syndrom s Gewicht 3n. Wir suchen also nach einem e mit Gewicht genau n. Jörn Müller-Quade Vorlesung 29. Januar /30

50 Decodieren ist NP-vollständig Beispiel: Sei #B = #G = #U = 2. Wir geben uns die Menge T = {(1, 1, 2), (2, 1, 2), (2, 2, 1)} vor. Es ist also n = 2. Die Matrix H und das Syndrom s sehen folgendermaßen aus H = B G U , s = Eine Lösung dieser Instanz ist e = (1 0 1) T, sie hat Gewicht Jörn Müller-Quade Vorlesung 29. Januar /30

51 Decodieren ist NP-vollständig Wir erhalten damit: Die 3DM Instanz (B, G, U, T ) ist genau dann erfüllbar wenn die COSET-WEIGHTS Instanz (H, s, w) erfüllbar ist. Da Spalten von H und Elemente von T sich gegenseitig entsprechen, können wir aus einem Vektor e F T 2 mit Gewicht n dadurch ein Matching M konstruieren, indem wir die Spalten genau die Tripel (b, g, u) T in das Matching M aufnehmen, wenn in e an der Stelle (b, g, u) eine 1 steht. Umgekehrt können wir aus einem Matching M einen erfüllenden Vektor e konstruieren indem wir für jedes (b, g, u) M in den Vektor e an Position (b, g, u) eine 1 schreiben und überall sonst Nullen. Damit ist die Reduktion fertig. Jörn Müller-Quade Vorlesung 29. Januar /30

52 Kann man gute systematisch finden? Noch schlimmer: Sogar das Finden guter ist N P-vollständig Problem: SUBSPACE-WEIGHTS Gegeben: Prüfmatrix H und Zahl k Frage: Gibt es ein c mit wgt(c) = k sodass H c = 0? Auch [BMT78]: SUBSPACE-WEIGHTS ist N P-vollständig Jörn Müller-Quade Vorlesung 29. Januar /30

53 Familien von guten Viele weitere Block-Codierungsverfahren die effizientes Decodieren ermöglichen: Repetition-; Decodieren mit Majority Logic Fourier und Polynom-: Reed-Solomon, BCH; Algebraisches Decodieren Algebraische Geometrie : Goppa ; Algebraisches Decodieren Expander-Graphen: LDPC ; Decodieren durch lineare Optimierung Jörn Müller-Quade Vorlesung 29. Januar /30

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Fehlererkennung und Fehlerkorrektur in Codes

Fehlererkennung und Fehlerkorrektur in Codes Fehlererkennung und Fehlerkorrektur in Codes Blockcodes und Hamming Abstand Untersuchungen zu Codierungen von Informationen, die über einen Nachrichtenkanal übertragen werden sollen, konzentrieren sich

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Proseminar Mathematische Modelle in den Naturwissenschaften WS 09/10 Thomas Holzer 0755600 Sandra Sampl 0755049 Kathrin Oberradter 0755123 1 Inhaltsverzeichnis 1. Einführung

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes*

Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Andrea Kraft andreakraft@gmx.at Elisabeth Pilgerstorfer elisabeth_pilg@hotmail.com Johannes Kepler Universität Linz

Mehr

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81 Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Fehler-korrigierende Codes

Fehler-korrigierende Codes Fehler-korrigierende Codes Prof. Dr. Thomas Risse Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB 8. April 2013 Nummerierung der Kapitel und Abschnitte in [15] sind beibehalten,

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig Harm Pralle Codierungstheorie WS 2005/06 Institut Computational Mathematics Technische Universität Braunschweig II Literatur: A. Beutelspacher und U. Rosenbaum. Projektive Geometrie. Vieweg, Wiesbaden

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Lösungsvorschläge Blatt Z1

Lösungsvorschläge Blatt Z1 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /

Mehr

Einführung in die Codierungstheorie. Rudolf Schürer

Einführung in die Codierungstheorie. Rudolf Schürer Einführung in die Codierungstheorie Rudolf Schürer 8. Februar 2008 Vorwort Dieses Skript entstand im Zuge der gleichnamigen Vorlesung, die ich im Wintersemester 2007/08 am Fachbereich Mathematik der Universität

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

DIPLOMARBEIT. Titel der Diplomarbeit. Die Golay Codes. Verfasser. Daniel Eiwen. angestrebter akademischer Grad

DIPLOMARBEIT. Titel der Diplomarbeit. Die Golay Codes. Verfasser. Daniel Eiwen. angestrebter akademischer Grad DIPLOMARBEIT Titel der Diplomarbeit Die Golay Codes Verfasser Daniel Eiwen angestrebter akademischer Grad Magister der Naturwissenschaften (Mag.rer.nat) Wien, im Mai 2008 Studienkennzahl lt. Studienblatt:

Mehr

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes Inhalt: 1.1 Einführung 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes 1.1 Einführung In In der der Codierungstheorie unterscheidet man man Quellcodierung und und Kanalcodierung.

Mehr

Codierungstheorie, Vorlesungsskript

Codierungstheorie, Vorlesungsskript Codierungstheorie, Vorlesungsskript Irene I. Bouw Sommersemester 2014 Inhaltsverzeichnis 1 Lineare Codes 2 1.1 Einführung.............................. 2 1.2 Eigenschaften linearer Codes....................

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Ι. Einführung in die Codierungstheorie

Ι. Einführung in die Codierungstheorie 1. Allgemeines Ι. Einführung in die Codierungstheorie Codierung: Sicherung von Daten und Nachrichten gegen zufällige Fehler bei der Übertragung oder Speicherung. Ziel der Codierung: Möglichst viele bei

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes

Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes Andreas Weinand 1, Wolfgang Sauer-Greff 2, Hans D. Schotten 1 1 Lehrstuhl für Funkkommunikation

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S Begriffe Faser: Es sei f : M N eine Abbildung von Mengen. Es sei n N. Die Menge f 1 ({n}) M nennt man die Faser in n. (Skript Seite 119). Parallel: Zwei Vektoren v und w heißen parallel, wenn für einen

Mehr

Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 203/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Codierungstheorie. Ruprecht-Karls-Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen

Codierungstheorie. Ruprecht-Karls-Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Codierungstheorie Bernd Heinrich Matzat Ausarbeitung von Thorsten Lagemann Vorwort Vorliegendes Skriptum

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Die Begriffe analog und digital stammen aus der Rechentechnik:

Die Begriffe analog und digital stammen aus der Rechentechnik: November 968 I. Einführung in die Digitalelektronik Grundbegriffe, Wahrheitstabellen: Die Begriffe analog und digital stammen aus der Rechentechnik: Analog-Rechner benötigt zur Darstellung von Zahlenwerten

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Thema: Hamming-Codes. Titelblatt anonymisiert

Thema: Hamming-Codes. Titelblatt anonymisiert Thema: Hamming-Codes Titelblatt anonymisiert Hamming-Codes.Einführung in die Kodierungstheorie... 3. Grundlegendes über Codewörter... 3. Matrizen... 4.3 Die maßgebliche Stelle... 5.Grundlegende Ideen...5

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Das Alphabet Σ sei eine endliche

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

7 Endliche Automaten. Reimund Albers Papierfalten Kapitel 7 Endliche Automaten 103

7 Endliche Automaten. Reimund Albers Papierfalten Kapitel 7 Endliche Automaten 103 Reimund Albers Papierfalten Kapitel 7 Endliche Automaten 103 7 Endliche Automaten Ein erstes Beispiel Ganz im Sinn der vorangegangenen Kapitel machen wir wieder Anleihen in einem wohl etablierten Gebiet.

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

FEHLERKORRIGIERENDE CODES

FEHLERKORRIGIERENDE CODES FEHLERKORRIGIERENDE CODES Inhalt der Vorlesung Jürgen Koslowski @ Institut für Theoretische Informatik Technische Universität Braunschweig Juli 2009 INHALTSVERZEICHNIS -1 Inhaltsverzeichnis 0 Einführung

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Der Golay-Code und das Leech-Gitter

Der Golay-Code und das Leech-Gitter Der Golay-Code und das Leech-Gitter Vortrag zum Seminar Gitter und Codes Nils Malte Pawelzik.5.5 Inhaltsverzeichnis Designs 3. Elementare Eigenschaften eines Designs und die Eindeutigkeit eines - (, 5,

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions

Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions Dr. rer. nat. Bastian Katz 0. Juni 009 (Version vom. Juni 009) Von Kreisen, Kugeln und Bällen Definition In einem metrischen

Mehr

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen Proseminar Einführung in die Mathematik 1 WS 1/11. Deember 1 Lösungen 46) Wie kann man nach Wahl eines Nullpunktes die Zeichenebene in natürlicher Weise als Vektorraum betrachten? Skriptum Kapitel 4, Par.

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Verallgemeinerte Dreiecksungleichungen Michael Kapovich

Verallgemeinerte Dreiecksungleichungen Michael Kapovich Verallgemeinerte Dreiecksungleichungen Michael Kapovich Wir alle wissen, dass eine gerade Linie die kürzeste Verbindung von einem Punkt zu einem anderen Punkt ist. Dieses Wissen scheint in den Jahrmillionen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17)

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17) Vorlesung Kombinatorische Optimierung (Wintersemester 06/7) Kapitel : Flüsse und Zirkulationen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. Oktober 06) Definition. Ein Netzwerk

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

JKU Young Scientists Matheseminar

JKU Young Scientists Matheseminar JKU Young Scientists Matheseminar Matheseminar WS 2013/14 Codierung und Information Das grundlegende Problem der Kommunikation besteht darin, an einer Stelle entweder genau oder angenähert eine Nachricht

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker 1 Tutorium Mathematik für Informatiker 1 Tutorium Malte Isberner 9.1.2014 M. Isberner MafI1-Tutorium 9.1.2014 1 / 12 Thema heute Thema heute: Verbände M. Isberner MafI1-Tutorium 9.1.2014 2 / 12 Verbände Was ist ein

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung Huffman-Codierung, arithmetische Codierung Theoretische Informatik RWTH-Aachen 4. April 2012 Übersicht 1 Einführung 2 3 4 5 6 Einführung Datenkompression Disziplin,die Kompressionsalgorithmen entwirft

Mehr

Codierungstheorie. Skript zur Vorlesung im WS 2005/06

Codierungstheorie. Skript zur Vorlesung im WS 2005/06 Codierungstheorie Skript zur Vorlesung im WS 2005/06 Prof. Peter Hauck Arbeitsbereich Diskrete Mathematik Wilhelm-Schickard-Institut Universität Tübingen L A TEX-Fassung von Daniel Raible 2 Inhaltsverzeichnis

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr