Basteln und Zeichnen

Größe: px
Ab Seite anzeigen:

Download "Basteln und Zeichnen"

Transkript

1 Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle Formen 8 Wir zeichnen Dreiecke 9 Wir zeichnen Quadrate 10 Noch mehr Dreiecke und Vierecke 11 Wie viele Dreiecke und Quadrate siehst du? 12 Hinweise und Lösungen 13 Kopiervorlage Bastle Formen 15 Kopiervorlage Wir zeichnen Dreiecke und Vierecke 16 für Mathematik und Geometrie Seite 1

2 Falte eine Hexentreppe 2 Papierstreifen in verschiedenen Farben ca. 40 cm lang und 4 cm breit, Klebstoff. Nimm die beiden Papierstreifen und klebe ihre Enden im rechten Winkel wie auf dem Foto aufeinander. Der helle Streifen liegt unterhalb. Warte bis der Klebstoff trocken ist. Falte den unterhalb liegenden hellen Streifen über den darüber liegenden dunklen Streifen. Danach liegt der dunkle Streifen unterhalb und wird anschließend über den hellen Streifen gefaltet. So faltest du weiter, bis die Streifen zu Ende sind. Klebe den vorletzten Abschnitt mit dem letzten Abschnitt zusammen. Warte bis der Klebstoff trocken ist. Wenn du die Faltung auseinanderziehst, erhältst du eine Hexentreppe. Hier ist die Hexentreppe der Körper eines Schmetterlings. für Mathematik und Geometrie Seite 2

3 Falte eine Ziehharmonika ein Blatt Papier im Format DIN A4 und dein Übungsheft. Falten und zählen. Kannst du das Blatt wie auf den Fotos falten? Damit dir das gelingt, musst du manchmal das Papier drehen oder wenden, dann eine Faltlinie öffnen und nach der anderen Seite falten. Wie viele Faltlinien musst du für die fertige Ziehharmonika machen? Wie viele Rechtecke hat die Ziehharmonika? Schreibe das Ergebnis in dein Übungsheft. Wenn du Hilfe brauchst, schaue die Fotos unten genau an. Hier siehst du eine Möglichkeit die Ziehharmonika zu falten. für Mathematik und Geometrie Seite 3

4 Die Schatzinsel ein Blatt Papier im Format DIN A4. Vier Piraten wollen den Plan einer Schatzinsel mit zwei magischen Linien in vier ungefähr gleich große Teile teilen. Kannst du ihnen helfen? Reiße den Rand des Papiers weg. Jetzt hast du den Plan der Schatzinsel. Falte das Papier so, dass eine gerade Linie den Plan teilt. Falte das Papier so, dass diese Linie auf sich zu liegen kommt. Du hast nun einen rechten Winkel gefaltet (Foto links unten). Öffnest du die Faltlinien, so teilen zwei gerade Linien den Plan der Schatzinsel in vier Teile (Foto rechts unten). Was sollst du dir merken? Du kannst aus einem Stück Papier einen rechten Winkel falten. Die beiden Faltlinien heißen senkrecht zueinander. Zwei senkrechte Linien schließen einen rechten Winkel ein. für Mathematik und Geometrie Seite 4

5 Das Quadrat und seine Winkel ein quadratisches Blatt Papier (21 cm x 21 cm) und als Werkzeug einen rechten Winkel, den du aus dem Plan der Schatzinsel gefaltet hast. Lege den rechten Winkel in eine Ecke des Quadrats. Was beobachtest du? Reiße das quadratische Blatt Papier in fünf Teile. Lege die vier Teile mit den Ecken des Quadrats zusammen. Was beobachtest du? Was sollst du dir merken? Der Winkel in einem Eckpunkt eines Quadrats ist ein rechter Winkel. Vier rechte Winkel bilden einen vollen Winkel. Zusatzaufgabe: Mache dasselbe mit einem rechteckigen Blatt Papier. für Mathematik und Geometrie Seite 5

6 Senkrechte und parallele Linien ein Blatt Papier im Format DIN A4. Reiße den Rand weg. Falte das Papier einmal. Danach falte das Papier so, dass diese Linie auf sich zu liegen kommt. Öffne diese Faltlinie und falte an einer anderen Stelle eine neue Linie so, dass die erste Linie wieder auf sich zu liegen kommt. Öffne alle Faltlinien. Was kannst du beobachten? Was sollst du dir merken? Die beiden zur ersten Linie senkrechten Linien liegen parallel zueinander. Zwei parallele Linien haben überall den gleichen Abstand. für Mathematik und Geometrie Seite 6

7 Ein Scherenschnitt ein quadratisches Blatt Papier (21 cm x 21 cm), ein Geodreieck, einen Bleistift und eine Schere. Falte das Quadrat zu einem Dreieck. Danach falte das Dreieck noch zweimal zu einem Dreieck. Zeichne auf dem zuletzt gefalteten Dreieck mit deinem Geodreieck die Mittellinie des Dreiecks, links und rechts der Mittellinie parallele Linien im Abstand 15 mm, die Linie im Abstand 15 mm von der Grundlinie und die beiden Dreiecke wie auf dem Foto. Schneide nun aus dem gefalteten Papier die beiden eingezeichneten Dreiecke aus. Dein Scherenschnitt ist fertig. Falte ihn auf. Kannst du auch die beiden anderen Figuren falten? Probiere es aus. für Mathematik und Geometrie Seite 7

8 Bastle Formen Pfeifenputzer, Trinkhalme und Schere. Nimm die Vorlage und wähle eine Form aus. Zähle die Seiten ab und schneide genau so viele Trinkhalmstücke zurecht. Fädle die Trinkhalmstücke auf einen Pfeifenputzer auf. Biege deine Form wie auf der Vorlage. Bastle alle Formen! Was sollst du dir merken? Die Formen heißen Dreieck, Quadrat, Fünfeck, Sechseck und Achteck. für Mathematik und Geometrie Seite 8

9 Wir zeichnen Dreiecke ein Geodreieck oder ein Lineal, einen Bleistift und Buntstifte. Markiere die Ecken der Dreiecke farbig. Übertrage die Ecken in den rechten Raster. Zeichne die Dreiecke im rechten Raster ein. Verwende dazu dein Geodreieck oder dein Lineal! für Mathematik und Geometrie Seite 9

10 Wir zeichnen Quadrate ein Geodreieck oder ein Lineal, einen Bleistift und Buntstifte. Markiere die Ecken der Quadrate farbig. Übertrage die Ecken in den rechten Raster. Zeichne die Quadrate im rechten Raster ein. Verwende dazu dein Geodreieck oder dein Lineal! für Mathematik und Geometrie Seite 10

11 Noch mehr Dreiecke und Vierecke ein Geodreieck oder ein Lineal und einen Bleistift. Zeichnen und zählen. Die erste Figur besteht aus Vierecken. Markiere die Ecken der Vierecke im linken Raster farbig. Übertrage die Ecken in den rechten Raster. Zeichne die Figur mit dem Lineal oder Geodreieck im rechten Raster ein. Die Figur hat Ecken. Es sind Vierecke zu sehen. Die zweite Figur besteht aus Dreiecken. Mache es wie oben. Die zweite Figur hat Ecken. Es sind Dreiecke zu sehen. für Mathematik und Geometrie Seite 11

12 Wie viele Dreiecke und Quadrate siehst du? ein Geodreieck oder ein Lineal und einen Bleistift. Zeichnen und zählen. Die Figur bestehen aus Dreiecken und Quadraten. Markiere die Ecken der Dreiecke im linken Raster farbig. Übertrage die Ecken in den rechten Raster. Zeichne die Figur mit dem Lineal oder Geodreieck im rechten Raster ein. Es sind Dreiecke und Quadrate sind zu sehen. Mache es für die zweite Figur wie oben. In der zweiten Figur sind... Dreiecke und... Quadrate zu sehen. für Mathematik und Geometrie Seite 12

13 Hinweise und Lösungen Bezug zum Lehrplan Erfassen und Beschreiben einfacher geometrischer Figuren Untersuchen von Flächen Spielerisches Gestalten von Flächen Rechte Winkel Parallele Geraden Hantieren mit Zeichengeräten Zählen, Konzentration Saubere Durchführung von Zeichnungen Das Quadrat und seine Winkel (Seite 5) Beobachtungen zu Lege den gefalteten Winkel auf die Ecke des Quadrats können sein: Der gefaltete rechte Winkel deckt jede Ecke des Quadrats genau ab. Die Faltlinien liegen genau auf den Kanten des Quadrats. Beobachtungen zu Lege die vier Quadratteile mit Ecken zusammen können sein: Die vier Teile passen genau zusammen. Es bleibt keine Lücke. Senkrechte und parallele Linien (Seite 6) Beobachtungen zu Öffne die Faltlinien können sein: Es gibt nun zwei Linien, die zur ersten Linie senkrecht sind. Die Strecke auf der Senkrechten kann längs der neuen Linien verschoben werden. Die beiden Linien haben gleichen Abstand. Ein Scherenschnitt (Seite 7) Drei bis vier Kinder können das Arbeitsblatt als Vorlage verwenden. Für jedes Kind soll ein quadratisches Papier bereit liegen. Zusatzfragen: Welche Spiegelungen sind möglich? Welche Linien sind Spiegelachsen? Jede Faltlinie ist Symmetrielinie des Scherenschnitts. Bastle Formen (Seite 8) Das Arbeitsblatt Bastle Formen kann für zwei bis drei Kinder als Vorlage aufgelegt werden. Von der Kopiervorlage Bastle Formen können zwei Kinder die Formen auch ausschneiden. Damit die Kinder beim Basteln auch einige Eigenschaften der Formen kennen lernen, sind weitere Fragestellungen und Arbeitsaufträge zu Bastle Formen möglich: Was liegt der Seite eines Dreiecks, eines Vierecks, usw.... gegenüber? Bei Vielecken mit ungerader Eckenzahl liegt einer Seite immer eine Ecke gegenüber, bei Vielecken mit gerader Eckenanzahl liegt einer Seite immer eine parallele Seite gegenüber. Drücke das Quadrat, das Fünfeck, das Sechseck und das Achteck leicht zusammen. Was beobachtest du? Alle Figuren verändern ihr Aussehen. Drücke ein Dreieck leicht zusammen. Was beobachtest du? Das Dreieck bleibt stabil. für Mathematik und Geometrie Seite 13

14 Wir zeichnen Dreiecke, Quadrate und Vierecke (Seite 9 12) Für all diese Aufgaben ist das Zeichnen am Raster Voraussetzung. Jedes Arbeitsblatt kann zwei Kindern als Vorlage dienen. Zum Zeichnen kann für jedes Kind die Kopiervorlage Raster vorbereitet werden. Damit die Kinder die Figuren richtig in den rechten Raster übertragen, müssen sie vorher die Position der Ecken im Raster auszählen daher auch der Auftrag, die Ecken farbig zu markieren. Es können sowohl die Linien als auch die Kästchen gezählt werden. Z.B.: Die Ecke liegt auf der 4. Linie von oben und auf der 3. Linie von links. Oder: Die Ecke liegt 3 Einheiten von oben und 2 Einheiten von links (vgl. auch die Fotos von Seite 9). Noch mehr Dreiecke und Vierecke (Seite 11) Sobald ein Punkt Ecke eines Vierecks ist, wird er als genau eine Ecke gezählt unabhängig davon, ob er Ecke von weiteren Vierecken ist. Figur 1 hat 13 Ecken und 9 Vierecke. Punkte: 4 Punkte sind Ecken von nur einem Viereck, 8 Punkte sind Ecken von je 3 Vierecken und ein Punkt, der Mittelpunkt, ist Ecke von 4 Vierecken. Vierecke: Auch 9 Vierecke kann als Lösung vorgeschlagen werden. 8 Farben reichen um die Vierecke auszumalen, aber alle 8 Vierecke zusammen bilden ein achtfärbiges Quadrat. Figur 2 hat 13 Ecken und 16 Dreiecke. Wie viele Dreiecke und Quadrate siehst du? (Seite 12) Figur 1: Es sind 8 Dreiecke und 2 Quadrate zu sehen. Auch 16 Dreiecke kann als Lösung vorgeschlagen werden. 8 Farben reichen um die Dreiecke auszumalen, aber je zwei benachbarte Dreiecke bilden je ein neues zweifärbiges Dreieck (ein halbes Quadrat). Figur 2: Hier sind 12 Dreiecke und 4 Quadrate zu sehen. für Mathematik und Geometrie Seite 14

15 Kopiervorlage Bastle Formen für Mathematik und Geometrie Seite 15

16 Kopiervorlage Raster für Mathematik und Geometrie Seite 16

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht.

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht. MATERIAL 2 Blatt farbiges Papier (ideal Silber oder Weiß) Schere Lineal Stift Kleber Für das Einhorn benötigst du etwa 16 Minuten. SCHRITT 1, TEIL 1 Nimm ein einfarbiges, quadratisches Stück Papier. Bei

Mehr

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? Dreiecke Viereck d) Quadrat b) Kreis Quadrate Dreiecke Rechteck c) Rechtecke f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. Nimm vier gleich lange Stäbe.

Mehr

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak DOWNLOAD Gerlinde Blahak Bilderrahmen und Bilderhalter Alltagsgegenstände fantasievoll gestalten auszug aus dem Originaltitel: Lehrerhinweise zu den einzelnen Projekten Haltevorrichtung für Bilder Zeitaufwand:

Mehr

Minis im Museum. Begleitmaterial zum Thema Fische für Kitas und Grundschulen. ozeaneum.de

Minis im Museum. Begleitmaterial zum Thema Fische für Kitas und Grundschulen. ozeaneum.de Minis im Museum Begleitmaterial zum Thema Fische für Kitas und Grundschulen Kontakt Museumspädagogik: OZEANEUM Stralsund GmbH Hafenstraße 11 18439 Stralsund Tel.: +49 (0) 3831 2650 690 Fax: +49 (0) 3831

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner.

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner. Marco Bettner Erik Dinges Mathe an Stationen 3 Achsensymmetrie Handlungsorientierte Materialien für Klasse 3 Downloadauszug aus dem Originaltitel: Grundschule u Marco Bettner Erik Dinges Mathe an Stationen

Mehr

2.4 Achsensymmetrie. Achsensymmetrie entdecken. Name:

2.4 Achsensymmetrie. Achsensymmetrie entdecken. Name: Name: Klasse: Datum: Achsensymmetrie entdecken Öffne die Datei 2_4_Spielkarte.ggb. 1 Bewege den blauen Punkt nach Lust und Laune. Beschreibe deine Beobachtungen. Beschreibe, wie sich der grüne Punkt bewegt,

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Origami-Kuh. Karlottas

Origami-Kuh. Karlottas Karlottas Origami-Kuh Das brauchst Du dazu: Zwei gleichgroße braune (oder weiße) Papier-Quadrate Einen schwarzen Stift Klebstoff und ein Stück Bindfaden Und so funktioniert s: 1. Für den Kopf lege ein

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen RabenWerkstatt Effektsystem Geometrie in Fläche und Raum erarbeitet von Peter Herbert Maier Lösungen Muster legen Figuren legen Lege die Muster nach. Setze sie fort. Entwirf ein eigenes Muster. 2 Figuren

Mehr

Symmetrien; die Welt wird einfacher und schöner

Symmetrien; die Welt wird einfacher und schöner Symmetrien; die Welt wird einfacher und schöner Philosophieren: Was ist Symmetrie? verschieben, drehen, spiegeln, umklappen, falten, wiederholen - schön Aufgabe 1: Falte ein Papier einmal durch, kleckse

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Leseprobe aus: Oyrabo, Schneiden und Falten, ISBN 978-3-407-75398-4 2015 Beltz & Gelberg in der Verlagsgruppe Beltz, Weinheim Basel

Leseprobe aus: Oyrabo, Schneiden und Falten, ISBN 978-3-407-75398-4 2015 Beltz & Gelberg in der Verlagsgruppe Beltz, Weinheim Basel http://www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.html?isbn=978-3-407-75398-4 Sch psл- s 6 PAPIERARTEN Lege in einer Kiste eine Sammlung aus verschiedensten Papierarten an, sodass du, wenn du

Mehr

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Anleitungen für die Papierverpackungen ab Seite 86

Anleitungen für die Papierverpackungen ab Seite 86 1 Anleitungen für die Papierverpackungen ab Seite 86 Engelchen 2 Stück Papier im Format 10x15 cm ein Stück Schnur eine Perle mit Durchmesser 3 cm Für die Engel nimmt man 2 Stück Papier in der Größe 10

Mehr

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung Flächenberechnung Flächenberechnung Einleitung Mögliche Schritte zur Einführung Wie groß ist diese Form? Mit diesem Material kannst du erfahren, wie man bei geometrischen Formen die Fläche berechnen kann.

Mehr

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen! 2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen

Mehr

Das Lineal (Lernposter)

Das Lineal (Lernposter) Das Lineal (Lernposter) Das Lineal ist ein Zeichengerät. Es ist ein Hilfsmittel zum Zeichnen von geraden Linien und Strecken. Mithilfe der Skala kannst du Längen von Linien und Strecken messen. Der erste

Mehr

Bastelanleitung für Daumenkinos

Bastelanleitung für Daumenkinos Bastelanleitung für Daumenkinos Bastelmaterial: 1 Schere 1 Lineal 1 Bleistift (Kugelschreiber oder Feinliner) 1 Radiergummi verschiedene Buntstifte Papier oder Bastelkarton Gummibänder Büroklammern 1.

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Klassenarbeit 8 Vorgangsbeschreibung 1: Bastelanleitung

Klassenarbeit 8 Vorgangsbeschreibung 1: Bastelanleitung Klassenarbeit 8 Vorgangsbeschreibung 1: Bastelanleitung Aufgabe In deiner Klasse ist die Idee entstanden, gemeinsam ein Bastelbuch zu erstellen und dieses dann beim Schulfest am Schuljahresende zu verkaufen.

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Bastelanleitung für ein Berni-Osternest. Hallo FCB KidsClub Mitglied!

Bastelanleitung für ein Berni-Osternest. Hallo FCB KidsClub Mitglied! Bastelanleitung für ein Berni-Osternest Hallo FCB KidsClub Mitglied! Jetzt ist ja bald schon wieder Ostern. Bestimmt versteckt der Osterhase auch dieses Jahr wieder ein tolles Osternest für dich, nach

Mehr

Geometrie Jahrgangsstufe 5

Geometrie Jahrgangsstufe 5 Geometrie Jahrgangsstufe 5 Im Rahmen der Kooperation der Kollegen, die im Schuljahr 1997/98 in der fünften Jahrgangstufe Mathematik unterrichteten, wurde in Gemeinschaftsarbeit unter Federführung von Frau

Mehr

Tutorial zum Umgang mit Scratch

Tutorial zum Umgang mit Scratch Tutorial zum Umgang mit Scratch In diesem Tutorial sollst du die grundlegenden Funktionen von Scratch ausprobieren und kennen lernen Danach solltest du gut mit dem Programm umgehen können und eigene Programme

Mehr

Fröbelstern Fotofaltkurs Schritt für Schritt aus der Zeitschrift LC 431, Seite 64/65

Fröbelstern Fotofaltkurs Schritt für Schritt aus der Zeitschrift LC 431, Seite 64/65 OZ-Verlags-GmbH Papierstreifen. Die Enden des vierten gefalteten Papierstreifens weiter durch den zweiten gefalteten Streifen oben ziehen. 1 Die vier Papierstreifen jeweils waagerecht in der Mitte falten.

Mehr

Achsensymmetrie / Spiegelung. Achsensymmetrie. Leerseite. Spiegelung

Achsensymmetrie / Spiegelung. Achsensymmetrie. Leerseite. Spiegelung Achsensymmetrie Leerseite Spiegelung 1B Aufgabe 1 Falte ein Blatt Papier so, daß beide Teile übereinander liegen. Schneide mit der Schere eine beliebige Figur aus! Wie ist der Tannenbaum entstanden? Erkläre!

Mehr

Beispiellektionen. Geometrische Grundformen. Gestaltung und Musik. Fach. Klasse. Ziele Soziale Ziele

Beispiellektionen. Geometrische Grundformen. Gestaltung und Musik. Fach. Klasse. Ziele Soziale Ziele Geometrische Grundformen Fach Gestaltung und Musik Klasse 1 2 3 4 5 6 7 8 9 Ziele Soziale Ziele Gemeinsam ein Bild aus einfachen geometrischen Formen entstehen lassen. Inhaltliche Ziele Geometrische Formen

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

Geometrie. Umfang/Fläche (eckige Körper)

Geometrie. Umfang/Fläche (eckige Körper) Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11

Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11 Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11 1 Das Quadrat mit der Rückseite nach oben auflegen und einmal vertikal und einmal horizontal falten. 2 Alle vier Ecken des Quadrates

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Arbeitsblatt 4 Fernrohr Mit dieser Aufgabe wird die abenteuerliche Stimmung aus der Geschichte aufgegriffen.

Arbeitsblatt 4 Fernrohr Mit dieser Aufgabe wird die abenteuerliche Stimmung aus der Geschichte aufgegriffen. Liebe Lehrerin, lieber Lehrer, dieses Material ist speziell auf die Boardstory und das Buch "Peter Pan", nacherzählt von Susan Niessen, ausgelegt. Es bettet das Lesen in handlungsorientierte Aufgaben ein

Mehr

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Geometrische Formen. Carolin Donat. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Geometrische Formen. Carolin Donat. Downloadauszug aus dem Originaltitel: Download Carolin Donat Mathe an Stationen Spezial Geometrie 1+2 Geometrische Formen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz unterschiedlicher

Mehr

Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie

Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie Skript Beispiele Musteraufgaben Seite 1 Impressum Mathefritz Verlag Jörg Christmann Pfaffenkopfstr. 21E 66125 Saarbrücken verlag@mathefritz.de

Mehr

Bereich: Mensch, Natur und Kultur bzw. Heimat- und Sachkunde ab Klasse 2 Arbeitszeit: ca. 1 bis 2 Doppelstunden

Bereich: Mensch, Natur und Kultur bzw. Heimat- und Sachkunde ab Klasse 2 Arbeitszeit: ca. 1 bis 2 Doppelstunden Geburtstagskalender Bereich: Mensch, Natur und Kultur bzw. Heimat- und Sachkunde ab Klasse 2 Arbeitszeit: ca. 1 bis 2 Doppelstunden Aufgabe und Motivation Die Unterrichtseinheit Zeiteinteilung und Zeitablauf

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Robert Geretschläger Graz, Österreich, 2010 Hinweis: Die Blätter 1, 2, 3 und 4 sind für Schüler und Schülerinnen

Mehr

Name: Arbeitsauftrag Tangram

Name: Arbeitsauftrag Tangram Name: Arbeitsauftrag Tangram Tangram ein sehr altes Lege- und Geduldsspiel, das vermutlich zwischen dem achten und dem vierten Jahrhundert vor Christus in China entstand. Andere Bezeichnungen für dieses

Mehr

Kompetenzraster Geometrie

Kompetenzraster Geometrie Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken

Mehr

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule 4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule Lagebeziehungen Eigenschaften von Gegenständen Geometrische Figuren und Körper Muster, Ornamente, Symmetrien Größe und Umfang von

Mehr

Bruchrechnung. Bruchrechnung. Brüche und brechen. Brüche und die Hunderterscheibe. Arbeitsauftrag:

Bruchrechnung. Bruchrechnung. Brüche und brechen. Brüche und die Hunderterscheibe. Arbeitsauftrag: Brüche und brechen Bearbeite das beiliegende Arbeitsblatt. Beim n der Plättchen benutze bitte Buntstifte. Vergleiche die Zeichnungen und die Rechnungen. Bruchrechnung Brüche und die Hunderterscheibe Hole

Mehr

Symmetrie erforschen 5 / 6. Arbeitskarten zum selbstständigen Arbeiten. Klasse

Symmetrie erforschen 5 / 6. Arbeitskarten zum selbstständigen Arbeiten. Klasse Klasse 5 / 6 Symmetrie erforschen Arbeitskarten zum selbstständigen Arbeiten Mit Spiegeln und Glasscheibe spiegeln 1. Spiegelkarten 2. Versteckte Bilder 3. Figuren spiegeln 4. Die stärkste Frau der Welt

Mehr

Platonische Körper falten

Platonische Körper falten Platonische Körper falten Dr. Markus Junker Mathematisches Institut, Albert Ludwigs Universität Freiburg, Eckerstraße 1, 79104 Freiburg markus.junker@math.uni-freiburg.de Oktober 2009 Ziel: Aus jeweils

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

Der gelbe Weg. Gestaltungstechnik: Malen und kleben. Zeitaufwand: 4 Doppelstunden. Jahrgang: 6-8. Material:

Der gelbe Weg. Gestaltungstechnik: Malen und kleben. Zeitaufwand: 4 Doppelstunden. Jahrgang: 6-8. Material: Kurzbeschreibung: Entlang eines gelben Weges, der sich von einem zum nächsten Blatt fortsetzt, entwerfen die Schüler bunte Fantasiehäuser. Gestaltungstechnik: Malen und kleben Zeitaufwand: 4 Doppelstunden

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Falttechniken zum Einsatz im Mathematikunterricht mit sehgeschädigten Kindern Emmy Csocsán / Christina Blackert

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

Papier- Und Bastelschere

Papier- Und Bastelschere Papier-Und Bastelschere Papierschere Bastelschere Es gibt viele verschiedene Scheren in verschiedenen Formen für viele verschiedene Zwecke: z.b.: kleine, spitze Scheren zum Nägel schneiden oder große,

Mehr

Verpackungen mathematische Körper beschreiben, herstellen, zeichnen

Verpackungen mathematische Körper beschreiben, herstellen, zeichnen 31 Verpackungen mathematische Körper beschreiben, herstellen, zeichnen In diesem Kapitel untersuchst du, wozu es so viele Formen von Verpackungen gibt lernst du, wie man diese Formen gut beschreiben und

Mehr

OVI-Abdeckung. für die W6 Overlock

OVI-Abdeckung. für die W6 Overlock OVI-Abdeckung für die W6 Overlock (c) Sandravon OVI-Abdeckung für die W6 Overlock (c) Sandravon Nach dieser Anleitung kannst Du eine Abdeckhaube für Deine W6 Overlock nähen. Nimm Dir erst einmal einen

Mehr

Ausgabe: Abgabe: Name: Benötigte Zeit für alle Aufgaben: Wiederholung

Ausgabe: Abgabe: Name: Benötigte Zeit für alle Aufgaben: Wiederholung 15. Übungsblatt Ausgabe: 28.04.04 Abgabe: 05.05.04 Name: Benötigte Zeit für alle Aufgaben: Wiederholung Römische Zahlen Eine Zahl verwandelt man am einfachsten in eine römische Zahl, indem man jeweils

Mehr

MINT-Schülerinnen-Camp 25. 28. September 2003 in Berlin. Entwurf und Bau einer stabilen Brücke aus Papier - Technisches Experiment

MINT-Schülerinnen-Camp 25. 28. September 2003 in Berlin. Entwurf und Bau einer stabilen Brücke aus Papier - Technisches Experiment Sabrina Evers TU Braunschweig Sabrina.Evers@tu-bs.de MINT-Schülerinnen-Camp 25. 28. September 2003 in Berlin Entwurf und Bau einer stabilen Brücke aus Papier - Technisches Experiment 1. Teil 1 Erforschung

Mehr

Schritt für Schritt zu tollen Origami-Figuren

Schritt für Schritt zu tollen Origami-Figuren Schritt für Schritt zu tollen Origami-Figuren Für Anfänger: Schmetterling Benötigtes Material: Papier-Quadrat in beliebiger Farbe (80 g/m 2, ca. 20x20cm) Schritt 1: Falten Sie das Faltblatt als Dreieck,

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Nr. 1 des s (1. Halbjahr) Thema: Zahlen Zahl der Unterrichtsstunden: 5 Wochen stellen im Bereich Arithmetik/Algebra natürliche Zahlen dar (Zifferndarstellung, Stellenwerttafel, Wortform, Zahlenstrahl),

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Leseprobe aus: Oyrabo, Drucken und Stempeln, ISBN 978-3-407-75400-4 2015 Beltz & Gelberg in der Verlagsgruppe Beltz, Weinheim Basel

Leseprobe aus: Oyrabo, Drucken und Stempeln, ISBN 978-3-407-75400-4 2015 Beltz & Gelberg in der Verlagsgruppe Beltz, Weinheim Basel http://www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.html?isbn=978-3-407-75400-4 DR k- s SKIZZENBUCH Falls nach dem Drucken noch Farbe übrig ist, kannst dudamit z. B. Seiten in einem Skizzenbuch

Mehr

Lehrplan Mathematik Klasse 4

Lehrplan Mathematik Klasse 4 Lehrplan Mathematik Klasse 4 Lernziele/ Inhalte Lernziel: Entwickeln von Zahlvorstellungen Orientieren im Zahlenraum bis 1 Million Schätzen und überschlagen Große Zahlen in der Umwelt Bündeln und zählen

Mehr

Bildungsketten-Materialsammlung

Bildungsketten-Materialsammlung Bildungsketten-Materialsammlung Das nachfolgende Dokument wurde bereitgestellt von: ÜAZ Waren Anke Rachow Warendorfer Str. 18 17192 Waren (Müritz) Die Nutzung dieses Dokuments wurde vom Urheber ausschließlich

Mehr

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?)

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) 12.10.2009, Oliver Seif nach einer Vorlage von H.Hischer/A. Lambert 1 Das Werkzeug Computer (dynamische Geometriesoftware,

Mehr

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit Seite 1 40 Seite 2 Seite 2 Seite 3 Seite 4 Seite 5 Seite 6 9 Seite 10 13 Seite 14 17 Seite 18 21 Seite 22 25 Seite 26 29 Seite 30 33 Seite 34 36 Seite 37 40 Seite 41 44 Seite 45 48 Seite 49 52 Seite 53

Mehr

Du brauchst... Übrigens...

Du brauchst... Übrigens... TETRAPAK-GELDBÖRSE Ok... ich geb s zu, ich hab sie nicht erfunden. Fast jeder kennt sie und viele produzieren sie. Trotzdem werde ich in meinen Kursen oft nach einer Anleitung für die Tetrapak-Geldbörse

Mehr

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

DOWNLOAD. Ein Kunst-Projekt verschiedene Techniken. eine originelle Unterrichtseinheit für 2 bis 3 Stunden. Gerlinde Blahak

DOWNLOAD. Ein Kunst-Projekt verschiedene Techniken. eine originelle Unterrichtseinheit für 2 bis 3 Stunden. Gerlinde Blahak DOWNLOAD Gerlinde Blahak Ein Kunst-Projekt verschiedene Techniken eine originelle Unterrichtseinheit für 2 bis 3 Stunden Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen

Mehr

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen Mathematik Lerntheke Klasse 5d: Flächeninhalte von Vielecken Die einzelnen Stationen: Station 1: Station 2: Station 3: Station 4: Wiederholung (Quadrat und Rechteck) Material: Zollstock Das Parallelogramm

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

DOWNLOAD. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak Tischschmuck. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak Tischschmuck. Downloadauszug aus dem Originaltitel: DOWNLOAD Gerlinde Blahak Tischschmuck Alltagsgegenstände fantasievoll gestalten auszug aus dem Originaltitel: Lehrerhinweise zu den einzelnen Projekten Serviettenhalter Zeitaufwand: 1 Unterrichtsstunde

Mehr

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4 Download Carolin Donat Mathe an Stationen SPEZIAL Geometrie 3-4 Ebene Figuren - geometrische Formen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz

Mehr

Mabu. Mamory. Matholino. Spielvarianten im Mathematikunterricht Silke Göttge Moll Gymnasium

Mabu. Mamory. Matholino. Spielvarianten im Mathematikunterricht Silke Göttge Moll Gymnasium Mabu Mamory Matholino Mamory Entweder man bastelt selbst oder man nimmt sich eine Doppelstunde Zeit und lässt die Schüler eigenständig ein Mamory basteln. Sehr schön ist hierbei, dass sie sich weitere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Flex und Flo. Name: l Parallelen zeichnen mit dem Geodreieck 1

Flex und Flo. Name: l Parallelen zeichnen mit dem Geodreieck 1 l Parallelen zeichnen mit dem Geodreieck 1 Schraffiere jede Fläche mit parallelen Geraden in gleichem Abstand. Wähle für jede Fläche eine andere Farbe, einen anderen Abstand und eine andere Richtung. Mehrere

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Geometrie mit Fantasie

Geometrie mit Fantasie 17. Symposium mathe 2000 13. Oktober 2007 Geometrie mit Fantasie Referentin: Rita Wieneke, Grundschule Lange Straße, 27777 Ganderkesee Geometrie Grundlegende geometrische Bildung in der vorschulischen

Mehr

3M All rights reserved. 3M Deutschland GmbH Carl-Schurz-Straße Neuss

3M All rights reserved. 3M Deutschland GmbH Carl-Schurz-Straße Neuss 3M 2008. All rights reserved. 3M Deutschland GmbH Carl-Schurz-Straße 1 41453 Neuss www.scotchbecreative.de www.scotchprodukte.de Kreative Handarbeit ist die Faszination des Entstehens, die Freude am Schönen,

Mehr

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe Schwerpunkt: Ebene Figuren Ebene Figuren - untersuchen weitere ebene Figuren, - benennen sie und verwenden Fachbegriffe zu deren Beschreibung - setzen Muster fort (z.b. Bandornamente, Parkettierungen),

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

2.5 Tapetenwechsel. Arbeitsblatt. Lehrerhinweise. Tapetenwechsel

2.5 Tapetenwechsel. Arbeitsblatt. Lehrerhinweise. Tapetenwechsel Lehrerhinweise Arbeitsblatt 2.5 Kurzbeschreibung: Die Schüler gestalten in einfachem Hochdruckverfahren gemusterte Tapetenbahnen, die sie, zusammen mit handelsüblichen Tapetenresten, so über- und nebeneinander

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr

Löwenzahn-Gänseblümchensalat. Wenn die Natur zum Leben erwacht

Löwenzahn-Gänseblümchensalat. Wenn die Natur zum Leben erwacht Liebe Leser, bald startet ein neues Fit in Deutsch -Halbjahr. Die kalte Winterzeit ist vorbei und der Fühling beginnt. Wir wünschen allen einen guten Start in das neue Semester und viel Spaß beim Lesen

Mehr

Bastle tolle Papierflugzeuge mit den Charakteren von Disney PLANES und fliege spannende Rennen mit deinen Freunden.

Bastle tolle Papierflugzeuge mit den Charakteren von Disney PLANES und fliege spannende Rennen mit deinen Freunden. Papierflugzeuge Bastle tolle Papierflugzeuge mit den Charakteren von Disney PLANES und fliege spannende Rennen mit deinen Freunden. Du kannst fünf verschiedene Charaktere basteln. Druck dafür die folgenden

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Sekundarstufe I. Mathe an Stationen. Konstruktion in der Geometrie SPEZIAL. Christian Wolf. Mit Kopiervorlagen

Sekundarstufe I. Mathe an Stationen. Konstruktion in der Geometrie SPEZIAL. Christian Wolf. Mit Kopiervorlagen Sekundarstufe I Christian Wolf Mathe an Stationen SPEZIAL Konstruktion in der Geometrie Mit Kopiervorlagen 2014 Auer Verlag, Donauwörth AAP Lehrerfachverlage GmbH Alle Rechte vorbehalten. Das Werk als

Mehr

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

tesa trendpapier Nr. 17_Geschenke 2015_www.tesa.de/trendpapier

tesa trendpapier Nr. 17_Geschenke 2015_www.tesa.de/trendpapier Nr. 17_Geschenke 2015_ exklusiver journalistenservice Fix und Fertige Ideen zum Selbermachen Praktisch: Alle Fotos, Texte, Vorlagen und Step-by-Step-Anleitungen gibt es zum Downloaden. S_2 _Nr. 17 S_ Alles

Mehr

Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen

Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen Module für den Geometrieunterricht Geometrie lehren Geometrie lernen 1 Ein Kind muss genügend Erfahrungen zu geometrischen Ideen erwerben können (classroom or otherwise), um ein höheres Entwicklungsstadium

Mehr