Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes

Größe: px
Ab Seite anzeigen:

Download "Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes"

Transkript

1 Grundkonzepte der Optik (2013) Prof. Dr. R. Kowarschik Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes 1. Zeigen Sie, daß der in der Vorlesung angegebene Ausdruck für skalare Kugelwellen die Wellengleichung erfüllt! 2. Welche Struktur haben Energiedichte und Poyntingvektor für Kugelwellen? 3. Wie kann man ebene Wellen, Kugelwellen und Zylinderwellen experimentell realisieren? 4. Wie kann man mathematisch nachprüfen, welche Phasenflächen eine gegebene Welle besitzt? 5. Was sind inhomogene Wellen und welche Beispiele gibt es dafür? 6. Welche Struktur hat das allgemeine Fourierintegral einer Welle? 7. Warum schließen sich Polarisation und Longitudinalwellen aus? 8. Warum ändert sich der Umlaufsinn des Polarisationsellipse, wenn man die Polarisation bei fester Zeit und verschiedenen z-werten anstelle bei festem Ort (z. B. z = 0) und laufender Zeit betrachtet? 9. Zeigen Sie, daß beim Übergang ebener Wellen an Grenzflächen von Dielektrika alle Wellenzahlvektoren in einer Ebene liegen müssen! 10. Was versteht man unter TE- und TM-Polarisation? 11. Leiten Sie die in der Vorlesung angegebenen Fresnelschen Formeln für TM-Polarisation her! 12. Wie kann man die Phasensprünge der Reflexions- und Transmissionskoeffizienten experimentell nachweisen? 13. Berechnen Sie die zeitgemittelte x-komponente des Poyntingvektors für die quergedämpfte Welle (Totalreflexion)! 14. Erklären Sie den Brewster-Effekt mit dem Modell des Hertzschen Dipols! 15. Wie kann man mit Prismen das Bild in Fernrohren aufrichten? 16. Wenn eine intensive (ebene) Laserwelle senkrecht auf eine Glasplatte einfällt, kann es im Material zu Zerstörungen kommen. Wo ist die Gefahr der Zerstörung größer an der Voroder an der Rückseite der Platte? 1

2 17. Welche Vorteile bringen SILs (solid immersion lens) in optischen Systemen? 18. Erklären Sie die Polarisationseffekte in Transmission und Reflexion am Glasplattensatz (Vorlesungsexperiment)! 19. Leiten Sie die in der Vorlesung angegebene Dispersionsgleichung für Schichtwellenleiter her! 20. Wie kann man die Zahl der geführten Moden experimentell verändern? 21. Warum werden in vielen Fällen Monomoden-Wellenleiter bevorzugt? 22. Wie sieht die qualitative Feldverteilung der geführten Moden in einem dielektrischen Schichtwellenleiter aus? 23. Was bedeutet frustrierte innere Totalreflexion (FTIR) und wie kann man sie zur Ein- und Auskopplung von Licht in bzw. aus Wellenleitern nutzen? 24. Was versteht man unter den Begriffen Streuung und dissipierende Absorption? 25. Welche Voraussetzungen sind zur Ableitung der Lorenz-Lorentz-Formeln notwendig? 26. Wie verhalten sich Phasen- und Gruppengeschwindigkeiten in den Gebieten normaler und anomaler Dispersion? 27. Wann werden dielektrische Medien undurchsichtig? 28. Was beschreibt die Abbe-Zahl? 29. Wie kann man die chromatische Aberration mit zwei Linsen (Dublett) reduzieren? 30. Wie kann man Gläser mit hoher Brechzahl herstellen? 31. Warum sind kleine Abbezahlen in der Regel mit hohen Brechzahlen verbunden (Glasdiagramm)? 32. Wo müßte ein für die Herstellung optischer Systeme gut geeignetes Glas im Glasdiagramm liegen? 33. Was beschreiben Real- und Imaginärteil der komplexen Brechzahl? 34. Was ändert sich bei den Fresnelschen Formeln, wenn leitfähige Medien verwendet werden? 35. Warum ist es kein Widerspruch, daß mit stark wachsender Absorption gleichzeitig das Reflexionsvermögen gegen Eins geht (in der Vorlesung für senkrechten Einfall angegeben)? 36. Was versteht man unter Plasmafrequenz? 37. Wie beeinflussen die ungebundenen Elektronen das Reflexionsvermögen von Metallen? 2

3 38. Wie kann man den Absorptionsindex messen? 39. Was versteht man unter einem linearen optischen System? 40. Wie muß die Kausalität bei der Beschreibung der Antwort eines optischen Systems auf ein Eingangssignal berücksichtigt werden (z. B. bei der Polarisation von Medien)? 41. Berechnen Sie die in der Vorlesung angegebenen Dispersionsgleichungen für den Realund den Imaginärteil der komplexen Brechzahl aus den entsprechenden Gleichungen für die Suszeptibilitätsterme! 42. Welche Annahmen müssen gemacht werden, um den Übergang zur geometrischen Optik vollziehen zu können? 43. Was beschreibt das Eikonal L und wie hängt es mit dem Poyntingvektor zusammen? 44. Wie lautet das Fermatsche Prinzip? 45. Wenden Sie die Strahlengleichung auf die Fälle der Reflexion und Brechung an und berechnen Sie die Bahnkurven! 46. Was versteht man unter einem stationären Weg? 47. Erläutern Sie die in der Vorlesung angegebenen Beispiele für das Fermatsche Prinzip für Spiegelflächen (Tangente, Kreis), die am Ellipsoidspiegel angebracht wurden! 48. Was vertauscht ein Spiegel (Spiegelparadoxon)? 49. Berechnen Sie die Strahlmatrix für die Abbildung eines Objektpunktes mit einer dünnen bzw. einer dicken Linse! 50. Diskutieren Sie die Stabilitätsbedingung für Laserresonatoren für den Fall des konfokalen Resonators! 51. Warum bezeichnet man den Resonator mit zwei ebenen Spiegeln als grenzwertig stabil? 52. Erklären Sie das Zustandekommen einer Fata Morgana mit dem Fermatschen Prinzip! 53. Rechnen Sie die in der Vorlesung angegebenen Strahlengleichungen für eine GRIN-Linse mit parabolischem Brechzahlprofil nach (paraxialer Fall)! 54. Welche physikalischen Voraussetzungen müssen Medien mit negativem Brechungsindex prinzipiell erfüllen? 55. Wie verhalten sich Wellenzahlvektor, Poyntingvektor, Phasengeschwindigkeit und Phase einer Welle beim Eintritt in ein NRM? 56. Warum kann man mit einer NRM-Platte abbilden und sogar ein höheres Auflösungsvermögen erreichen (vgl. mit einer konventionellen Sammellinse)? 57. Was versteht man unter polarisiertem, unpolarisiertem und teilweise polarisiertem Licht? 3

4 58. Warum muß eine ideale, monochromatische ebene Welle immer polarisiert sein? 59. Wie sind die Stokes-Parameter definiert und wie hängen sie mit den physikalisch relevanten, im Experiment bestimmbaren Parametern zusammen? 60. Wie kann man die unterschiedlichen Polarisationsarten und zustände auf der Poicaré- Kugel darstellen? 61. Wie ist der Polarisationsgrad definiert? 62. Beschreiben Sie die Wirkung von Phasenplättchen auf linear und zirkular polarisiertes Licht mit dem Jones-Kalkül! 63. Was versteht man unter schneller bzw. langsamer Achse? 64. Wie kann man den Polarisationsgrad messen? 65. Für welche Einsatzfälle sind Jones-Kalkül, Mueller-Matrizen und Kohärenzmatrizen jeweils besonders geeignet? 66. Berechnen Sie die Mueller-Matrizen für linear und zirkular polarisiertes Licht! 67. Wie ist der komplexe Korrelationsgrad (Kohärenzgrad) definiert und was beschreibt er? 68. Wie kann man die Polarisationsparameter messen? 69. Was versteht man unter Polarimetrie bzw. Ellipsometrie? Welche physikalischen Größen kann man aus Polarisationsmessungen ableiten? 71. Was beschreiben die Normalen- und Strahlengleichungen in anisotropen Medien? 72. Wie hängen Strahl- und Normalenvektoren mit den elektrischen Feldgrößen und dem Poyntingvektor zusammen? 73. Was beschreibt die Strahlgeschwindigkeit? 74. Zeigen Sie, daß die beiden möglichen D-Vektoren senkrecht aufeinander stehen! 75. Wie kann man die Normalenfläche/Strahlenfläche aus der Strahlenfläche/Normalenfläche konstruieren? 76. Warum kann es höchstens zwei optische Achsen in anisotropen Medien geben? 77. Konstruieren Sie für positiv bzw. negativ optisch einachsige Kristalle das Indexellipsoid! 78. Was versteht man unter Hauptschnitt, und wie sind ordentlicher und außerordentlicher Strahl bzgl. des Hauptschnittes definiert? 79. Konstruieren Sie die Normalenflächen für einen optisch zweiachsigen Kristall ausgehend von den Fresnelschen Normalengleichungen! 4

5 80. Wie kann man bei optisch zweiachsigen Kristallen langsame und schnelle Achse definieren? 81. Erklären Sie die Wirkungsweise von Nicol-, Glan-Thompson- und Wollaston-Prismen als Polarisatoren! 82. Was versteht man unter Phasenplättchen höherer Ordnung? 83. Wie funktionieren Babinet- und Soleil-Kompensatoren? 84. Wie kommen die Interferenzen im parallelen (dem sogenannten orthoskopischen) Strahlengang zustande? 85. Warum treten Mischfarben auf? 86. Erklären Sie das Zustandekommen der Kreuzstruktur im konoskopischen Strahlengang! 87. Warum bezeichnet man die Interferenzfarben z. B. mit Weiß höherer Ordnung? 88. Warum unterscheidet man zwischen Doppelbrechung und optischer Aktivität? 89. Warum können Festkörper bei mechanischer Kompression/Dehnung optisch einachsig negativ/positiv werden? Wie funktioniert ein Pockelsmodulator? 90. Wie kann man mit einer Pockelszelle die Güte eines Laserresonators schalten? 91. Was unterscheidet den Faraday-Effekt von der optischen Aktivität? 92. Wie arbeitet ein Faraday-Isolator? 93. Was versteht man unter Dichroismus? 94. Erklären Sie die Funktionsweise von Drahtgitter-Polarisatoren! 95. Was versteht man unter radialer/azimutaler Polarisation? 96. Warum kann Streulicht in bestimmten Richtungen gut polarisiert sein? 97. Wie funktioniert ein Lyot-Filter? 98. Warum bezeichnet man Flüssigkristalle als Metaphase? 99. Wie funktioniert ein Flüssigkristallschaltelement (TNLC)? 100. Wie funktionieren Polarisationsbrillen für 3D-Filme? 101. Was versteht man unter dem photorefraktiven Effekt und wie kann man damit Materialien strukturieren? 102. Erläutern Sie die Begriffe räumliche und zeitliche Kohärenz! 5

6 103. Wie sind die Korrelationsfunktion (Kohärenzfunktion) und der Korrelationsgrad definiert? 104. Was ist der Unterschied zwischen Faltung und Korrelation? 105. Was besagen das Parsevalsche und das Wiener-Khinchin-Theorem? 106. Berechnen Sie für einen harmonischen, endlichen, gedämpften Wellenzug die Autokorrelationsfunktion und das Energiedichtespektrum und diskutieren Sie die Ergebnisse im Vergleich zum ungedämpften Fall! 107. Wie schnell bewegt sich das Interferenzmuster zweier ebener monochromatischer Wellen unterschiedlicher Frequenz, und wie schnell müßte ein Detektor sein, um die Interferenzstruktur noch erfassen zu können? 108. Unter welchen Bedingungen kann man bei der Interferenz von Kugelwellen Haidinger- Ringe oder Fizeau-Streifen beobachten? 109. Ändert sich das Interferenzmuster von Kugelwellen, wenn es sich statt um zwei auslaufende um zwei einlaufende Kugelwellen handelt bzw. wenn eine Kugelwelle ein- und die andere ausläuft? 110. Leiten Sie die in der Vorlesung angegebene Gleichung für die Phasendifferenz zweier interferierender Wellen an einer planparallelen Platte her! 111. Warum werden Interferometer mit Amplitudenteilung viel breiter angewendet als solche mit Wellenfrontteilung? 112. Unter welchen Voraussetzungen kann man mit weißem Licht Interferenzen beobachten? 113. Warum ist eine große Länge der Interferometerarme oft notwendig (z. B. beim Michelson-Morley-Experiment oder dem geplanten Nachweis von Gravitationswellen)? 114. Welche Funktionen erfüllt die Kompensationsplatte im Michelson-Interferometer? 115. Rechnen Sie die in der Vorlesung angegebene Gleichung für die Phasendifferenz benachbarter Wellen bei Vielstrahlinterferenzen nach! 116. Was kann man aus der Angabe der Finesse bei Vielstrahlinterferometern entnehmen? 117. Wie kann man ein Fabry-Perot-Interferometer für die Spektroskopie einsetzen? 118. Was versteht man unter dem freien Spektralbereich? 119. Erklären Sie das Experiment von O. Wiener zum Nachweis des Lichtvektors! 120. Was sind Longitudinalmoden? 6

7 121. Wie kommt es zur selektiven Verstärkung von Longitudinalmoden beim Laserresonator? 122. Wie kann man mit einem Michelson-Interferometer spektroskopische Untersuchungen durchführen? 123. Warum bezeichnet man diese Art der Spektroskopie als Fourier-Spektroskopie? 124. Erklären Sie das Zustandekommen der Herschel-Streifen (Vorlesungsexperiment)! 125. Wann muß man in der Optik die Beugung berücksichtigen? 126. Erläutern Sie die Huygens-Fresnelsche Methode! 127. Wie kann man die Fresnelschen Neigungsfaktoren physikalisch erklären? 128. Welche Annahmen und Voraussetzungen verwendet Kirchhoff zur Ableitung seiner Beugungsformel? 129. Was besagt die Sommerfeldsche Ausstrahlungsbedingung? 130. Nennen Sie Beispiele für die Anwendung des Babinetschen Theorems! 131. Wie findet sich der Fresnelsche Neigungsfaktor im Kirchhoffschen Beugungsintegral wieder? 132. Welche Näherungen führen zur Fresnelschen bzw. Fraunhoferschen Beugungsformel? 133. Was beschreibt die Pupillenfunktion einer Linse? 134. Unter welchen Voraussetzungen wirkt eine Sammellinse als Fouriertransformator? 135. Wie müßte ein optisches System aufgebaut werden, daß nach der Fouriertransformation auch noch eine Fourierrücktransformation ausführen kann? 136. Warum betont man, daß es sich bei der Fouriertransformation mit einer Linse um eine zweidimensionale Transformation handelt? 137. Was versteht man unter Translationsinvarianz des Fraunhoferschen Beugungsbildes und wie wirkt sich diese aus (Vorlesungsexperiment)? 138. Was hat das Airysche Beugungsscheibchen mit dem Auflösungsvermögen optischer Systeme zu tun? 140. Vergleichen Sie die Lage des 1. Minimums der Beugungsbilder eines quadratischen Spaltes mit der Breite D und einer Kreisapertur mit dem Durchmesser D im Fraunhofer-Fall! 141. Was besagt das Feldtheorem? 142. Wie sieht Beugungsbild statistisch verteilter Kreisaperturen im Fernfeld aus? 7

Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes

Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes Optik und Wellen (2015) Prof. Dr. R. Kowarschik Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes 1. Zeigen Sie, daß der in der Vorlesung angegebene Ausdruck für skalare Kugelwellen die Wellengleichung

Mehr

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Miles V. Klein Thomas E. Furtak OPTIK Übersetzt von A. Dorsel und T. Hellmuth Mit 421 Abbildungen und 10 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Inhaltsverzeichnis 1. Die

Mehr

Optik. Lichtstrahlen -Wellen - Photonen. Wolfgang Zinth Ursula Zinth. von. 4., aktualisierte Auflage. OldenbourgVerlag München

Optik. Lichtstrahlen -Wellen - Photonen. Wolfgang Zinth Ursula Zinth. von. 4., aktualisierte Auflage. OldenbourgVerlag München Optik Lichtstrahlen -Wellen - Photonen von Wolfgang Zinth Ursula Zinth 4., aktualisierte Auflage OldenbourgVerlag München Inhaltsverzeichnis Vorwort 1 Einführung und historischer Überblick v 1 Licht als

Mehr

Optik. Lichtstra h len - Wellen - Photonen. Wolfgang Zinth Ursula Zinth. Oldenbourg Verlag München. 3-, verbesserte Auflage. von

Optik. Lichtstra h len - Wellen - Photonen. Wolfgang Zinth Ursula Zinth. Oldenbourg Verlag München. 3-, verbesserte Auflage. von Optik Lichtstra h len - Wellen - Photonen von Wolfgang Zinth Ursula Zinth 3-, verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Einführung und historischer Überblick 1 2 Licht

Mehr

Vorlesung Do Uhr, wöchentlich, Newtonstr. 15, Raum 1 201

Vorlesung Do Uhr, wöchentlich, Newtonstr. 15, Raum 1 201 40320 Experimentalphysik III (Pk2.2) WiSe 2017/2018 Lesende: Prof. Dr. Simone Raoux (HUB und HZB) Übungsleiter: NN Vorlesung Do. 9-11 Uhr, wöchentlich, Newtonstr. 15, Raum 1 201 Übung Do. 11-13 Uhr, Newtonstr.

Mehr

Physik III. Mit 154 Bildern und 13 Tabellen

Physik III. Mit 154 Bildern und 13 Tabellen Physik III Optik, Quantenphänomene und Aufbau der Atome Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Wolfgang Zinth und Hans-Joachim Körner 2., verbesserte Auflage Mit

Mehr

425 Polarisationszustand des Lichtes

425 Polarisationszustand des Lichtes 45 Polarisationszustand des Lichtes 1. Aufgaben 1.1 Bestimmen Sie den Polarisationsgrad von Licht nach Durchgang durch einen Glasplattensatz, und stellen Sie den Zusammenhang zwischen Polarisationsgrad

Mehr

Angewandte Physik II Klassische Optik (PHY-PFTECHP-062-V-7)

Angewandte Physik II Klassische Optik (PHY-PFTECHP-062-V-7) Vorlesungsskript zur Vorlesung: Angewandte Physik II Klassische Optik (PHY-PFTECHP-062-V-7) Dienstag: 10:00 11:30 Uhr in Raum: 46-270 Freitag: 10:00 11:30 Uhr in Raum: 46-270 Prof. Dr. Egbert Oesterschulze

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Von Eugen Hecht 3., vollständig überarbeitete Auflage. Aus dem Englischen von Dr. Anna Schleitzer

Von Eugen Hecht 3., vollständig überarbeitete Auflage. Aus dem Englischen von Dr. Anna Schleitzer Optik Von Eugen Hecht 3., vollständig überarbeitete Auflage Aus dem Englischen von Dr. Anna Schleitzer Inhalt Vorwort 1 Ein kurzer Ausflug in die Geschichte 1 1.1 Vorbemerkung 1 1.2 Die Ursprünge 1 1.3

Mehr

Photonik 1: Fragenkatalog und Hinweise zur mündlichen Prüfung

Photonik 1: Fragenkatalog und Hinweise zur mündlichen Prüfung Photonik 1: Fragenkatalog und Hinweise zur mündlichen Prüfung Prof. Reider Stand: 27. August 2011 1. Licht als elektromagnetische Welle 1.1 (S.8) Brechungsindex(zahl) in der Optik Allgemein Warum haben

Mehr

Inhalt. Vorwort zur vierten. Verwendete Symbole

Inhalt. Vorwort zur vierten. Verwendete Symbole Vorwort zur vierten Verwendete Symbole V XVI 1 Ein kurzer Ausflug in die Geschichte 1 1.1 Vorbemerkung 1 Die Ursprünge 1 Vom siebzehnten Jahrhundert an 3 Das neunzehnte Jahrhundert 6 Das zwanzigste Jahrhundert

Mehr

2. Wellenoptik Interferenz

2. Wellenoptik Interferenz . Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Optik. von Eugene Hecht. Oldenbourg Verlag München Wien. 4., überarbeitete Auflage. Aus dem Englischen von Dr. Anna Schleitzer

Optik. von Eugene Hecht. Oldenbourg Verlag München Wien. 4., überarbeitete Auflage. Aus dem Englischen von Dr. Anna Schleitzer Optik von Eugene Hecht 4., überarbeitete Auflage Aus dem Englischen von Dr. Anna Schleitzer Oldenbourg Verlag München Wien Inhalt Vorwort V 1 Ein kurzer Ausflug in die Geschichte 1 1.1 Vorbemerkung...

Mehr

Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes. Holographie - Grundlagen und Anwendungen (2012/2013)

Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes. Holographie - Grundlagen und Anwendungen (2012/2013) Holographie Grundlagen und Anwendungen Prof. Dr. R. Kowarschik Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes Holographie - Grundlagen und Anwendungen (2012/2013) 1. Was versteht man unter Schärfen-

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter 1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen

Mehr

Vorlesung Physik für Pharmazeuten PPh Optik

Vorlesung Physik für Pharmazeuten PPh Optik Vorlesung Physik für Pharmazeuten PPh - 10 Optik 02.07.2007 Wiederholung : Strom und Magnetismus B = µ 0 N I l Ampère'sche Gesetz Uind = d ( BA) dt Faraday'sche Induktionsgesetz v F L = Q v v ( B) Lorentzkraft

Mehr

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli) 2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Klassische Theorie der Lichtausbreitung

HANDOUT. Vorlesung: Glasanwendungen. Klassische Theorie der Lichtausbreitung Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Klassische Theorie der Lichtausbreitung Leitsatz: 27.04.2017 In diesem Abschnitt befassen

Mehr

O9a Interferenzen gleicher Dicke

O9a Interferenzen gleicher Dicke Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O9a Interferenzen gleicher Dicke Aufgaben 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfläche durch Ausmessen Newtonscher

Mehr

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 26. April 2004 Made

Mehr

NTB Druckdatum: MAS. E-/B-Feld sind transversal, stehen senkrecht aufeinander und liegen in Phase. Reflexion Einfallswinkel = Ausfallswinkel

NTB Druckdatum: MAS. E-/B-Feld sind transversal, stehen senkrecht aufeinander und liegen in Phase. Reflexion Einfallswinkel = Ausfallswinkel OPTIK Elektromagnetische Wellen Grundprinzip: Beschleunigte elektrische Ladungen strahlen. Licht ist eine elektromagnetische Welle. Hertzscher Dipol Ausbreitung der Welle = der Schwingung Welle = senkrecht

Mehr

Weber/Herziger LASER. Grundlagen und Anwendungen. Fachbereich S Hochschule Darmstad«Hochschulstraßa 2. 1J2QOI Physik Verlag

Weber/Herziger LASER. Grundlagen und Anwendungen. Fachbereich S Hochschule Darmstad«Hochschulstraßa 2. 1J2QOI Physik Verlag Weber/Herziger LASER Grundlagen und Anwendungen Fachbereich S Hochschule Darmstad«Hochschulstraßa 2 1J2QOI Physik Verlag Inhaltsverzeichnis 1. licht und Atome 1 1.1. Welleneigenschaften des Lichtes 1 1.1.1.

Mehr

A. Mechanik (17 Punkte)

A. Mechanik (17 Punkte) Prof. Dr. F. Melchert Prof. Dr. G. von Oppen Prof. Dr. S. Kröger Dipl.-Phys. Th. Ludwig Dipl.-Phys. M. Dickow Technische Universität Berlin Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor: Diplomvorprüfung

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

Optik. Grundlagen und Anwendungen. von Dietrich Kühlke. überarbeitet

Optik. Grundlagen und Anwendungen. von Dietrich Kühlke. überarbeitet Optik Grundlagen und Anwendungen von Dietrich Kühlke überarbeitet Optik Kühlke schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Harri Deutsch 2004 Verlag C.H. Beck im Internet: www.beck.de

Mehr

Prüfung aus Physik IV (PHB4) 26. Januar 2010

Prüfung aus Physik IV (PHB4) 26. Januar 2010 Fachhochschule München FK06 Wintersemester 2009/10 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik IV (PHB4) 26. Januar 2010 Zulassungsvoraussetzungen:./. Zugelassene Hilfsmittel:

Mehr

Polarisation und optische Aktivität

Polarisation und optische Aktivität Polarisation und optische Aktivität 1 Entstehung polarisiertes Licht Streuung und Brechung einer Lichtwelle Reflexion einer Lichtwelle Emission durch eine polarisierte Quelle z.b. einen schwingenden Dipol

Mehr

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente Physik für Pharmazeuten OPTIK Geometrische Optik Wellen Beugung, Interferenz optische Instrumente geometrische Optik Wellengleichungen (Maxwellgleichungen) beschreiben "alles" Evolution exakt berechenbar

Mehr

1 Was ist Licht?... 1

1 Was ist Licht?... 1 Inhaltsverzeichnis 1 Was ist Licht?... 1 2 Erzeugung und Messung von Licht... 9 2.1 ElektromagnetischesSpektrum... 9 2.2 Strahlungsphysikalische Größen(Radiometrie)... 10 2.3 Lichttechnische Größen(Fotometrie)...

Mehr

Elektromagnetische Welle, Wellengleichung, Polarisation

Elektromagnetische Welle, Wellengleichung, Polarisation Aufgaben 4 Elektromagnetische Wellen Elektromagnetische Welle, Wellengleichung, Polarisation Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.

Mehr

Prüfung aus Physik IV (PHB4) Freitag 9. Juli 2010

Prüfung aus Physik IV (PHB4) Freitag 9. Juli 2010 Fachhochschule München FK06 Sommersemester 2010 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik IV (PHB4) Freitag 9. Juli 2010 Zulassungsvoraussetzungen:./. Zugelassene Hilfsmittel:

Mehr

Bergmann Schaefer Lehrbuch der Experimentalphysik

Bergmann Schaefer Lehrbuch der Experimentalphysik Bergmann Schaefer Lehrbuch der Experimentalphysik Band III Optik 8. Auflage Herausgeber Heinrich Gobrecht Autoren Hans-Joachim Eichler, Heinrich Gobrecht Michael Krystek, Heinz Niedrig Manfred Richter,

Mehr

Optische Resonatoren

Optische Resonatoren Optische Resonatoren Matthias Pospiech Universität Hannover Optische Resonatoren p. 1 1. Grundlagen 2. Stabilitätskriterien 3. Transversale Moden 4. Longitudinale Moden 5. Experiment Optische Resonatoren

Mehr

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Beugung Inhalte Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer (Fernfeld) Näherung

Mehr

= p. sin(δ/2) = F (1 p 1) δ =2arcsin. λ 2m = ± δ. λ = λ 0 ± δ ) 4πm +1

= p. sin(δ/2) = F (1 p 1) δ =2arcsin. λ 2m = ± δ. λ = λ 0 ± δ ) 4πm +1 Übungsblatt 05 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt 01., 07. und 08.07.00 1 Aufgaben 1. Das Fabry Perot Interferometer als Filter Ein Fabry Perot Interferometer der optischen

Mehr

OPTIK VON. ARNOLD SOMMERFELD t 3., DURCHGESEHENE AUFLAGE REVIDIERT VON FRITZ BOPP. o. PROFESSOR DER THEORETISCHEN PHYSIK AN DER UNIVERSITÄT MÜNCHEN

OPTIK VON. ARNOLD SOMMERFELD t 3., DURCHGESEHENE AUFLAGE REVIDIERT VON FRITZ BOPP. o. PROFESSOR DER THEORETISCHEN PHYSIK AN DER UNIVERSITÄT MÜNCHEN OPTIK VON ARNOLD SOMMERFELD t 3., DURCHGESEHENE AUFLAGE REVIDIERT VON FRITZ BOPP o. PROFESSOR DER THEORETISCHEN PHYSIK AN DER UNIVERSITÄT MÜNCHEN UND JOSEF MEIXNER O.PROF. DER THEORETISCHEN PHYSIK AN DER

Mehr

Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer

Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer Aufgaben 9 Interferenz Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

8 Reflexion und Brechung

8 Reflexion und Brechung Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 28/29 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 2.11.28 8 Reflexion

Mehr

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Springer -Lehrbuch Miles V. Klein Thomas E. Furtak OPTIK Übersetzt von A. Dorsel und T. Hellmuth Mit 421 Abbildungen und 10 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Professor

Mehr

Übungsblatt 4 Grundkurs IIIa für Physiker

Übungsblatt 4 Grundkurs IIIa für Physiker Übungsblatt 4 Grundkurs IIIa für Physiker Othmar Marti, othmar.marti@physik.uni-ulm.de 3. 6. 2002 1 Aufgaben für die Übungsstunden Reflexion 1, Brechung 2, Fermatsches Prinzip 3, Polarisation 4, Fresnelsche

Mehr

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Inhalte Prisma & Regenbogen Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Versuch 3.3: Polarisation und Doppelbrechung

Versuch 3.3: Polarisation und Doppelbrechung Versuch 3.3: Polarisation und Doppelbrechung Markus Rosenstihl e-mail:rosenst@prp.physik.tu-darmstadt.de Praktikumspartner: Shona Mackie, Wolfgang Schleifenbaum Betreuer: Dr. Holzfuss 6. Juli 2005 1 1

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

cg = = ei(!0 t k0 x) cos(!t dass die Gruppengeschwindigkeit

cg = = ei(!0 t k0 x) cos(!t dass die Gruppengeschwindigkeit 9.6 Phasen- und Gruppengeschwindigkeit 9.6 Phasen- und Gruppengeschwindigkeit Dass Geschwindigkeiten größer als die Lichtgeschwindigkeit im Vakuum werden können, ist interessant durch die Implikationen

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 26.02.09 Inhaltsverzeichnis 1 Interferenz 1 1.1 Interferenz durch Mehrfachreflexion.......................... 1 1.1.1 Interferenz

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 214/215 Thomas Maier, Alexander Wolf Lösung 1 Wellengleichung und Polarisation Aufgabe 1: Wellengleichung Eine transversale elektromagnetische Welle im Vakuum

Mehr

1 Grundprinzipien des Lasers Licht im Hohlraum Atome im Laserfeld Ratengleichungen Lichtverstärkung 13

1 Grundprinzipien des Lasers Licht im Hohlraum Atome im Laserfeld Ratengleichungen Lichtverstärkung 13 1 Grundprinzipien des Lasers 1 1.1 Licht im Hohlraum 1 1.2 Atome im Laserfeld 6 1.3 Ratengleichungen 10 1.4 Lichtverstärkung 13 1.5 Strahlungstransport* 15 1.6 Lichterzeugung mit Lasern 19 Aufgaben 22

Mehr

3.3 Polarisation und Doppelbrechung. Ausarbeitung

3.3 Polarisation und Doppelbrechung. Ausarbeitung 3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther

Mehr

Grimsehl Lehrbuch der Physik

Grimsehl Lehrbuch der Physik Grimsehl Lehrbuch der Physik BAND 3 Optik 16., völlig neu bearbeitete Auflage mit 614 Abbildungen BEGRÜNDET VON PROF. E. GRIMSEHL WEITERGEFÜHRT VON PROF. DR. W. SCHALLREUTER NEU BEARBEITET VON PROF. DR.

Mehr

Optik. Drw. Physikalisch-technische Grundlagen und Anwendungen. von Heinz Haferkorn

Optik. Drw. Physikalisch-technische Grundlagen und Anwendungen. von Heinz Haferkorn Optik Physikalisch-technische Grundlagen und Anwendungen von Heinz Haferkorn Drw VEB Deutscher Verlag der Wissenschaften Berlin 1980 Inhaltsverzeichnis 1. Einleitung 11 1.1. Arbeitsgebiet Optik 11 1.1.1.

Mehr

Laserphysik. Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli. Oldenbourg Verlag München

Laserphysik. Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli. Oldenbourg Verlag München Laserphysik Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Grundprinzipien des Lasers

Mehr

Felder und Wellen Übung 13 WS 2018/2019

Felder und Wellen Übung 13 WS 2018/2019 Christoph Füllner Felder und Wellen Übung 13 WS 2018/2019 Institute of Photonics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University in the Helmholtz

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 23.02.09 Inhaltsverzeichnis 1 Wellen 1 1.1 Allgemeines zu Wellen.................................... 1 1.1.1 Wellengleichung für

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Musterlösung Montag 14. März 2011 1 Maxwell Wir bilden die Rotation der Magnetischen Wirbelbleichung mit j = 0: ( B) = +µµ 0 ɛɛ 0 ( E) t und verwenden wieder die Vektoridenditäet

Mehr

Polarisation durch Doppelbrechung

Polarisation durch Doppelbrechung Version: 27. Juli 24 O4 O4 Polarisation durch Doppelbrechung Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene,

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Halbleiterlaser Clicker Quiz 3

Halbleiterlaser Clicker Quiz 3 Halbleiterlaser Clicker Quiz 3 Interne Quanteneffizienz Welche der folgenden Prozesse reduzieren die interne Quanteneffizienz eines Halbleiterlasers? b a c d a) Nichtstrahlende Rekombination in der Mantelschicht

Mehr

Versuch Nr. 22. Fresnelformeln

Versuch Nr. 22. Fresnelformeln Grundpraktikum der Physik Versuch Nr. 22 Fresnelformeln Versuchsziel: Die Fresnelformeln beschreiben, in welcher Weise sich ein polarisierter oder unpolarisierter Lichtstrahl verhält, wenn er auf die Grenzfläche

Mehr

Prüfungsfragen zur Mechanik 1998/1999

Prüfungsfragen zur Mechanik 1998/1999 Prüfungsfragen zur Mechanik 1998/1999 1. Kinematik der Punktmasse (PM): Bewegungsarten freier Fall Kreisbewegung einer PM Vergleich Translation Rotation der PM 2. Dynamik der PM: NEWTONsche Axiome schwere

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Physikalisches Praktikum II. Fabry-Perot-Resonator (FPR)

Physikalisches Praktikum II. Fabry-Perot-Resonator (FPR) Physikalisches Praktikum II Fabry-Perot-Resonator (FPR) Stichworte: Superposition von Wellen, Interferenz, Vielstrahlinterferenz, optische Weglänge, optische Wegdifferenz OPD, Gangunterschied, Kohärenz,

Mehr

Kleiner Leitfaden durch die Optik-Vorlesung. 2. Erinnerung an die Elektrodynamik

Kleiner Leitfaden durch die Optik-Vorlesung. 2. Erinnerung an die Elektrodynamik Kleiner Leitfaden durch die Optik-Vorlesung Dieser Leitfaden erhebt keinerlei Anspruch auf Vollständigkeit und soll zur Orientierung dienen, warum die Vorlesung genau so aufgebaut war. Die wichtigsten

Mehr

Fragen zur Vorlesung Licht und Materie

Fragen zur Vorlesung Licht und Materie Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell

Mehr

Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008

Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008 Fachhochschule München FK06 Sommersemester 2008 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008 Zugelassene Hilfsmittel: Formelsammlung (wird

Mehr

V. Optik in Halbleiterbauelementen

V. Optik in Halbleiterbauelementen V.1: Einführung V. Optik in Halbleiterbauelementen 1. Kontakt 1. 3.. 1. Kontakt Abb. VI.1: Spontane Emission an einem pn-übergang Rekombination in der LED: - statistisch auftretender Prozess - Energie

Mehr

Polarisationszustände

Polarisationszustände Polarisationszustände Natürliches Licht: Unpolarisiertes Licht = zufällig polarisiert Linear polarisiertes Licht: P-Zustand; Zirkular polarisiertes Licht: Linkszirkular polarisiert: L-Zustand Rechtszirkular

Mehr

Elektromagnetische Wellen und Optik E3/E3p

Elektromagnetische Wellen und Optik E3/E3p Elektromagnetische Wellen und Optik E3/E3p Vorlesung: Mo 8:20-9:50 Do 12:15-13:45 mit Pause Joachim Rädler Bert Nickel Christian Hundschell www.physik.uni-muenchen.de/lehre/vorlesungen/wise_18_19/e3-optik

Mehr

Inhaltsverzeichnis. Vorwort. Gliederung des Gesamtwerkes

Inhaltsverzeichnis. Vorwort. Gliederung des Gesamtwerkes V Vorwort X Gliederung des Gesamtwerkes XII Historische Aspekte zur Lichtausbreitung 1 Das Heron sche Prinzip Reflexion an ebenen und gekrümmten Flächen 1 2 Ansätze von Descartes, Anwendungen auf Brechung

Mehr

Optische Eigenschaften von Metallen und Legierungen

Optische Eigenschaften von Metallen und Legierungen Reine und angewandte Metallkunde in Einzeldarstellungen Herausgegeben von W. Köster Band 22 Optische Eigenschaften von Metallen und Legierungen Mit einer Einführung in die Elektronentheorie der Metalle

Mehr

4. Elektromagnetische Wellen

4. Elektromagnetische Wellen 4. Elektromagnetische Wellen 4.1. elektrische Schwingkreise Wir haben gesehen, dass zeitlich veränderliche Magnetfelder elektrische Felder machen und zeitlich veränderliche elektrische Felder Magnetfelder.

Mehr

Optische Systeme (3. Vorlesung)

Optische Systeme (3. Vorlesung) 3.1 Optische Systeme (3. Vorlesung) Uli Lemmer 06.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 3.2 1. Grundlagen der Wellenoptik 1.1 Die Helmholtz-Gleichung 1.2 Lösungen der Helmholtz-Gleichung:

Mehr

1 Mechanik geradlinige gleichförmige Kinematik. Bewegung

1 Mechanik geradlinige gleichförmige Kinematik. Bewegung 1 Mechanik geradlinige gleichförmige Kinematik Bewegung 2 Mechanik Durchschnittsgeschwindigkeit/Intervallgeschwindigkeit Kinematik 3 Mechanik geradlinig gleichmäßig Kinematik beschleunigte Bewegung 4 Mechanik

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Optik. Walter de Gruyter Berlin New York 1993. Herausgeber Heinz Niedrig

Optik. Walter de Gruyter Berlin New York 1993. Herausgeber Heinz Niedrig Optik Herausgeber Heinz Niedrig Autoren Hans-Joachim Eichler, Axel Fleischer, Jürgen Kross Michael Krystek, Heinwig Lang, Heinz Niedrig Helmut Rauch, Günter Schmahl, Heinz Schoenebeck Erwin Sedlmayr, Horst

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung Inhaltsverzeichnis 1 Reexions- und Brechungsgesetz 1 1.1 Einführung...................................................... 1 1.2 Snelliussches Brechungsgesetz............................................

Mehr

Überlagerung monochromatischer Wellen/Interferenz

Überlagerung monochromatischer Wellen/Interferenz Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm

Mehr

Übungsfragen zur Vorlesung Grundlagen der technischen Optik

Übungsfragen zur Vorlesung Grundlagen der technischen Optik Übungsfragen zur Vorlesung Grundlagen der technischen Optik 1) Welche Näherungen/Vereinfachungen werden beim Übergang zu folgenden optischen Modellen vorgenommen: von der Quantenoptik zur Maxwellschen

Mehr

Versuch O08: Polarisation des Lichtes

Versuch O08: Polarisation des Lichtes Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Weitere Eigenschaften von Licht

Weitere Eigenschaften von Licht Weitere Eigenschaften von Licht In welcher Richtung (Ebene) schwingen die Lichtwellen? Querwelle (Transversalwelle)? Längswelle (Longitudinalwelle)? Untersuchung! Betrachtung einer Seilwelle (Querwelle):

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

Versuch 4.1b: Interferenzrefraktor von Jamin

Versuch 4.1b: Interferenzrefraktor von Jamin PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher

Mehr

Optik. Wellenoptik ABER: Gliederung. Definition und Kenngrößen. Dispersion

Optik. Wellenoptik ABER: Gliederung. Definition und Kenngrößen. Dispersion Gliederung Optik Wellenoptik Dispersion Definition und Kenngrößen der Welle Huygens sches Prinzip Welleneigenschaften Interferenz Kohärenz Streuung Polarisation Dispersion Strahlengang durch ein Prisma

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Übungsblatt 10 Übungsblatt 10 Besprechung am 27.6.2016 Aufgabe 1 Interferenz an dünnen Schichten. Weißes Licht fällt unter einem Winkel

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr