= a) Berechnen Sie die fehlenden Funktionswerte der Wertetabelle. n

Größe: px
Ab Seite anzeigen:

Download "= a) Berechnen Sie die fehlenden Funktionswerte der Wertetabelle. n"

Transkript

1 Info 12 IF1 GK (GA) Bearbeitungszeit: 135 min Seite 1 Aufgabe 1: rekursive Funktionen Die Hofstadter-Funktion ist definiert durch: hof ( n hof ( n 1)) + hof ( n hof ( n 2)) hof ( n) = 1 a) Berechnen Sie die fehlenden Funktionswerte der Wertetabelle. n hof(n) für n > 2 für n =1oder n = 2 b) Schreiben Sie eine rekursive DELPHI-Funktion, die den Funktionswert hof(n) berechnet. function hof(n: integer): integer; { Rekursiver Algorithmus } c) Beurteilen Sie die Effizienz dieses Verfahrens (keine exakte Laufzeitabschätzung erforderlich). Erläutern Sie anschließend eine Idee, wie die Berechung der Funktionswerte effizienter gestaltet werden könnte. Aufgabe 2: rekursive Funktionen Karlchen wohnt in einem Hochhaus in der vierten Etage. Bis zu seinem Stockwerk sind es 63 Stufen, welche er jeden Tag hinauflaufen muss. Damit es nicht so langsam (und langweilig) ist, nimmt Karlchen schon mal zwei Stufen oder sogar drei Stufen in einem Schritt. a) Karlchen möchte den ersten Treppenabsatz mit vier Stufen hinauflaufen. Geben Sie alle verschiedenen Schrittfolgen an, die es für Karlchen gibt, um die vier Stufen zu erklimmen? Hinweis: Da Karlchen ein, zwei oder drei Stufen auf einmal nehmen kann, wären z. B. 1 3 oder aber auch verschiedene Schrittfolgen. Wie Sie erkennen können, spielt die Reihenfolge der Schritte eine Rolle. b) Der zweite Treppenabsatz hat schon sechs Stufen. Ermitteln Sie die Anzahl der verschiedenen Schrittfolgen, um diese sechs Stufen hinaufzulaufen. c) Stellen Sie eine (rekursive) Formel auf, mit deren Hilfe man zu einer vorgegebenen Stufenanzahl n die Anzahl der verschiedenen Schrittfolgen berechnen kann. Berechnen Sie anschließend mithilfe Ihrer Formel, wie viele verschiedene Schrittfolgen es gibt, wenn 10 Stufen erklommen werden müssen. Hinweis: Fertigen Sie sich für die Berechnung eine Tabelle wie in Aufgabe 1 an. Aufgabe 3: rekursive Turtlegrafik Implementieren Sie eine rekursive DELPHI-Prozedur procedure Tribaum(n: integer; Astlaenge: double); welche die folgende Ausgabe produziert. Hinweis: Die Astlängen werden in jedem Rekursionsschritt um den Faktor 0,7 gestaucht. n = 1 n = 2 n = 3 n = 8

2 Info 12 IF1 GK (GA) Bearbeitungszeit: 135 min Seite 2 Aufgabe 4: rekursive Prozeduren Gegeben ist die folgende rekursive Delphi-Prozedur: procedure draw(x1,y1,x2,y2: integer); // Zwei Punkte (x1 y1) und (x2 y2) if (abs(x1-x2)>=2) or (abs(y1-y2)>=2) then draw(x1,y1,(x1+x2) div 2,(y1+y2) div 2); draw((x1+x2) div 2,(y1+y2) div 2,x2,y2); end else form1.canvas.pixels[x1,y1]:= clblack; Hinweise: Die Funktion abs(n) berechnet den Betrag n einer ganzen Zahl. Die Eigenschaft Pixels enthält die Pixel-Farbwerte der Zeichenfläche canvas des Formulars form1. Diese können per Zuweisung (:= clblack) auf schwarz gesetzt werden. a) Übertragen und vervollständigen Sie die grafische Darstellung des rekursiven Abstiegs für den Aufruf draw(5,3,13,7): draw(5,3,7,4) draw(5,3,9,5) draw(7,4,9,5) draw(5,3,13,7) draw(9,5,13,7) b) Stellen sie den rekursiven Abstieg für den Aufruf draw(6,2,8,5) grafisch dar. draw(5,3,6,3) draw(,,, ) Pixels[5,3] := clblack c) Nachfolgend sehen Sie die Zeichenfläche canvas stark vergrößert. Die obere linke Ecke hat die Koordinaten (0 0), die untere rechte Ecke die Koordinaten (17 8) Zeichnen Sie das Ergebnis des Aufrufs aus Teilaufgabe a) draw(5,3,13,7) auf diese Zeichenfläche d) Beschreiben Sie in eigenen Worten, was die Prozedur draw leistet. Begründen Sie anschließend, warum die Prozedur genau das produziert, was sie vermuten.

3 Info 12 IF1 GK (GA) Bearbeitungszeit: 135 min Seite 3 Aufgabe 5: rekursive Berechnungsverfahren Aus dem Mathematikunterricht kennen Sie die Berechnung des größten gemeinsamen Teilers zweier natürlicher Zahlen; kurz ggt(a,b). Ein effizientes rekursives Verfahren kann algorithmisch wie folgt beschrieben werden: ALGORITHMUS ggt Input-Objekte: a, b: Integer Output-Objekte: result: Integer Hilfs-Objekte: r: Integer Falls b = 0 dann: result a sonst r Rest der Division a : b result ggt(b, r) a) Veranschaulichen Sie den Algorithmus am Beispiel des Aufrufs ggt(100,15) und am Beispiel des Aufrufs ggt(73, 117) b) Implementieren Sie ein Delphi-Funktion, welche nach dem obigen Verfahren den ggt zweier Zahlen berechnet. Hinweis: Der Rest der Division a : b berechnet sich durch a mod b. Viel Erfolg!!

4 Info 12 IF1 GK (GA) Bearbeitungszeit: 135 min Seite 4 Aufgabe 1: rekursive Funktionen Gegeben ist die folgende Funktion f: hof ( n hof ( n 1)) + hof ( n hof ( n 2)) für n > 2 hof ( n) = 1 für n =1oder n = 2 a) n hof(n) b) function hof(n: integer): integer; { Rekursiver Algorithmus } if n<=2 then result:= 1 else result:= hof(n-hof(n-1))+hof(n-hof(n-2)); c) Die Berechung ist nicht effizient, da Funktionswerte mehrfach berechnet werden. Beispielsweise wird für hof(3) zwei mal hof(2) und zwei mal hof(1) berechnet. Besser wäre die Zwischenspeicherung vorher berechneter Funktionswerte z. B. in einem Array. Aufgabe 2: rekursive Funktionen Prozeduren a) b) Insgesamt: 24 c) f ( n) = f ( n 1) f ( n 2) + f ( n 3) n = 1 n = 2 n = 3 n > 3 n f(n) Aufgabe 3: rekursive Turtlegrafik procedure TForm1.BaumfigurZeichnen(n: integer; Laenge: double); if n<=1 then Turtle.VW(Laenge); Turtle.RW(Laenge); end else Turtle.VW(Laenge); Turtle.DL(45); BaumfigurZeichnen(n-1, Laenge*0.7); Turtle.DR(45); BaumfigurZeichnen(n-1, Laenge*0.7); Turtle.DR(45); BaumfigurZeichnen(n-1, Laenge*0.7); Turtle.DL(45);

5 Info 12 IF1 GK (GA) Bearbeitungszeit: 135 min Seite 5 Turtle.RW(Laenge); Aufgabe 4: rekursive Prozeduren a) draw(5,3,13,7 draw(5,3,9,5) draw(9,5,13,7) draw(5,3,7,4) draw(7,4,9,5) draw(9,5,11,6) draw(11,6,13,7) draw(5,3,6,3) draw(6,3,7,4) draw(7,4,8,4) draw(8,4,9,5) draw(9,5,10,5) draw(10,5,11,6) draw(11,6,12,6) draw(12,6,13,7) Pixels[5,3] := clblack Pixels[6,3] := Pixels[7,4] := P [8,4] := Pixels[9,5] := Pixels[10,5] := Pixels[11,6] Pixels[7,4] := P [12,6] := b) draw(6,2,8,5) draw(6,2,7,3) draw(7,3,8,5) Pixels[6,2] := clblack draw(7,3,7,4) draw(7,4,8,5) b) 0 Pixels[7,4] Pixels[7,3] := Pixels[7,4] := c) Das Programm zeichnet eine Linie zwischen den beiden Punkten (x1 y1) und (x2 y2). Dabei wird die Linie ohne den Endpunkt gezeichnet. Die Prozedur draw arbeitet wie folgt: Besteht die Linie aus höchstens zwei Punkten, so wird der Anfangspunkt gezeichnet. Andernfalls wird der Mittelpunkt der Strecke gebildet und das Zeichnen der Linie aufgeteilt auf die beiden Strecken von (x1 y1) zum Mittelpunkt und vom Mittelpunkt zu (x2 y2). Da stets der Anfangspunkt gezeichnet wird, wird auch der zuvor berechnete Mittelpunkt beim zweiten rekursiven Aufruf gezeichnet.

6 Info 12 IF1 GK (GA) Bearbeitungszeit: 135 min Seite 6 Aufgabe 5: rekursive Berechnungsverfahren a) ggt(100,15) = ggt(15,10) = ggt(10,5) ) ggt(5,0) = 5 ggt(73,117) = ggt(117,73) = ggt(73,44) = ggt(44,29) = ggt(29,15) = ggt(15,14) = ggt(14,1) = ggt(1,0) = 1 b) function ggt(a,b: integer): integer; if b=0 then ggt:= a else ggt:= ggt(b, a mod b);

Universität Duisburg - Essen

Universität Duisburg - Essen BoS - Klausur - Bauinformatik - 16.08.2007 1 Universität Duisburg - Essen Campus Essen Fakultät für Ingenieurwissenschaften Abteilung Bauwissenschaften Fachprüfung - Bauinformatik SS 07-1 - Dienstag, den

Mehr

Universität Duisburg - Essen

Universität Duisburg - Essen BoS - Klausur - Bauinformatik - 24.09.2007 1 Universität Duisburg - Essen Campus Essen Fakultät für Ingenieurwissenschaften Abteilung Bauwissenschaften Fachprüfung - Bauinformatik SS 07-2 - Montag, den

Mehr

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill Konvexe Hülle Hierbei handelt es sich um ein klassisches Problem aus der Algorithmischen Geometrie, dem Teilgebiet der Informatik, in dem man für geometrische Probleme effiziente Algorithmen bestimmt.

Mehr

4. Anhang 4.1 Wertetabellen zum 2. Algorithmus //Suche alle k, welche quadratische Reste mod 64 sind print "Quadratische Reste mod 64:"; for k:=0 to 31 do print (k^2 mod 64); end for; k 0 1 2 3 4 5 6 7

Mehr

ÜBUNGEN ZUR REKURSION

ÜBUNGEN ZUR REKURSION ÜBUNGEN ZUR REKURSION Aufgabe 1: Auf einem früheren Arbeitsblatt wurde eine rekursive DELPHI-Funktion zur Berechnung der Quadratzahl zu einer natürlichen Zahl n vorgestellt, welche mathematisch wie folgt

Mehr

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017 2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel

Mehr

Universität Duisburg - Essen

Universität Duisburg - Essen 1 Universität Duisburg - Essen Campus Essen Fachgebiet Statik & Dynamik der Flächentragwerke Fachprüfung - Bauinformatik 1, Teil 1 SS 17 Mittwoch, den 09.08.2017 Prof. Dr.-Ing. Carolin Birk Name :... Matr.-

Mehr

Kapitel 2: Zahlentheoretische Algorithmen Gliederung

Kapitel 2: Zahlentheoretische Algorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Matthias Wieczorek Computer-Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45

Mehr

p Z >1 ist Primzahl, wenn gilt Euklid:

p Z >1 ist Primzahl, wenn gilt Euklid: Grundlegende Tatsachen über den Ring Z Z; +, ist ein nullteilerfreier Ring Divisionseigenschaft a Z, b Z > q, r Z : a = b q + r, r < b Arithmetik Grundlegende Tatsachen über den Ring Z Euklidischer Algorithmus

Mehr

Universität Duisburg - Essen

Universität Duisburg - Essen B.Sc. - Klausur - Bauinformatik - 23.08.2010 1 Universität Duisburg - Essen Campus Essen Fakultät für Ingenieurwissenschaften Abteilung Bauwissenschaften Fachprüfung - Bauinformatik SS 10 Montag, den 23.08.2010

Mehr

Universität Duisburg - Essen

Universität Duisburg - Essen B.Sc. - Klausur - Bauinformatik 22.09.2015 1 Universität Duisburg - Essen Campus Essen Fachgebiet Baustatik Fachprüfung - Bauinformatik Teil 1 SS 15 Dienstag, den 22.09.2015 Prof. Dr.-Ing. Jochen Menkenhagen

Mehr

Aufgabenblatt: Methoden - rekursiv

Aufgabenblatt: Methoden - rekursiv Aufgabenblatt: Methoden - rekursiv- Seite 1 Aufgabenblatt: Methoden - rekursiv (1.) Wird noch erstellt! Lösen Sie die folgenden Aufgaben indem Sie: - Basis und Rekursive Bedingung formulieren! - die vorgegebene

Mehr

Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart)

Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart) Taxonomie + Schwierigkeit Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart) Beurteilen Synthese Konstruktion

Mehr

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I

Mehr

Euklidischer Algorithmus

Euklidischer Algorithmus Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man

Mehr

Universität Duisburg - Essen

Universität Duisburg - Essen 1 Universität Duisburg - Essen Campus Essen Fachgebiet Statik & Dynamik der Flächentragwerke Fachprüfung - Bauinformatik 1, Teil 1 WS 18 Mittwoch, den 14.02.2018 Prof. Dr.-Ing. Carolin Birk Name :... Matr.-

Mehr

Kompaktkurs Einführung in die Programmierung Übungsblatt 5: Funktionen

Kompaktkurs Einführung in die Programmierung Übungsblatt 5: Funktionen Technische Universität München März 2013 Institut für Informatik Dr. rer. nat. Tobias Weinzierl Kaveh Rahnema Kompaktkurs Einführung in die Programmierung Übungsblatt 5: Funktionen Lernziele Mehrfache

Mehr

1. Die rekursive Datenstruktur Liste

1. Die rekursive Datenstruktur Liste 1. Die rekursive Datenstruktur Liste 1.3 Rekursive Funktionen Ideen zur Bestimmung der Länge einer Liste: 1. Verwalte ein globales Attribut int laenge. Fügt man ein Element zur Liste oder löscht es, wird

Mehr

Universität Duisburg - Essen

Universität Duisburg - Essen B.Sc. - Klausur - Bauinformatik - 14.03.2012 1 Universität Duisburg - Essen Campus Essen Fakultät für Ingenieurwissenschaften Abteilung Bauwissenschaften Fachprüfung - Bauinformatik WS 11/12 Mittwoch,

Mehr

Algorithmen & Datenstrukturen Midterm Test 2

Algorithmen & Datenstrukturen Midterm Test 2 Algorithmen & Datenstrukturen Midterm Test 2 Martin Avanzini Thomas Bauereiß Herbert Jordan René Thiemann

Mehr

Operatoren für das Fach Mathematik

Operatoren für das Fach Mathematik Operatoren für das Fach Mathematik Anforderungsbereich I Angeben, Nennen Sachverhalte, Begriffe, Daten ohne nähere Erläuterungen und Begründungen, ohne Lösungsweg aufzählen Geben Sie die Koordinaten des

Mehr

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung Funktionale Programmierung 1 Funktionale Programmierung: Vorlesungsüberblick 1. Funktionale Programmierung Prinzipien funktionaler Programmierung Funktionale Programmierung in prozeduralen Sprachen Rekursive

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 4 Das Lemma von Bezout Satz 1. (Lemma von Bézout) Jede Menge von ganzen Zahlen a 1,...,a n besitzt einen größten gemeinsamen Teiler

Mehr

Funktionen; Rekursion

Funktionen; Rekursion restart; Der Operator - Funktionen; Rekursion Mit dem - -Operator definiert man eine Funktion (Abbildung. '-' hat (zunächst einen Namen (den Formalparameter als linken und einen Ausdruck als rechten Operanden.

Mehr

4 Programmieren in Java III

4 Programmieren in Java III 1 4 Programmieren in Java III 4.1 Rekursive Funktionen und Prozeduren Ein Unterprogramm kann sich selbst aufrufen. Dabei sind, in einer korrekt entworfenen Programmiersprache, die lokalen Variablen der

Mehr

1 2 x x x x x x2 + 83

1 2 x x x x x x2 + 83 Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die

Mehr

Der Algorithmus von Bresenham

Der Algorithmus von Bresenham Der Algorithmus von Bresenham Das Bresenham-Verfahren beruht im wesentlichen auf zwei grundsätzliche Beobachtungen: - Es reicht ein Verfahren aus um Geraden mit einer Steigung im Bereich von null bis eins

Mehr

Einführung in die Praktische Informatik. Übungsblatt 3. PD Dr. U. Köthe Heidelberg, 7. November Aufgabe 3.1 Gaußsche Osterregel [6 Punkte]

Einführung in die Praktische Informatik. Übungsblatt 3. PD Dr. U. Köthe Heidelberg, 7. November Aufgabe 3.1 Gaußsche Osterregel [6 Punkte] Einführung in die Praktische Informatik PD Dr. U. Köthe Heidelberg, 7. November 2016 Übungsblatt 3 Aufgabe 3.1 Gaußsche Osterregel [6 Punkte] Erstellen Sie ein Programm, das mit dem Algorithmus von Gauß

Mehr

JAVA für Nichtinformatiker - Probeklausur -

JAVA für Nichtinformatiker - Probeklausur - JAVA für Nichtinformatiker - Probeklausur - Die folgenden Aufgaben sollten in 150 Minuten bearbeitet werden. Aufgabe 1: Erläutere kurz die Bedeutung der folgenden Java-Schlüsselwörter und gib Sie jeweils

Mehr

Übungskomplex Reelle Zahlen. Rechnen mit Gleitkommazahlen

Übungskomplex Reelle Zahlen. Rechnen mit Gleitkommazahlen Übungskomplex Reelle Zahlen Rechnen mit Gleitkommazahlen Hinweise zur Übung Benötigter Vorlesungsstoff Einheiten 1-3 (C-Tutorial) Einheiten Reelle Zahlen 61 Aufgabe Kreisberechnung a) Schreiben Sie zwei

Mehr

Theoretische Informatik. Ackermann-Funktion. Ali Eyerta

Theoretische Informatik. Ackermann-Funktion. Ali Eyerta Theoretische Informatik Ackermann-Funktion Ali Eyerta Inhalt Entstehungsgeschichte Bedeutung in der Theoretischen Informatik Ackermanns Idee Ackermann-Funktion Anwendungen Benchmark für rekursive Aufrufe

Mehr

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt.

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt. Checkliste Sinus und Cosinus Ich kann Winkel in Grad und in Vielfachen von am Einheitskreis veranschaulichen. Ich kann in einem rechtwinkligen Dreieck die Sinus und Cosinuswerte eines Winkels durch die

Mehr

Präzedenz von Operatoren

Präzedenz von Operatoren Präzedenz von Operatoren SWE-30 Die Präzedenz von Operatoren bestimmt die Struktur von Ausdrücken. Ein Operator höherer Präzedenz bindet die Operanden stärker als ein Operator geringerer Präzedenz. Mit

Mehr

INFORMATIK FÜR BIOLOGEN

INFORMATIK FÜR BIOLOGEN Technische Universität Dresden 15012015 Institut für Theoretische Informatik Professur für Automatentheorie INFORMATIK FÜR BIOLOGEN Musterklausur WS 2014/15 Studiengang Biologie und Molekulare Biotechnologie

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

Studienseminar Koblenz - Fachseminar Informatik Visualisierung von Sortieralgorithmen

Studienseminar Koblenz - Fachseminar Informatik Visualisierung von Sortieralgorithmen Thema: Visualisieren von Sortieralgorithmen in Delphi (am Beispiel: Bubblesort und Quicksort) Ziel ist es, eine Animation des Bubblesort- und Quicksort-Algorithmus in Delphi für die Anwung im Unterricht

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmentheorie 03 - Randomisierung Prof. Dr. S. Albers Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 15 P Hinweise: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

1) Das Treppenproblem

1) Das Treppenproblem 1) Das Treppenproblem Fachseminar Informatik Die Eingangstreppe des Max-von-Laue-Gymnasium mit 7 Stufen kann man auf verschiedene Arten hinaufgehen, z.b: Wie viele verschiedene Möglichkeiten gibt es, die

Mehr

Einsatz von CAS im Mathematikunterricht Klasse 8

Einsatz von CAS im Mathematikunterricht Klasse 8 Einsatz von CAS im Mathematikunterricht Klasse 8 Beispiele für den Einsatz des Voyage 200 im Lernbereich 3 Funktionen und lineare Gleichungssysteme Darstellungsformen von Funktionen Eigenschaften ganz-

Mehr

Quadratische Funktionen Die Normalparabel

Quadratische Funktionen Die Normalparabel Quadratische Funktionen Die Normalparabel Kreuze die Punkte an, die auf der Normalparabel liegen. A ( 9) B ( ) C ( 9) D ( ) E (9 ) F (0 0) Die Punkte A bis J sollen auf der Normalparabel liegen. Gib, falls

Mehr

Füllen von Primitiven

Füllen von Primitiven Füllen von Primitiven Basisproblem der 2D-Graphik Anwendung: füllen beliebiger Flächen (Polygone, Freiformkurven) Darstellung von Buchstaben dicke Primitive (Linien, Kreise, Kurven), Teilproblem in der

Mehr

und schneidet die -Achse im Punkt 0 3. Berechnen Sie die Koordinaten der Schnittpunkte von und. Lösung: 4 1;2 4

und schneidet die -Achse im Punkt 0 3. Berechnen Sie die Koordinaten der Schnittpunkte von und. Lösung: 4 1;2 4 7 Aufgaben im Dokument Aufgabe P5/2010 Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2018 Mai Bui Computer Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45 11:15) Programmierbeispiele

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen Lerneinheit : Dynamisches Programmieren Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester.. Einleitung Diese Lerneinheit widmet sich einer

Mehr

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt Divide and Conquer Das Divide - and - Conquer Prinzip Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt 2 Quicksort: Sortieren durch Teilen

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abgabe: (vor der Vorlesung)

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abgabe: (vor der Vorlesung) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2008/09 Einführung in die Informatik 2 Übungsblatt 6 Prof. Dr. Helmut Seidl, T. M. Gawlitza,

Mehr

Langzahlarithmetik implementieren Ac 1990 bis 2016

Langzahlarithmetik implementieren Ac 1990 bis 2016 Langzahlarithmetik implementieren Ac 1990 bis 2016 Wie konstruiert man einen BigInteger-Typ (Langzahlarithmetik)? Zur Berechnung von sehr großen Ganzzahlen ( Big Integers ) kann man Register verwenden,

Mehr

ABITURPRÜFUNG 2004 GRUNDFACH INFORMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2004 GRUNDFACH INFORMATIK (HAUPTTERMIN) ABITURPRÜFUNG 2004 GRUNDFACH INFORMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 210 Minuten Formeln und Tabellen für die Sekundarstufen I und II Berlin: Paetec, Ges für Bildung und Technik mbh oder Das

Mehr

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne

Mehr

Name: 2. INFORMATIK-KLAUSUR Aufgabe 1: Graphentheorie Zusammenhang

Name: 2. INFORMATIK-KLAUSUR Aufgabe 1: Graphentheorie Zusammenhang Name: 2. INFORMATIK-KLAUSUR 02.12.2003 Info 13 GK (GA) Bearbeitungszeit: 225 min Seite 1 Aufgabe 1: Graphentheorie Zusammenhang Karl Vorwerk ist Staubsaugervertreter und möchte in Odenthal und Umgebung

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 03.12.2013 Algorithmische Geometrie: Schnitte von Strecken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Stabilitätsabschätzungen Vorlesung vom

Stabilitätsabschätzungen Vorlesung vom Stabilitätsabschätzungen Vorlesung vom 8.12.17 Auswertungsbäume zur systematischen Stabilitätsabschätzung Auswertungsbaum: Knoten, gerichtete Kanten, Wurzel, Blätter Zerlegung in Teilbäume Von den Blättern

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

19. Dynamic Programming I

19. Dynamic Programming I 495 19. Dynamic Programming I Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap.

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

19. Dynamic Programming I

19. Dynamic Programming I 495 19. Dynamic Programming I Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap.

Mehr

Inhalt. Vorwort 4. Quadratische Funktionen Einführung in das Thema 5-6. Ergänzung von Werten in Wertetabellen 9-10

Inhalt. Vorwort 4. Quadratische Funktionen Einführung in das Thema 5-6. Ergänzung von Werten in Wertetabellen 9-10 Inhalt Seite Vorwort 4 1 Quadratische Funktionen Einführung in das Thema 5-6 2 Die Funktionsgleichung = 2 7-8 Ergänzung von Werten in Wertetabellen 9-10 4 Erstellen von Wertetabellen und Zeichnen von Graphen

Mehr

Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x

Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x Rekursive Definition der Fibonacci-Zahlen Erste Werte f 0 = 0, f 1 = 1, f n = f n 1 + f n 2 (n 2) n 0 1 2 3 4 5 6 7 8 9 10... 25... f n 0 1 1 2 3 5 8 13 21 34 55... 75025... Exakte Formel (de Moivre, 1718)

Mehr

Übungspaket 22 Rekursive Funktionsaufrufe

Übungspaket 22 Rekursive Funktionsaufrufe Übungspaket 22 Rekursive Funktionsaufrufe Übungsziele: Skript: 1. Technische Voraussetzungen für rekursive Funktionsaufrufe 2. Umsetzung mathematisch definierter Rekursionen in entsprechende C-Programme

Mehr

Quadratische Funktionen Arbeitsblatt 1

Quadratische Funktionen Arbeitsblatt 1 Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I LOOP Programme, rekursive Funktionen und der Turm von Hanoi Prof. Dr. Nikolaus Wulff Berechenbarkeit Mitte des 20. Jahrhunderts beantworteten Pioniere, wie Alan M. Turing

Mehr

Präfix-Summe. Das Schweizer Offiziersmesser der Parallelen Algorithmen. Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen

Präfix-Summe. Das Schweizer Offiziersmesser der Parallelen Algorithmen. Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen Präfix-Summe Das Schweizer Offiziersmesser der Parallelen Algorithmen Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen Parallele Rechenmodelle Beispiel: Summieren von Zahlen Verlauf des Rechenprozesses:

Mehr

Algebra Primzahlen ggt kgv PRÜFUNG 04. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Algebra Primzahlen ggt kgv PRÜFUNG 04. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Algebra Primzahlen ggt kgv Name: Klasse: Datum: : PRÜFUNG 0 Note: Klassenschnitt/ Maximalnote : / Ausgabe: 17. März 2011 Selbsteinschätzung: (freiwillig) Für alle Berechnungsaufgaben

Mehr

Klausur Softwaretechnik I

Klausur Softwaretechnik I Klausur Softwaretechnik I 06.08.2009 Prof. Dr. Walter F. Tichy Dipl.-Inform. A. Höfer Dipl.-Inform. D. Meder Hier das Namensschild aufkleben. Zur Klausur sind keine Hilfsmittel und kein eigenes Papier

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Wuerfel - augenzahl: int + Wuerfel() + wuerfeln() + gibaugenzahl(): int

Wuerfel - augenzahl: int + Wuerfel() + wuerfeln() + gibaugenzahl(): int Informatik Eph IFG1/2 (GA) Bearbeitungszeit: 90 min. Seite 1 Aufgabe 1: Kniffel Modellierung und Implementierung Im Folgenden sollen Teile eines kleinen "Kniffel"-Spiels modelliert, analysiert und implementiert

Mehr

ABITURPRÜFUNG 2010 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2010 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2010 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Rekursion und Iteration

Rekursion und Iteration Rekursion und Iteration Programmieren in Derive Aline Rumöller Rekursion und Iteration Programmieren in Derive IF-Anweisungen in Derive Rekursion Vektorfunktionen in Derive Schleifen in Derive Iteration

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

Universität Tübingen Tübingen, den Mathematisches Institut D. Mansour, J. Seyrich

Universität Tübingen Tübingen, den Mathematisches Institut D. Mansour, J. Seyrich Universität Tübingen Tübingen, den 03.07.2013 Mathematisches Institut D. Mansour, J. Seyrich Probeklausur zu Algorithmen der Numerischen Mathematik SS 2013 ID Nummer: 1 Name:.........................................

Mehr

Klausur WS 2014/15 EDV Anwendungen im Bauwesen. Name: Vorname: Matr.-Nr:

Klausur WS 2014/15 EDV Anwendungen im Bauwesen. Name: Vorname: Matr.-Nr: Punkte: 1 2 3 4 Σ: / 40 Aufgabe 1: Das unten angegebene VBA-Programm enthält einige syntaktische und programmiertechnische Fehler. Gehen Sie davon aus, dass die Bezüge zur Excel-Tabelle korrekt sind. Gesucht:

Mehr

1. Teilklausur. Name:... Vorname:... Matrikel-Nummer:...

1. Teilklausur. Name:... Vorname:... Matrikel-Nummer:... ALP II Objektorientierte Programmierung SS 2012 Prof. Dr. Margarita Esponda 1. Teilklausur Name:... Vorname:... Matrikel-Nummer:... Ich bin mit der Veröffentlichung der Klausurergebnisse mit Matrikel-Nummer

Mehr

Universität Duisburg - Essen

Universität Duisburg - Essen B.Sc. - Klausur - Bauinformatik - 03.08.2012 1 Universität Duisburg - Essen Campus Essen Fachgebiet Baustatik Fachprüfung - Bauinformatik Teil 1 SS 12 Freitag, den 03.08.2012 Prof. Dr.-Ing. Jochen Menkenhagen

Mehr

Theoretische Informatik SS 03 Übung 5

Theoretische Informatik SS 03 Übung 5 Theoretische Informatik SS 03 Übung 5 Aufgabe 1 Im Buch von Schöning ist auf S. 106-108 beschrieben, wie eine Turing-Maschine durch ein GOTO-Programm simuliert werden kann. Zeigen Sie, wie dabei die Anweisungen

Mehr

Einführung in die Programmierung. (K-)II/Wb17

Einführung in die Programmierung. (K-)II/Wb17 Probeklausur Hochschule Zittau/Görlitz, Prüfer: Prof. Dr. Georg Ringwelski Einführung in die Programmierung (K-)II/Wb17 Matrikelnummer: Punkte: 1 2 3 4 5 6 Gesamt /21 /19 /20 /20 /20 /20 /120 Spielregeln:

Mehr

Informatik 1 für Nebenfachstudierende Beispiele für Klausuraufgaben

Informatik 1 für Nebenfachstudierende Beispiele für Klausuraufgaben Informatik 1 für Nebenfachstudierende Beispiele für Klausuraufgaben Aufgabe 1: Zahlensysteme a) Stellen sie die Zahl Z als allgemeine Formel mittels eines polyadischen Zahlensystems zur Basis B dar. b)

Mehr

Beim rekursiven Aufruf einer Funktion wird jeweils ein Duplikat der gesamten Funktion im Speicher abgelegt.

Beim rekursiven Aufruf einer Funktion wird jeweils ein Duplikat der gesamten Funktion im Speicher abgelegt. Rekursion Unter Rekusion verstehen wir eine Funktion, die sich selbst aufruft. Da sie das nicht immerzu tun kann (das Programm würde ewig laufen) benötigt jeder rekursive Aufruf eine Abbruchbedingung!

Mehr

Folgen und Funktionen in der Mathematik

Folgen und Funktionen in der Mathematik Folgen und Funktionen in der Mathematik Anhand von einigen exemplarischen Beispielen soll die Implementierung von mathematischen Algorithmen in C/C++ gezeigt werden: Reelle Funktionen in C/C++ Diese wird

Mehr

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) 5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:

Mehr

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element Problemstellung Banale smethode : das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Lizenziert für: Seite 8 Aufgabe 3 Exercise-ID Ex

Lizenziert für: Seite 8 Aufgabe 3 Exercise-ID Ex : Funktionen und ihre Graphen Im Kapitel Funktionen und ihre Graphen lernst du, verschiedene Eigenschaften einer Funktion zu bestimmen. Mit den ausführlichen Lösungswegen von MatheScout siehst du, wie

Mehr

12. Fachseminar Informatik Martin Jakobs Zustandsorientierte Modellierung (Standard 2)

12. Fachseminar Informatik Martin Jakobs Zustandsorientierte Modellierung (Standard 2) Ergebnisse der Seminarsitzung vom 14. Januar 2008 Definition 1 Ein ist eine struktur- und verhaltenstreue Beschreibung eines eistierenden oder geplanten Sstems. Definition 2 Ein ist eine vereinfachte Nachbildung

Mehr

Schriftlicher Test (120 Minuten) VU Einführung ins Programmieren für TM. 25. Jänner 2016

Schriftlicher Test (120 Minuten) VU Einführung ins Programmieren für TM. 25. Jänner 2016 Familienname: Vorname: Matrikelnummer: Aufgabe 1 (3 Punkte): Aufgabe 2 (4 Punkte): Aufgabe 3 (2 Punkte): Aufgabe 4 (2 Punkte): Aufgabe 5 (2 Punkte): Aufgabe 6 (1 Punkte): Aufgabe 7 (3 Punkte): Aufgabe

Mehr

Vordiplom Wirtschaftswissenschaften Allgemeine Informatik I WS 2001/ Februar 2002

Vordiplom Wirtschaftswissenschaften Allgemeine Informatik I WS 2001/ Februar 2002 Vordiplom Wirtschaftswissenschaften Allgemeine Informatik I WS 2001/2002 19. Februar 2002 Name: Vorname: Matrikelnummer: Bearbeitungszeit: 120 Minuten Aufgabe Punkte Bewertung 1 12 a) 2 b) 2 c) 2 d) 3

Mehr

IT-Security. Teil 8b: Rechnen mit beliebiger Genauigkeit Algorithmen

IT-Security. Teil 8b: Rechnen mit beliebiger Genauigkeit Algorithmen IT-Security Teil 8b: Rechnen mit beliebiger Genauigkeit Algorithmen 06.06.17 1 Überblick Potenzieren Quadrieren Euklid'scher Algorithmus In den meisten Fällen wird nur mit positiven Werten gerechnet. Bei

Mehr