Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
|
|
|
- Hansi Althaus
- vor 7 Jahren
- Abrufe
Transkript
1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 15 P Hinweise: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern Sie die Notationen, Algorithmen und Datenstrukturen aus der Vorlesung Datenstrukturen & Algorithmen verwenden, sind Erklärungen oder Begründungen nicht notwendig. Falls Sie jedoch andere Methoden benutzen, müssen Sie diese kurz soweit erklären, dass Ihre Ergebnisse verständlich und nachvollziehbar sind. 3) Als Ordnung verwenden wir für Buchstaben die alphabetische Reihenfolge, für Zahlen die aufsteigende Anordnung gemäss ihrer Grösse. a) Fügen Sie die Schlüssel 27, 14 und 16 in dieser Reihenfolge in die untenstehende Hashtabelle ein. Benutzen Sie Double Hashing mit der Hashfunktion h(k) = k mod 11 und benutzen Sie h (k) = 1 + (k mod 9) zur Sondierung (nach links, d.h. h (k) soll abgezogen werden) b) Sie sollen einen ganzzahligen Schlüssel in den folgenden AVL-Baum einfügen, sodass es zu einer Doppelrotation kommt. Alle im AVL-Baum gespeicherten Schlüssel müssen paarweise verschieden sein. Geben Sie alle möglichen ganzzahligen Kandidaten an Kandidaten:. 2 9 c) Gegeben sei das folgende Array, das nach einem Quicksort-Aufteilungsschritt entstanden ist. Welcher Schlüssel wurde als Pivotelement verwendet? Markieren Sie alle möglichen Kandidaten
2 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 2 d) Geben Sie eine topologische Sortierung des untenstehenden Graphen an. A B C D E F G Topologische Sortierung:,,,,,,. e) Zeichnen Sie alle 2, 3-Bäume (B-Bäume mit bis zu 3 Kindern je Knoten) für die Schlüsselmenge {1, 2, 3, 4, 5}. f) Beweisen oder widerlegen Sie: Sei G = (V, E) ein ungerichteter Graph, s, t V zwei Knoten und T = (V, E ) mit E E ein minimaler Spannbaum von G. Der Pfad zwischen s und t in T ist ein kürzester Pfad in G. g) Markieren Sie in der untenstehenden Abbildung die ersten drei Kanten, die der Algorithmus von Jarník, Prim und Dijkstra ausgehend von Knoten A in den minimalen Spannbaum aufnimmt. A 5 B 1 8 C 11 3 D E F
3 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 3 h) Welcher Splay-Baum entsteht, wenn im folgenden Splay-Baum Schlüssel 1 und Schlüssel 3 in dieser Reihenfolge angefragt werden? i) Gegeben seien ein Array A[1..n] und die folgende Java-Implementation des Algorithmus Sortieren durch Einfügen. Der Aufruf von swap(a, i, j) vertauscht die Elemente A[i] und A[j]. Um ein Array A[1..n] aufsteigend zu sortieren wird die Funktion mit den Parametern l = 1 und r = n aufgerufen. Vervollständigen Sie die Implementation (Zeilen 2, 3 und 4). 1 public void insertionsort(int[] A, int l, int r) { 2 for (int i= ; i<= ; i++) 3 for (int j=i-1; j>=l && A[j]>A[ ]; j--) 4 swap(a,, ); 5 }
4 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 4 / 3 P j) Gegeben ist die folgende Rekursionsgleichung: { 3 T (n/7) + 4 n > 1 T (n) := 3 n = 1 Geben Sie eine geschlossene (nicht-rekursive) und möglichst einfache Formel für T (n) an und beweisen Sie diese mit vollständiger Induktion. Sie können annehmen, dass n eine Potenz von 7 ist. Benutzen Sie also n = 7 k oder k = log 7 (n). Hinweis: Für q 1 gilt: k i=0 qi = qk+1 1 q 1. Herleitung (falls benötigt): Geschlossene und vereinfachte Formel: T (n) = T (7 k ) =
5 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 5 Induktionsbeweis:
6 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 6 k) Geben Sie die asymptotische Laufzeit in Abhängigkeit von n N für den folgenden Algorithmus (so knapp wie möglich) in Θ-Notation an. Sie müssen Ihre Antwort nicht begründen. 1 for ( int i = n; i >= 1; i = i / 2 ) { 2 int j = n; 3 while ( j >= 1 ) { 4 j = j 20; 5 } 6 } Laufzeit in möglichst knapper Θ-Notation: l) Geben Sie die asymptotische Laufzeit in Abhängigkeit von n N für den folgenden Algorithmus (so knapp wie möglich) in Θ-Notation an. Sie müssen Ihre Antwort nicht begründen. 1 int f( int n ) { 2 if ( n <= 1 ) return 1; 3 for ( int i = 1; i i <= n; i = i + 2 ) { 4 ; 5 } 6 return f( n/4 ) + 1; 7 } Laufzeit in möglichst knapper Θ-Notation: m) Geben Sie für die untenstehenden Funktionen eine Reihenfolge an, so dass folgendes gilt: Wenn eine Funktion f links von einer Funktion g steht, dann gilt f O(g). Beispiel: Die drei Funktionen n 3, n 7, n 9 sind bereits in der entsprechenden Reihenfolge, da n 3 O(n 7 ) und n 7 O(n 9 ) gilt. 4 n/2, ( ) n n,, 10 64, log(n!), n n, log(n 16 ) 4 Lösung:,,,,,,.
7 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 7 Aufgabe 2. / 12 P In einem Skigebiet gibt es n Stationen, die mit m Pisten verbunden sind. Die Stationen i {1,..., n} sind nach ihrer Höhe h i N über dem Meeresspiegel absteigend sortiert, das heisst aus i < j folgt h i h j. Die Pisten sind als Paare (i, j) für Stationen i, j {1,..., n} mit i j gegeben, wobei für jede Piste h i > h j gilt. Weiters sind die Längen der Pisten l 1, l 2,..., l m gegeben mit l i N für alle i {1,..., m}, die maximale Höhe im Skigebiet H = max i {1,...,n} h i und die Gesamtlänge aller Pisten im Skigebiet L = m i=1 l i. Eine Abfahrt ist eine Abfolge von Pisten, die Sie ohne Unterbrechung befahren, d.h. mit Ausnahme der letzten Piste gilt, dass die Endstation einer Piste zugleich die Anfangsstation der nächsten Piste ist. Die Länge einer Abfahrt ist die Summe der Längen der befahrenen Pisten. Berechnen Sie eine längste Abfahrt im Skigebiet. Beispiel: Es gibt n = 5 Stationen (Punkte) und m = 5 Pisten (Kurvenstücke). Die Höhen der Stationen und die Längen der Pisten sind im Bild vermerkt. Die Gesamtlänge aller Pisten ist L = 6630 Meter und die maximale Meereshöhe H = 2150 Meter. Die längste Abfahrt hat eine Länge von 2600 Meter / 7 P a) Geben Sie einen möglichst effizienten Algorithmus an, der nach dem Prinzip der dynamischen Programmierung arbeitet und die Länge einer längsten Abfahrt berechnet. Definieren Sie die Grösse der DP-Tabelle und die Bedeutung eines Eintrags und gehen Sie auf die folgenden Aspekte ein. 1) Was ist die Bedeutung eines Tabelleneintrags, und welche Grösse hat die DP-Tabelle? 2) Wie berechnet sich ein Tabelleneintrag aus früher berechneten Einträgen? 3) In welcher Reihenfolge können die Einträge berechnet werden? 4) Wie kann aus der DP-Tabelle die Länge einer längsten Abfahrt ausgelesen werden? Wählen Sie als erstes die Dimension Ihrer DP-Tabelle: (I) eindimensional Benutzen Sie das Schema auf Seite 8. (II) zweidimensional Benutzen Sie das Schema auf Seite 9. (III) andere Dimension Beschreiben Sie Ihr dynamisches Programm auf Seite 10. Beantworten Sie die Teilaufgaben b) und c) auf Seite 11. / 2 P / 3 P b) Beschreiben Sie detailliert, wie aus der DP-Tabelle ihres dynamischen Programms abgelesen werden kann, aus welchen Pisten eine mögliche längste Abfahrt zusammengesetzt ist. c) Geben Sie die Laufzeit des in a) und b) entwickelten dynamischen Programms an und begründen Sie Ihre Antwort. Ist die Laufzeit polynomiell? Begründen Sie Ihre Antwort.
8 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 8 (I) Für Algorithmen mit einer eindimensionalen DP-Tabelle: Grösse der DP-Tabelle / Anzahl Einträge: n m 2 n 2 m L + 1 H + 1 andere: Bedeutung eines Tabelleneintrags: Bedeutung des Eintrags an Position i: DP [i]: Initialisierung: Berechnung eines Eintrags: DP [i] = Berechnungsreihenfolge: Auslesen der Länge einer längsten Abfahrt:
9 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 9 (II) Für Algorithmen mit einer zweidimensionalen DP-Tabelle: Grösse der DP-Tabelle: Anzahl Zeilen n m andere: Grösse der DP-Tabelle: Anzahl Spalten n m L + 1 H + 1 andere: Bedeutung eines Tabelleneintrags: Bedeutung des Eintrags in Zeile i und Spalte j: DP [i, j]: Initialisierung: Berechnung eines Eintrags: DP [i, j] = Berechnungsreihenfolge: Auslesen der Länge einer längsten Abfahrt:
10 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 10 (III) Für Algorithmen mit einer DP-Tabelle von Dimension 3:
11 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 11 Teilaufgaben b) und c) b) Beschreiben Sie detailliert, wie aus der DP-Tabelle ihres dynamischen Programms abgelesen werden kann, aus welchen Pisten eine mögliche längste Abfahrt zusammengesetzt ist. c) Geben Sie die Laufzeit des in a) und b) entwickelten dynamischen Programms an und begründen Sie Ihre Antwort. Ist die Laufzeit polynomiell? Begründen Sie Ihre Antwort.
12 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 12
13 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 13 Aufgabe 3. / 7 P In einem Krankenhaus sollen Blutkonserven an Patienten verteilt werden. Bei der Zuteilung der Konserven an die Patienten muss die Blutgruppenkompatibilität beachtet werden. In der nebenstehenden Tabelle ist die Kompatibilität der Blutgruppen zusammengefasst. Beispielsweise kann ein Patient mit Blutgruppe A Konserven der Blutgruppen 0 oder A erhalten, während ein Patient mit Blutgruppe 0 nur Konserven der Blutgruppe 0 erhalten kann. Patient Konserve 0 A B AB AB A B 0 Gegeben sind die Anzahl k a, k b, k ab und k 0 der verfügbaren Konserven für die Blutgruppen A, B, AB und 0 und die Anzahl b a, b b, b ab und b 0 der Patienten mit Blutgruppe A,B, AB und 0, die je eine Konserve benötigen. Entwickeln Sie einen Algorithmus, der berechnet, ob eine Zuteilung existiert, sodass jeder Patient eine Konserve mit einer kompatiblen Blutgruppe erhält. Blutgruppe 0 A B AB Bedarf Lager Beispiel: Die Anzahl der Konserven und der Patienten sind in der Tabelle rechts gegeben. Bei folgender Zuteilung erhält jeder Patient eine kompatible Konserve: Konserven der Blutgruppe 0 werden an Patienten mit Blutgruppe 0 (2 Konserven) und Blutgruppe B (1 Konserve) verteilt, Konserven der Blutgruppe A an Patienten mit Blutgruppe A (3 Konserven) und Blutgruppe AB (1 Konserve), und die Konserven der restlichen Blutgruppen jeweils an Patienten mit derselben Blutgruppe. / 4 P / 3 P a) Modellieren Sie das oben genannte Problem als Flussproblem. Beschreiben Sie dazu die Konstruktion eines geeigneten Netzes N = (V, E, c) mit der Knotenmenge V sowie der Kantenmenge E, und geben Sie an, welche Kapazitäten c die Kanten besitzen sollen. Wie kann aus dem Wert eines maximalen Flusses abgelesen werden, ob eine Zuteilung existiert? b) Nehmen Sie an, das Flussproblem aus a) wurde bereits gelöst, d.h. zu einem maximalen Fluss ϕ in N kennen Sie den Fluss ϕ e auf jeder Kante e E. Nehmen Sie weiter an, eine Zuteilung existiert, sodass jeder Patient eine Konserve mit einer kompatiblen Blutgruppe erhält. Beschreiben Sie detailliert einen Algorithmus, der aus den ϕ e eine solche Zuteilung berechnet. Welche Laufzeit hat Ihr Algorithmus, wenn auf jedes ϕ e in konstanter Zeit zugegriffen werden kann?
14 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 14 Teilaufgabe a) Definition des Netzes N (wenn möglich in Worten und nicht formal): Knotenmenge V : Kantenmenge E: Kapazitäten c: Schematische Darstellung / Zeichnung des Netzes: Eine Zuteilung existiert, falls:
15 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 15 Teilaufgabe b) b) Nehmen Sie an, das Flussproblem aus a) wurde bereits gelöst, d.h. zu einem maximalen Fluss ϕ in N kennen Sie den Fluss ϕ e auf jeder Kante e E. Nehmen Sie weiter an, eine Zuteilung existiert, sodass jeder Patient eine Konserve mit einer kompatiblen Blutgruppe erhält. Beschreiben Sie detailliert einen Algorithmus, der aus den ϕ e eine solche Zuteilung berechnet. Welche Laufzeit hat Ihr Algorithmus, wenn auf jedes ϕ e in konstanter Zeit zugegriffen werden kann?
16 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 16
17 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 17 Aufgabe 4. / 10 P Gegeben sei eine Menge von n horizontalen, sich nicht schneidenden Liniensegmenten in der Ebene. Jedes Liniensegment ist durch die Koordinaten seiner beiden Endpunkte (x l, y) und (x r, y) gegeben. Eine Nummerierung der Liniensegmente mit Zahlen aus {1,..., m} ist zulässig, wenn für jede vertikale Gerade gilt, dass die von ihr geschnittenen Liniensegmente von oben nach unten aufsteigend nummeriert sind. Gesucht ist die kleinste Zahl m n, für die eine zulässige Nummerierung der Liniensegmente mit Zahlen aus {1,..., m} existiert Beispiele: Links: Die Nummerierung der Liniensegmente ist nicht zulässig, da die von der dargestellten vertikalen Gerade (gestrichelte Linie) geschnittenen Liniensegmente nicht aufsteigend nummeriert sind. Mitte: Die Nummerierung ist zulässig, es gibt jedoch auch eine zulässige Nummerierung mit m = 3. Rechts: Die Nummerierung ist zulässig und es gibt keine zulässige Nummerierung mit m < 3. / 8 P / 2 P a) Entwerfen Sie einen möglichst effizienten Scanline-Algorithmus für das obige Problem. Gehen Sie in Ihrer Lösung auf die folgenden Aspekte ein. 1) In welche Richtung läuft die Scanline, und was sind die Haltepunkte? 2) Welche Objekte muss die Scanline-Datenstruktur verwalten, und was ist eine angemessene Datenstruktur? 3) Was passiert, wenn die Scanline auf einen neuen Haltepunkt trifft? 4) Wie kann die gesuchte, kleinste Zahl m, für die eine Nummerierung der Liniensegmente mit den geforderten Eigenschaften existiert, bestimmt werden? 5) Welche Laufzeit in Abhängigkeit von n hat Ihr Algorithmus? Begründen Sie Ihre Antwort. b) Beschreiben Sie, wie Sie Ihren Algorithmus erweitern können, damit er zusätzlich eine zulässige Nummerierung der Liniensegmente mit den Zahlen aus {1,..., m} berechnet.
18 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 18 Scanline-Richtung (genau eine Möglichkeit ankreuzen): Die Scanline ist eine vertikale Gerade; sie bewegt sich von links nach rechts / von rechts nach links. Die Scanline ist eine horizontale Gerade; sie bewegt sich von oben nach unten / von unten nach oben. Die Scanline ist eine Halbgerade; sie rotiert im Uhrzeigersinn / im Gegenuhrzeigersinn um den Punkt. andere Richtung:. Haltepunkte: Menge der Haltepunkte: sortiert nach: Scanline-Datenstruktur: Operationen bei einem Haltepunkt:
19 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 19 Kleinste Zahl m berechnen: Laufzeit des Algorithmus:
20 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 20 Teilaufgabe b) b) Beschreiben Sie, wie Sie Ihren Algorithmus erweitern können, damit er zusätzlich eine zulässige Nummerierung der Liniensegmente mit den Zahlen aus {1,..., m} berechnet.
Beispiellösung zur Prüfung Datenstrukturen und Algorithmen D-INFK
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Datenstrukturen & Algorithmen
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
Klausur Datenstrukturen und Algorithmen SoSe 2012
Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Klausur Datenstrukturen und Algorithmen SoSe 2012 Vorname: Nachname: Studiengang (bitte genau einen
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Algorithmen und Datenstrukturen 22.08.2013
2 Sortieren. Beispiel: Es seien n = 8 und a = i : a i : ϕ(i) : a ϕ(i) :
2 Sortieren Das Sortieren einer Datenfolge ist eines der am leichtesten zu verstehenden und am häufigsten auftretenden algorithmischen Probleme. In seiner einfachsten Form besteht das Problem darin, eine
Graphen: Datenstrukturen und Algorithmen
Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.
Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.
Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?
Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.
Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung
Geometrische Algorithmen
Geometrische Algorithmen Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Einführung
Klausur Informatik B April Teil I: Informatik 3
Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale
Geometrische Algorithmen
Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5
Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).
8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Übersicht. Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe SS 2010! Berechnung der Cosinus-Funktion Klausuraufgabe WS 2010/2011!
Algorithmen und Datenstrukturen Wintersemester 2012/13 8. Vorlesung Algorithmen in Java Jan-Henrik Haunert Lehrstuhl für Informatik I Übersicht Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe
Grundlegende Sortieralgorithmen
Grundlegende Sortieralgorithmen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch Sortieren in Java Man kann Sortierverfahren in einem imperativem oder einem objektorientierten Stil programmieren.
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung
Komplexität von Algorithmen
Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen
186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26. November 2010
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26.
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
JAVA - Suchen - Sortieren
Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik
4. Kreis- und Wegeprobleme Abstände in Graphen
4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls
MafI I: Logik & Diskrete Mathematik (F. Hoffmann)
Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob
Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015
Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
DAP2-Klausur 07.08.2004
DAP2-Klausur 07.08.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik/Inform. Lehramt/Inf.technik/Physik/ Mathe/Statistik/Sonstiges: Bitte beachten: Auf jedem Blatt Matrikelnummer
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)
Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten
Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Semester: AI2, WI2 Bearbeitungszeit: 90 Min. Hilfsmittel: kein prog. C SS 2010, 07.07.2010 90% Punkte entspr. Note 1,0 50% Punkte entspr.
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des
Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1
Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen. Hashing 6. Algorithmische Geometrie 4/6, Folie 1 2014 Prof. Steffen Lange - HDa/FbI
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a
Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April
Informatik B von Adrian Neumann
Musterlösung zum 7. Aufgabenblatt vom Montag, den 25. Mai 2009 zur Vorlesung Informatik B von Adrian Neumann 1. Java I Schreiben Sie ein Java Programm, das alle positiven ganzen Zahlen 0 < a < b < 1000
Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:
Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls
Kapitel 9 Algorithm. Geometrie. Kürzeste Abstände Konvexe Hülle
Kapitel 9 Algorithm. Geometrie Kürzeste Abstände Konvexe Hülle Überblick Teilgebiet der Informatik, in dem es um die Entwicklung effizienter Algorithmen und die Bestimmung der algorithmischen Komplexität
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Wdhlg.: Dijkstra-Algorithmus I Bestimmung der
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
EndTermTest PROGALGO WS1516 A
EndTermTest PROGALGO WS1516 A 14.1.2016 Name:................. UID:.................. PC-Nr:................ Beachten Sie: Lesen Sie erst die Angaben aufmerksam, genau und vollständig. Die Verwendung von
Universität des Saarlandes
Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn WiSe 2015/2016 Übungen zu Ideen der Informatik http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter15/ideen/
12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang
12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne
11.1 Grundlagen - Denitionen
11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6
Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer
Datenstrukturen und Algorithmen
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32 Datenstrukturen und Algorithmen Vorlesung 7: Sortieren (K2) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Traversierung Durchlaufen eines Graphen, bei
188.154 Einführung in die Programmierung Vorlesungsprüfung
Matrikelnummer Studienkennzahl Name Vorname 188.154 Einführung in die Programmierung Vorlesungsprüfung Donnerstag, 27.1.2005, 18:15 Uhr EI 7 Arbeitszeit: 60 min - max. 50 Punkte erreichbar - Unterlagen
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung
Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte
MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am
MB-ALG, SS1 Seite 1 Hauptklausur, geschrieben am.07.01 Vorname Nachname Matrikel-Nr Diese Klausur ist mein letzter Prüfungsversuch (bitte ankreuzen): Ja Nein Ihre Lösung für Aufgabe 1 können Sie direkt
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Zeichnen von Graphen. graph drawing
Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =
Algorithmentheorie Randomisierung. Robert Elsässer
Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten
4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.
4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Programmierkurs Java
Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen
Algorithmen und Datenstrukturen 1 Kapitel 3
Algorithmen und Datenstrukturen 1 Kapitel 3 Technische Fakultät [email protected] Vorlesung, U. Bielefeld, Winter 2005/2006 3.6 Dynamische Programmierung Die rekursive Problemzerlegung kann
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers
Graphalgorithmen 2 Oleksiy Rybakov 3. Juni 2015 Betreuer: Tobias Werth, Daniel Brinkers 1 / 40 Inhaltsverzeichnis 1 Minimale Spannbäume und Datenstrukturen 2 Kürzeste Wege 3 Spezielle Graphen 2 / 40 Minimale
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken
Wiederholung zu Flüssen
Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI
Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002
Prof. H. Herbstreith 30.01.2002 Fachbereich Informatik Leistungsnachweis Informatik 1 WS 2001/2002 Bearbeitungszeit 120 Minuten. Keine Hilfsmittel erlaubt. Aufgabe 1: 20 Punkte Vervollständigen Sie folgende
Name:... Vorname:... Matrikel-Nr.:... Unterschrift:...
Studiengang Bachelor of Computer Science Modulprüfung Praktische Informatik 1 Wintersemester 2010 / 2011 Name:... Vorname:... Matrikel-Nr.:... Unterschrift:... Hinweise: 1.) Schreiben Sie Ihren Namen und
Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Departement Informatik 24. November 2016 Markus
Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort.
Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Güte von Hashfunktionen): Untersuchen Sie, inwiefern sich die folgenden Funktionen
Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS Übungsblatt 4
Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS 2015 http://www.fmi.informatik.uni-stuttgart.de/alg Institut für Formale Methoden der Informatik Universität Stuttgart Übungsblatt 4 Punkte: 50 Problem
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte)
Praktische Informatik (Software) Vorlesung Softwareentwicklung 1 Prof. Dr. A. Ferscha Hauptklausur am 01. 02. 2001 Zuname Vorname Matr. Nr. Stud. Kennz. Sitzplatz HS / / / Punkte Note korr. Fügen Sie fehlende
Dynamisches Programmieren - Problemstruktur
Dynamisches Programmieren - Problemstruktur Optimale Substruktur: Optimale Lösung enthält optimale Lösungen von Teilproblemen. Bsp.: Kürzester Weg im Graphen, LCS (s. etwa Folie 42 der letzten Vorlesung)
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!
κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).
5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende
S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J
Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung
kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung
Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
Kapitel 6 Elementare Sortieralgorithmen
Kapitel 6 Elementare Sortieralgorithmen Ziel: Kennenlernen elementarer Sortierverfahren und deren Effizienz Zur Erinnerung: Das Sortier-Problem Gegeben: Folge A von n Elementen a 1, a 2,..., a n ; Eine
Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP
Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick
Informatik 11 Kapitel 2 - Rekursive Datenstrukturen
Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange
Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block
Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in
Datenstrukturen. Mariano Zelke. Sommersemester 2012
Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
