1) Das Treppenproblem
|
|
|
- Pamela Melsbach
- vor 9 Jahren
- Abrufe
Transkript
1 1) Das Treppenproblem Fachseminar Informatik Die Eingangstreppe des Max-von-Laue-Gymnasium mit 7 Stufen kann man auf verschiedene Arten hinaufgehen, z.b: Wie viele verschiedene Möglichkeiten gibt es, die Treppe hinaufzulaufen, wenn man mit jedem Schritt eine oder zwei Stufen nehmen kann? (1) Eine Treppe mit zwei Stufen erklimmt man auf zwei Arten, entweder mit einem Doppelschritt oder zwei Einzelschritten: (2) Treppe mit 3 Stufen: (3) Treppe mit 4 Stufen: (4) Treppe mit 5 Stufen: 1
2 2) Das Taxiproblem Fachseminar Informatik Ma sieht einen Stadtplan der Mannheimer Innenstadt. Wie viele verschiedene gleich lange Wege gibt es für einen Taxifahrer, von A nach B zu fahren? B A 3) Die Türme von Hanoi Im Großen Tempel von Benares, unter dem Dom, der die Mitte der Welt markiert, ruht eine Messingplatte, in der drei Diamantnadeln befestigt sind, jede eine Elle hoch und so stark wie der Körper einer Biene. Bei der Erschaffung der Welt hat Gott vierundsechzig Scheiben aus purem Gold auf eine der Nadeln gesteckt, wobei die größte Scheibe auf der Messingplatte ruht, und die übrigen, immer kleiner werdend, eine auf der anderen. Das ist der Turm von Brahma. Tag und Nacht sind die Priester unablässig damit beschäftigt, den festgeschriebenen und unveränderlichen Gesetzen von Brahma folgend, die Scheiben von einer Diamantnadel auf eine andere zu setzen, wobei der oberste Priester nur jeweils eine Scheibe auf einmal umsetzen darf, und zwar so, dass sich nie eine kleinere Scheibe unter einer größeren befindet. Sobald dereinst alle vierundsechzig Scheiben von der Nadel, auf die Gott sie bei der Erschaffung der Welt gesetzt hat, auf eine der anderen Nadeln gebracht sein werden, werden der Turm samt dem Tempel und allen Brahmanen zu Staub zerfallen, und die Welt wird mit einem Donnerschlag untergehen. (Quelle unbekannt) 2
3 Die drei Probleme im Unterricht Das Fundamentale bei der Rekursion ist, dass eine Problemreduzierung stattfindet: Ein Problem wird auf ein 1. leichter lösbares (vereinfachtes) Problem 2. derselben Art reduziert. 1 Diese Reduktion wird hier dadurch deutlich und erfahrbar gemacht, dass die Auseinandersetzung mit dem Problem und das Durchspielen einer Lösungsfindung für möglichst viele Ausgangswerte im Mittelpunkt der Betrachtung steht. Die fertige Funktion ist hier insofern Nebensache, als dass das Finden der eigentlichen rekursiven Funktion einen Schüler ohne Vorkenntnisse sicherlich überfordert. Daher kann z.b. beim Problem der Türme von Hanoi die Funktion im Unterricht problemlos vorgegeben werden, allerdings erst, nachdem die Schüler die Funktionsweise der rekursiven Lösungsfindung selber erfahren haben. Ziel des Unterrichts sollte es also sein, Schüler möglichst oft durch den rekursiven algorithmus zu schicken. Bei Problem Nr. 3 (Türme von Hanoi) habe ich mit dem beiliegenden Programm gute Erfahrungen gemacht, indem Schüler (auch zu Hause) erst einmal ausprobieren und Lösungen finden können. Zu achten ist hier besonders darauf, nicht Animationsprogramme mit automatischer Lösungsgenerierung oder Lösungsvisualisierung zu verwenden. Die Schülermotivation sinkt dadurch nicht unerheblich. An dieser Stelle wird nur auf die Probleme eins und drei genauer eingegangen. Das Taxiproblem kann äquivalent angegangen werden. 1) Das Treppenproblem Unterrichtsverlauf: 1. Schüler probieren selbst an einer Treppe, alle Mögllichkeiten für n = zu finden (Arbeitsblatt) 2. Sammlung der Ergebnisse im Unterricht auf Folie (dieselbe Folie wie Arbeitsblatt), für jeden Fall nach Einzel und Doppelschritt am Anfang unterscheiden (hier blau) => Es wird deutlich, dass sich die Restschritte aus den beiden vorherigen Fällen zusammensetzen: 1 Vgl. dazu: Schubert Sigrid und Andreas Schwill. Didaktik der Informatik. Fundamentale Ideen. Spektrum Akademischer Verlag. Berlin S. 71 ff. Von Andreas Schwill ist auch die "Idee der Treppe" für die Fibonacci-Zahlen und deren Einbindung in den Unterricht übernommen. 3
4 Folie: 3. Verallgemeinerung der Beobachtung für alle n 4
5 4. Erstellen eines Aufrufbaumsbaums Fachseminar Informatik 5. rekursive Funktion finden und Programmieren Begriffe des Rekursionsaufrufs und direkter Fall (Rekursionsanker) deutlich machen (bzw. einführen). 3) Die Türme von Hanoi 1. Spiel spielen, Spielregeln ermitteln und nach Möglichkeit einen Turm von 6 (besser alle 7) Scheiben von A nach C transportieren 5
6 2. Am Beispiel von 4 Scheiben den Aufrufbaum vervollständigen 3 rekursive Prozedur wird vorgegeben, besprochen und von den Schülern im Rahmenprogramm umgesetzt: rekursive Prozedur procedure tuerme (n : integer; A,B,C : String); Begin if n > 1 then Begin tuerme (n-1, A, C,B); Form1.Listbox1.items.add('Bringe 1 Scheibe von ' + A + ' nach ' + C); tuerme (n-1, B, A, C); end else Form1.ListBox1.items.add('Bringe 1 Scheibe von ' + A + ' nach ' + C); end; Prozeduraufruf mit 4 Scheiben tuerme (4, 'Links', 'Mitte', 'Rechts'); Hinweis: ListBox arbeitet schneller als MemoBox, deshalb wird hier ne ListBox benutzt 4 Zeit abgreifen, Funktion aufstellen und Laufzeitanalyse machen. 5 den Rekursionsschritt für 7 Scheiben verbal formulieren: Bringe die obersten 6 Scheiben von A nach B unter Zuhilfenahme von C Bringe die unterste Scheibe direkt von A nach C Bringe die obersten 6 Scheiben von B nach C unter Zuhilfenahme von A 6
7 Wichtig: bei der Formulierung obersten 6 Scheiben wird deutlich, dass es sich hier um dasselbe Problem in reduzierter Form handelt. 6. Am Problem der Türme von Hanoi die Idee der informatischen Rekursion nochmal erläutern. Benutzte dazu die Definition der Rekursion benutzen: Definition Rekursion: Die informatische Rekursion ist die Reduktion eines Problems auf ein leichter lösbares Problem derselben Art. 7 Screenshot des fertigen Programms: 7
Algorithmen & Programmierung. Rekursive Funktionen (3)
Algorithmen & Programmierung Rekursive Funktionen (3) Türme von Hanoi Türme von Benares / Hanoi 1883 erfand der französische Mathematiker Lucas folgende Geschichte: Im Großen Tempel von Benares, unter
Beim rekursiven Aufruf einer Funktion wird jeweils ein Duplikat der gesamten Funktion im Speicher abgelegt.
Rekursion Unter Rekusion verstehen wir eine Funktion, die sich selbst aufruft. Da sie das nicht immerzu tun kann (das Programm würde ewig laufen) benötigt jeder rekursive Aufruf eine Abbruchbedingung!
Inhalt. 7 Rekursionen Eine unendliche Geschichte Fakultät Türme von Hanoi Dr.
Inhalt 7 Rekursionen... 7-2 7.1 Eine unendliche Geschichte... 7-2 7.2 Fakultät... 7-3 7.3 Türme von Hanoi... 7-5 Propädeutikum 7-1/6 7 Rekursionen 7.1 Eine unendliche Geschichte >> Es war einmal ein Mann,
= a) Berechnen Sie die fehlenden Funktionswerte der Wertetabelle. n
Info 12 IF1 GK (GA) Bearbeitungszeit: 135 min Seite 1 Aufgabe 1: rekursive Funktionen Die Hofstadter-Funktion ist definiert durch: hof ( n hof ( n 1)) + hof ( n hof ( n 2)) hof ( n) = 1 a) Berechnen Sie
ALPII Objektorientierte Programmierung
LPII Objektorientierte Programmierung für das 5. Übungsblatt 0 Prof. Dr. Margarita Esponda Sieb des Eratosthenes. Jahrhundert v. hr. Das Sieb des Eratosthenes ist ein sehr bekannter lgorithmus, der für
Vorkurs Informatik WiSe 17/18
Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Nicole Naczk, 10.10.2017 Technische Universität Braunschweig, IPS Überblick Einleitung Türme von Hanoi Rekursion Beispiele 10.10.2017 Dr. Werner Struckmann
2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017
2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel
Beispiel 1: Fakultät
16. Rekursion Beispiel 1: Fakultät Rekursive Definition der Fakultät (Mathematik) n! = 1 falls n=0 n*(n-1)! falls n>0 Programmierung mittels einer rekursiven Funktion in C++ double fakultaet(int n) if
Rekursive Algorithmen
Rekursive Algorithmen In der Mathematik sind viele Funktionen rekursiv definiert. Der Begriff der Rekursion beinhaltet, dass zur Definition einer Funktion diese selbst wieder mit benutzt wird, allerdings
II.3.1 Rekursive Algorithmen - 1 -
1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -
Vorkurs Informatik WiSe 16/17
Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 11.10.2016 Technische Universität Braunschweig, IPS Überblick Einleitung Beispiele 11.10.2016 Dr. Werner Struckmann / Stephan Mielke,
4 Rekursionen. 4.1 Erstes Beispiel
4 Rekursionen Viele Algorithmen besitzen sowohl eine iterative als auch eine rekursive Lösung. Sie unterscheiden sich darin, dass die iterative Version meist einen etwas längeren Kode besitzt, während
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind ausgewählte Teile in Anlehnung an
FHZ. K13 Rekursion. Lernziele. Hochschule Technik+Architektur Luzern Abteilung Informatik, Fach Programmieren. Inhalt
Inhalt 1. Einführung 1. Beispiel: Fakultät 2. Beispiel: Zahlenfolge 3. Beispiel: Formale Sprache 4. Unterschied Iteration/Rekursion 2. Rekursive Methoden 1. Beispiel: Fakultät 2. Beispiel: "Türme
Induktion und Rekursion
Induktion und Rekursion Induktion und Rekursion Sommersemester 2018 Ronja Düffel 16. März 2018 Induktion und Rekursion > Mathematische Beweistechniken > Vollständige Induktion Der kleine Gauß Induktion
Inhalt. 3. Spezielle Algorithmen
Inhalt 0. Rechner und Programmierung für Kommunikationstechniker und Mechatroniker 1. Algorithmen - Wesen, Eigenschaften, Entwurf 2. Darstellung von Algorithmen mit Struktogrammen und Programmablaufplänen
3. rekursive Definition einer Folge
3. rekursive Definition einer Folge In vielen Fällen ist eine explizite Formel für das n-te Glied nicht bekannt, es ist hingegen möglich, aus den gegebenen Gliedern das nächste Glied zu berechnen, d.h.
Die Türme von Hanoi. Wollen
Eine Loesungsstrategie 3 Die Türme von Hanoi Eine mögliche Strategie zur Lösung des Puzzles ist folgende: Falls der Turm die Höhe n hat, bewege den Turm der Höhe n-1 zunächst auf den dritten Pfahl. (Wie
12. Rekursion. 1, falls n 1. n (n 1)!, andernfalls. Lernziele. Mathematische Rekursion. Rekursion in Java: Genauso! n! =
Lernziele Sie verstehen, wie eine Lösung eines rekursives Problems in Java umgesetzt werden kann. Sie wissen, wie Methoden in einem Aufrufstapel abgearbeitet werden. 12. Rekursion Mathematische Rekursion,
Einführung in die Programmierung WS 2009/10. Übungsblatt 7: Imperative Programmierung, Parameterübergabe
Ludwig-Maximilians-Universität München München, 04.12.2009 Institut für Informatik Prof. Dr. Christian Böhm Annahita Oswald, Bianca Wackersreuther Einführung in die Programmierung WS 2009/10 Übungsblatt
Einführung - Parser. Was ist ein Parser?
Gliederung 1. Einleitung 1.1 Was ist ein Parser? 1.2 Was ist ein tabellengesteuerter TD-Parser? 1. Tabellengesteuerter TD-Parser 2.1 Funktionsweise 2.2 Darstellung als Pseudocode 2.3 Konstruktion von prädiktiven
Informatik I. Informatik I Iteration vs. Rekursion. Iteration vs. Rekursion Iteration vs. Rekursion. 20. Iteration vs.
Informatik I 1. Februar 2011 20. Informatik I 20. Jan-Georg Smaus 20.1 Albert-Ludwigs-Universität Freiburg 1. Februar 2011 Jan-Georg Smaus (Universität Freiburg) Informatik I 1. Februar 2011 1 / 31 Jan-Georg
Inhalt Kapitel 3: Induktion und Termination
Inhalt Kapitel 3: Induktion und Termination 1 Wohlfundierte Relationen Ackermannfunktion 2 Untere Schranke für Türme von Hanoi Weitere Beispiele 52 Wohlfundierte Relationen Wohlfundierte Relationen Definition
Inhalt. 3. Spezielle Algorithmen
Inhalt 0. Rechner und Programmierung für Kommunikationstechniker und Mechatroniker 1. Algorithmen - Wesen, Eigenschaften, Entwurf 2. Darstellung von Algorithmen mit Struktogrammen und Programmablaufplänen
Einschub: Anweisungen und Bedingungen für PAP und Struktogramme (1)
Einschub: Anweisungen und Bedingungen für PAP und Struktogramme (1) Anweisungen: Eingabeanweisungen, z.b. Eingabe: x Ausgabeanweisungen, z.b. Ausgabe: Das Maximum ist, max Die Symbole x und max werden
11. Rekursion. 1, falls n 1. n (n 1)!, andernfalls. Mathematische Rekursion. Rekursion in Java: Genauso! Unendliche Rekursion. n!
Mathematische Rekursion 11. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration, Lindenmayer Systeme Viele mathematische Funktionen sind sehr natürlich
Programmieren 1 C Überblick
Programmieren 1 C Überblick 1. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen
Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.
1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Beispiele für Algorithmen Im folgenden Abschnitt sollen ausgewählte
Rekursion. Beispiel Fakultät (iterativ) Rekursive Java-Implementierung. Beispiel Fakultät (rekursiv) n! = n
Rekursion Beispiel Fakultät (iterativ) Methoden können Methoden aufrufen Methoden können nicht nur andere Methoden aufrufen, sondern auch sich selbst Eine Methode, die sich selbst (direkt oder indirekt)
C++ - Kontrollstrukturen Teil 2
C++ - Kontrollstrukturen Teil 2 Reiner Nitsch 8417 [email protected] Schleife und Verzweigung kombiniert SV initialisieren while(b1) if(b2) w f V1 V2 SV Richtung Ziel verändern Wichtiger Baustein vieler
Institut fu r Informatik
Technische Universita t Mu nchen Institut fu r Informatik Lehrstuhl fu r Bioinformatik Einfu hrung in die Programmierung fu r Bioinformatiker Prof. B. Rost, L. Richter WS 2013/14 Aufgabenblatt 5 2. Dezember
Crashkurs Haskell Mentoring WiSe 2016/17. Anja Wolffgramm Freie Universität Berlin
Crashkurs Haskell Mentoring WiSe 2016/17 Anja Wolffgramm Freie Universität Berlin 02/11/2016 , Inhalt Kommandozeile Haskell installieren & starten Ein 1. Haskell-Programm Funktionsdefinition Primitive
Informatik I. Jan-Georg Smaus. Iteration vs. Rekursion. Iterativer Algorithmus Beweis der Korrektheit Python- Programm Zusammenfassung
20. Albert-Ludwigs-Universität Freiburg 1. Februar 2011 1 / 31 2 / 31 Wir haben am Beispiel von der Fakultätsfunktion und den Methoden für verlinkte Listen gesehen, dass man manche Probleme sowohl mit
ÜBUNGEN ZUR REKURSION
ÜBUNGEN ZUR REKURSION Aufgabe 1: Auf einem früheren Arbeitsblatt wurde eine rekursive DELPHI-Funktion zur Berechnung der Quadratzahl zu einer natürlichen Zahl n vorgestellt, welche mathematisch wie folgt
11. Rekursion, Komplexität von Algorithmen
11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv
9.1 Einführung. Stack (Forts.) Stack. rekursiv: (aus lat.) selbstbezüglich Algorithmen und Programmierung
Algorithmen und Programmierung Wintersemester 06/0 9 Einführung Wiederholung 9 Einführung rekursiv: (aus lat) selbstbezüglich Algorithmen und Programmierung 9 Kapitel Von Türmen und Damen Rekursion und
Der Turm von Hanoi [als Java Applet]
Monika Wojtowiec Michael Gebhard STephan Kambor Projektdokumentation: Der Turm von Hanoi [als Java Applet] Index Seite 1. Die Aufgabenstellung 2 2. Das Spiel 2 3. Die Lösung 3 4. Die Umsetzung 6 5. Die
Thüringer Kultusministerium
Thüringer Kultusministerium Abiturprüfung 1999 Informatik als Grundfach (Haupttermin) Arbeitszeit: Hilfsmittel: 210 Minuten Formeln und Tabellen für die Sekundarstufen I und II/ Paetec, Gesellschaft für
11. Rekursion. - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion
11. Rekursion 258 K. Bothe, PI1, WS 2000/01 259 ' ( ) - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion - induktiv definierte Funktionen - rekursive Problemlösungen
Kasparov versus Deep Blue. Till Tantau. Institut für Theoretische Informatik Universität zu Lübeck
Kasparov versus Deep Blue Institut für Theoretische Informatik Universität zu Lübeck 18. Vorlesung zu Informatik A für MLS 14. Dezember 2006 Die Lernziele der heutigen Vorlesung und der Übungen. 1 Das
Speicher und Adressraum
Linearer Speicher (Adressraum) Technische Universität München Speicher und Adressraum Freie Speicherhalde (Heap) Freier Speicherstapel (Stack) Globale Variablen Bibliotheksfunktionen Laufzeitsystem Programmcode
Aufgabenblatt: Methoden - rekursiv
Aufgabenblatt: Methoden - rekursiv- Seite 1 Aufgabenblatt: Methoden - rekursiv (1.) Wird noch erstellt! Lösen Sie die folgenden Aufgaben indem Sie: - Basis und Rekursive Bedingung formulieren! - die vorgegebene
ALLTAGSBEZOGENE UND ENTDECKENDE FUNKTIONEN
Mathe PLUS Stärkung des Mathematikunterrichts an Mittelschulen in Bayern ALLTAGSBEZOGENE UND ENTDECKENDE FUNKTIONEN Mathematische Zielsetzung: Ein zentraler Aspekt des Kompetenzfeldes Funktionaler Zusammenhang
II. Grundlagen der Programmierung. Beispiel: Merge Sort. Beispiel: Merge Sort (Forts. ) Beispiel: Merge Sort (Forts. )
Technische Informatik für Ingenieure (TIfI) WS 2006/2007, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Rekursion Datenstrukturen Merge S ( split, s, merge ) Beispiel:
Repetitive Strukturen
Repetitive Strukturen Andreas Liebig Philipp Muigg ökhan Ibis Repetitive Strukturen, (z.b. sich wiederholende Strings), haben eine große Bedeutung in verschiedenen Anwendungen, wie z.b. Molekularbiologie,
Komplexität von Algorithmen
Komplexität von Algorithmen Ziel Angabe der Effizienz eines Algorithmus unabhängig von Rechner, Programmiersprache, Compiler. Page 1 Eingabegröße n n Integer, charakterisiert die Größe einer Eingabe, die
Kapitel 7: Rekursion. Inhalt. Rekursion: Technik Rekursion vs. Iteration
Wintersemester 2007/08 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Inhalt Rekursion: Technik Prof. Dr. Günter Rudolph Fakultät
Grundlagen der Programmierung (Vorlesung 15)
Grundlagen der Programmierung (Vorlesung 15) Ralf Möller, FH-Wedel Vorige Vorlesung Blöcke, Funktionen Auswertestrategien Inhalt dieser Vorlesung Prozeduren Rekursion Lernziele Grundlagen der systematischen
Unterprogramme. Unterprogramme
Unterprogramme Unterprogramme wichtiges Hilfsmittel für mehrfach benötigte Programmabschnitte spielen in höheren Programmiersprachen eine wesentliche Rolle in Assembler sind bestimmte Konventionen nötig
zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme
Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen
Rekursion. Sie wissen wie man Programme rekursiv entwickelt. Sie kennen typische Beispiele von rekursiven Algorithmen
Rekursion Sie wissen wie man Programme rekursiv entwickelt Sie kennen typische Beispiele von rekursiven Algorithmen Sie kennen die Vor-/Nachteile von rekursiven Algorithmen Einführung 2 von 40 Rekursiver
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G
Induktion und Rekursion
Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für
Informationstechnik als Querschnittsthema gewerblich-technischer Facharbeit Modellieren, Programmieren, Adressieren, Konfigurieren, Kommunizieren
23.04.2016 Seite 1 Modellieren, Programmieren, Adressieren, Konfigurieren, Kommunizieren 26. BAG-Fachtagung 22.-23.04.2016 in Karlsruhe 23.04.2016 Seite 2 Agenda 1. Evolution der Technik und ihre Folgen
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18.
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 9, Donnerstag 18. Dezember 2014 (Teile und Herrsche, Mastertheorem) Junior-Prof. Dr.
Software Entwicklung 1. Rekursion. Beispiel: Fibonacci-Folge I. Motivation. Annette Bieniusa / Arnd Poetzsch-Heffter
Software Entwicklung 1 Annette Bieniusa / Arnd Poetzsch-Heffter AG Softech FB Informatik TU Kaiserslautern Rekursion Bieniusa/Poetzsch-Heffter Software Entwicklung 1 2/ 27 Motivation Beispiel: Fibonacci-Folge
Programmiertechnik Methoden, Teil 2
Programmiertechnik Methoden, Teil 2 Prof. Dr. Oliver Haase Oliver Haase Hochschule Konstanz 1 Rekursion Oliver Haase Hochschule Konstanz 2 Definition Was ist Rekursion? Allgemein: Rekursion ist die Definition
Teil 14: Rekursive Programmierung. Prof. Dr. Herbert Fischer Fachhochschule Deggendorf Prof. Dr. Manfred Beham Fachhochschule Amberg-Weiden
Teil 14: Rekursive Programmierung Prof. Dr. Herbert Fischer Fachhochschule Deggendorf Prof. Dr. Manfred Beham Fachhochschule Amberg-Weiden Inhaltsverzeichnis 14 Rekursive Programmierung... 3 14.1 Die Fakultätsfunktion...
12. Rekursion Grundlagen der Programmierung 1 (Java)
12. Rekursion Grundlagen der Programmierung 1 (Java) Fachhochschule Darmstadt Haardtring 100 D-64295 Darmstadt Prof. Dr. Bernhard Humm FH Darmstadt, 24. Januar 2006 Einordnung im Kontext der Vorlesung
9 Türme von Hanoi Bewege Stapel von links nach rechts. In jedem Zug darf genau ein Ring bewegt werden. Es darf nie ein größerer auf einen kleine
9 Türme von Hanoi 1 2 3 Bewege Stapel von links nach rechts. In jedem Zug darf genau ein Ring bewegt werden. Es darf nie ein größerer auf einen kleineren Ring gelegt werden. 9 Türme von Hanoi 1 2 3 Bewege
Einführung in die Informatik 1
Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag,
Algorithmierung und Programmierung - immer aktuell. Material, S.54ff.
Algorithmierung und Programmierung - immer aktuell Material, S.54ff. Was scheint den wichtig für IU? Mittelschule (10): PC-Technik kennenlernen Anwendungen beherrschen Grundwissen Internet Verständnis
Problemlösen, ein Einstieg nicht nur für die Informatik
Fakultät Informatik Software und Multimedia Technik, Professur Didaktik der Informatik Problemlösen, ein instieg nicht nur für die Informatik Dresden, 25.04.2008 Inhalt Definition von Problem und ufgabe
Inhaltsübersicht. Vorwort 15. Vorwort zur deutschen Ausgabe 22. Kapitel 1 Elemente der Programmierung 25. Kapitel 2 Funktionen und Module 203
Inhaltsübersicht Vorwort 15 Vorwort zur deutschen Ausgabe 22 Kapitel 1 Elemente der Programmierung 25 Kapitel 2 Funktionen und Module 203 Kapitel 3 Objektorientierte Programmierung 335 Kapitel 4 Algorithmen
Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität
Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Geometrisches Problem: Problem: Nächstes Paar Eingabe: n Punkte in der Ebene Ausgabe: Das Paar q,r mit geringstem Abstand
Algorithmen und Datenstrukturen"
Lehrstuhl für Medieninformatik Universität Siegen Fakultät IV 9 Rekursion Version: WS 14/15 Fachgruppe Medieninformatik 9.1 9 Rekursion... Motivation: Rekursive Formulierung von Algorithmen führt in vielen
Algorithmen und Datenstrukturen"
Lehrstuhl für Medieninformatik Universität Siegen Fakultät IV 9 Rekursion Version: WS 14/15 Fachgruppe Medieninformatik 9.1 9 Rekursion... Motivation: Rekursive Formulierung von Algorithmen führt in vielen
Die Ausgangsposition. Der aus drei Scheiben bestehende Turm steht auf Platz 1.
Der Turm von Hanoi 1. Schritt Die Ausgangsposition. Der aus drei Scheiben bestehende Turm steht auf Platz 1. Im ersten Schritt legen wir die oberste Scheibe auf Platz 3. Nun legen wir die mittlere Scheibe
zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme
Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen
Ein Algorithmus heißt rekursiv, wenn er sich selbst aufruft. Meist werden nur einzelne Module eines Gesamtalgorithmus rekursiv verwendet.
3.6 Rekursion Ein Algorithmus heißt rekursiv, wenn er sich selbst aufruft. Meist werden nur einzelne Module eines Gesamtalgorithmus rekursiv verwendet. Klassisches Beispiel: Berechnung von n! (Fakultät
Themenübersicht Verwendung im Studium Voraussetzungen Ziele Website zum Buch Danksagungen... 21
Vorwort 15 Themenübersicht... 15 Verwendung im Studium... 17 Voraussetzungen... 18 Ziele.... 19 Website zum Buch... 20 Danksagungen... 21 Vorwort zur deutschen Ausgabe 22 Übersetzung... 22 Verwendung in
Inhalt Kapitel 2: Rekursion
Inhalt Kapitel 2: Rekursion 1 Beispiele und Definition 2 Partialität und Terminierung 3 Formen der Rekursion Endständige Rekursion 4 Einbettung 29 Beispiele und Definition Rekursion 30 Man kann eine Funktion
