Kapitel 2: Formale Sprachen Gliederung

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2: Formale Sprachen Gliederung"

Transkript

1 Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten Abgeschlossenheit Reguläre Ausdrücke 2.3. Kontextfreie Sprachen 2/3, Folie 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

2 Die regulären Sprachen über einem Alphabet sind abgeschlossen gegenüber Vereinigung, Durchschnitt, Differenz und Komplement: Es seien Σ das zugrunde liegende Alphabet und L, L 2 Σ* reguläre Sprachen. Dann gilt: Die Sprache L L 2 ist eine reguläre Sprache. Die Sprache L L 2 ist eine reguläre Sprache. Die Sprache L \ L 2 ist eine reguläre Sprache. Die Sprache co(l ), d.h. Σ* \ L, ist eine reguläre Sprache. Diese Zusammenhänge kann man nutzen, um Grammatiken bzw. endliche Automaten für komplexere reguläre Sprachen zu konstruieren. 2/3, Folie 2 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

3 Einfache Zusammenhänge Die sogenannten De Morganschen Gesetze der Mengenlehre liefern Beziehungen zwischen den Operationen Durchschnitt, Differenz und Komplement bzw. Vereinigung und damit auch zwischen Abgeschlossenheitseigenschaften: Wegen folgt Abgeschl. geg. aus Abgeschlossenheit gegen L L 2 =co(co(l ) co(l 2 )) Vereinigung Komplement und Durchschnitt L L 2 =co(co(l ) co(l 2 )) Durchschnitt Komplement und Vereinigung L \ L 2 = L co(l 2 ) Differenz Komplement und Durchschnitt co(l ) = Σ* \ L Komplement Differenz (Σ* ist regulär.) usw. Daher brauchen wir uns hier auch nur z.b. um Komplement und Durchschnitt zu kümmern. 2/3, Folie 3 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

4 Anmerkungen Beim Nachweis der Abgeschlossenheit gegen Durchschnitt und Komplement nutzen wir aus, dass es zu jeder regulären Sprache L einen (deterministischen) endlichen Automaten A mit L(A) = L gibt Bezüglich des Durchschnitts ist deshalb nur zu zeigen, dass für alle (deterministischen) endlichen Automaten A und A 2 gilt: Es gibt einen (deterministischen) endlichen Automaten A für die Sprache L(A ) L(A 2 ). Bezüglich des Komplements ist deshalb nur zu zeigen, dass für alle (deterministischen) endlichen Automaten A gilt: Es gibt einen (deterministischen) endlichen Automaten A für die Sprache Σ* \ L(A ). 2/3, Folie 4 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

5 Einschub: Vereinigung regulärer Sprachen auch direkt berechenbar, ohne den Umweg über Durchschnitt und Komplement nämlich (besonders leicht) anhand der Grammatiken. Ein Beispiel: Es sei Σ = {, }. Es sei L = { v w v, w Σ* } Es sei L 2 = { w Σ* w enthält gerade viele en und w > } S S A A S B B B B S 2 A 2 B 2 A 2 B 2 A 2 B 2 A 2 B 2 Eine reguläre Grammatik für L L 2 enthält alle obigen Regeln und die folgenden neuen Regeln, wobei S das Startsymbol ist S S A S A 2 B 2 allgemeines Rezept überlegen 2/3, Folie 5 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

6 Operation: Durchschnitt ( Beispiel ) Es sei Σ = {, }. Es sei L = { v w v, w Σ* }. Es sei L 2 = { v w v, w Σ* }. Frage: Ist die Sprache L L 2 auch regulär? ( L L 2 enthält alle Wörter aus Σ*, die sowohl das Teilwort als auch das Teilwort enthalten. ) Operation: Durchschnitt ( Automaten-orientierter Ansatz) Konstruiere einen endlichen Automaten A mit L(A ) = L. Konstruiere einen endlichen Automaten A 2 mit L(A 2 ) = L 2. Benutze A und A 2, um einen endlichen Automaten A mit L(A ) = L L 2 zu konstruieren. Idee : A soll nachvollziehen, wie A und A 2 gleichzeitig eine Zeichenfolge abarbeiten. Idee 2: Ein Wort liegt genau dann in L L 2, wenn es von A und A 2 akzeptiert wird. 2/3, Folie 6 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

7 Operation: Durchschnitt ( Beispiel (weiter) ) A = [Z,Σ,a,F,δ ] mit L(A ) = L A = [Z,Σ,z,F,δ ] mit L(A ) = L L 2 a a a 2 A 2 = [Z 2,Σ,b,F 2,δ 2 ] mit L(A 2 ) = L 2 b b b 2,, Z \ Σ <a,b > <a,b > <a,b > <a,b > <a,b > <a,b 2 > <a,b 2 > <a,,b 2 > <a,b 2 > <a,b > <a 2,b > <a,b > <a,b > <a 2,b > <a,b 2 > <a,b 2 > <a 2,b 2 > <a,b 2 > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 > 2/3, Folie 7 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

8 Operation: Durchschnitt ( Beispiel - Erreichbarkeit spart Arbeit ) A = [Z,Σ,z,F,δ ] mit L(A ) = L L 2 Z \ Σ <a,b > <a,b > <a,b > <a,b > <a,b > <a,b 2 > <a,b 2 > <a,,b 2 > <a,b 2 > <a,b > <a 2,b > <a,b > <a,b > <a 2,b > <a,b 2 > <a,b 2 > <a 2,b 2 > <a,b 2 > <a,b > <a,b > <a,b > <a,b 2 > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 >, Hinweis: Nicht vom Anfangszustand aus erreichbare Zustände dürfen fehlen. 2/3, Folie 8 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

9 Operation: Durchschnitt ( allgemein ) Es sei A = [Z,Σ,z,F,δ ] und A 2 = [Z 2,Σ,y,F 2,δ 2 ] deterministische endliche Automaten mit L(A ) = L und L(A 2 ) = L 2. Konstruiere den zu A und A 2 gehörenden Produktautomaten A = [Z,Σ,z,F,δ ] mit L(A ) = L L 2 wie folgt: Setze Z := Z Z 2 Setze z := (z,y ) Setze F := { (z,y) z F und y F 2 }. Für jedes (z,y) Z und alle a Σ: setze δ ((z,y),a) := <δ (z,a),δ 2 (y,a)>. Wie beim Potenzmengenautomaten umgeht man auch gerne nicht erreichbare Zustände von vornherein 2/3, Folie 9 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

10 Operation: Komplement ( Beispiel ) Es sei Σ = {, }. Es sei L = { v w v, w Σ* }, d.h. die Sprache aller Wörter mit Teilwort. Frage: Ist die Sprache co(l ) auch regulär? ( co(l ) enthält alle Wörter aus Σ*, in denen das Teilwort nicht vorkommt. ) Operation: Komplement ( Idee ) Konstruiere einen endlichen Automaten A mit L(A) = L. Benutze A, um einen endlichen Automaten A mit L(A ) = co(l ) zu konstruieren. Idee : A soll genau dann akzeptieren, wenn A nicht akzeptiert, d.h. wenn man sich gewissermaßen in A bewegt, aber genau in den Zuständen außerhalb F (von A) akzeptiert. 2/3, Folie 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

11 Operation: Komplement ( Beispiel (weiter) ) Es sei Σ = {, }. Es sei L = { v w v, w Σ* }. A = [Z,Σ,z,F,δ] mit L(A) = L A = [Z,Σ,z,F,δ] mit L(A ) = co(l ),, z z z 2 z z z 2 F = Z \ F erledigt!... A nennt man den Komplementautomaten von A 2/3, Folie 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

12 Operation: Komplement (allgemein) Sei A = [Z,Σ,z,F,δ] ein (deterministischer) endlicher Automat für L. Definiere den zu A gehörenden Komplementautomaten A = [Z,Σ,z,F,δ] wie folgt: Setze F := { z z F } = Z \ F Da die Mengen K A (z) eine Klasseneinteilung auf Σ* definieren und L(A) die Vereinigung aller Mengen K A (z) mit z F ist, folgt sofort, dass L(A ) = Σ* \ L(A) gilt. 2/3, Folie 2 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

13 Operation: Differenz ( Beispiel für Konstruktion in 2 bekannten Schritten) Es sei Σ = {, }. Es sei L = { v w v, w Σ* }. Es sei L 2 = { v w v, w Σ* }. Frage: Ist die Sprache L \ L 2 auch regulär? ( L \ L 2 enthält alle Wörter aus Σ*, die das Teilwort enthalten und das Teilwort nicht enthalten. ) Operation: Differenz ( Idee ) Konstruiere einen endlichen Automaten A mit L(A ) = L. Konstruiere einen endlichen Automaten A 2 mit L(A 2 ) = L 2. Benutze A 2 um einen endlichen Automaten A 3 mit L(A 3 ) = co(l 2 ) zu konstruieren. Benutze A und A 3, um einen endlichen Automaten A mit L(A ) = L co(l 2 ) = L \ L 2 zu konstruieren. 2/3, Folie 3 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

14 Operation: Differenz ( Beispiel (cont.) ) A = [Z,Σ,a,F,δ ] mit L(A ) = L, a a a 2 A 2 = [Z 2,Σ,b,F 2,δ 2 ] mit L(A 2 ) = L 2 A 3 = [Z 3,Σ,b,F 3,δ 3 ] mit L(A 3 ) = co(l 2 ),, b b b 2 b b b 2 für Komplement 2/3, Folie 4 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

15 Operation: Differenz ( Beispiel (cont.) ) A = [Z,Σ,a,F,δ ] mit L(A ) = L A = [Z,Σ,z,F,δ ] mit L(A ) = L co(l 2 ) a a a 2, A 3 = [Z 3,Σ,b,F 3,δ 3 ] mit L(A 3 ) = co(l 2 ) b b b 2 für Durchschnitt, Z /Σ <a,b > <a,b > <a,b > <a,b > <a,b > <a,b 2 > <a,b 2 > <a,,b 2 > <a,b 2 > <a,b > <a 2,b > <a,b > <a,b > <a 2,b > <a,b 2 > <a,b 2 > <a 2,b 2 > <a,b 2 > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 > 2/3, Folie 5 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

16 Operation: Differenz ( Beispiel (cont.) ) A = [Z,Σ,z,F,δ ] mit L(A ) = L co(l 2 ) = L \ L 2 Z /Σ <a,b > <a,b > <a,b > <a,b > <a,b > <a,b 2 > <a,b 2 > <a,,b 2 > <a,b 2 > <a,b > <a,b > <a,b > <a,b > <a 2,b > <a,b > <a,b > <a 2,b > <a,b 2 > <a,b 2 > <a 2,b 2 > <a,b 2 > <a,b 2 > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 > <a 2,b 2 >, Hinweis: Nicht vom Anfangszustand aus erreichbare Zustände dürfen fehlen. 2/3, Folie 6 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

17 Operation: Differenz ( Beispiel (cont.) ) A = [Z,Σ,z,F,δ ] mit L(A ) = L co(l 2 ) = L \ L 2 <a,b > <a,b > <a,b > <a,b 2 > <a 2,b > c c... minimiert * c 3 c 2 <a 2,b 2 >,, * mittels Klassentabellen-Algorithmus oder direkt Restsprachen K(z) ablesen und ggf. Zustände zusammenlegen: K(a b ) = K(a b 2 ) = K(a b 2 ) = {,}*! 2/3, Folie 7 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

18 Äquivalenzprüfung von Automaten mithilfe von Abgeschlossenheitseigenschaften Die Abgeschlossenheitseigenschaften kann man auch benutzen, um folgende zwei algorithmischen Probleme zu lösen: Eingabe: Ausgabe (): Ausgabe (2): zwei (deterministische) endliche Automaten A und A 2 mit demselben Eingabealphabet Σ Antwort auf die Frage, ob L(A ) L(A 2 ) Antwort auf die Frage, ob A und A 2 äquivalent sind, d.h. dieselbe Sprache akzeptieren. (2) dann ohne Minimalautomaten! (aber nicht unbedingt schneller): Ist () gelöst, dann kann (2) leicht beantwortet werden: A und A 2 sind äquivalent gdw. L(A ) L(A 2 ) und L(A 2 ) L(A ). 2/3, Folie 8 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

19 Äquivalenzprüfung (weiter: L L 2 ) Wegen der De Morgan schen Gesetze gilt für je zwei Sprachen L, L 2 Σ: L L 2 L co(l 2 ) = L \ L 2 = Abgeleitetes (Unter-)Programm Eingabe: zwei (deterministische) endliche Automaten A und A 2 mit demselben Eingabealphabet Σ Ausgabe: Antwort auf die Frage, ob L(A ) L(A 2 ) oder nicht ) Bestimme den zu A 2 gehörenden Komplementautomaten A 2. 2) Bestimme den zu A und A 2 gehörenden Produktautomaten A, d.h. einen Automaten A für L(A ) \ L(A 2 ). 3) Überprüfe, ob es in A einen akzeptierenden Zustand gibt, der vom Startzustand aus erreichbar ist, d.h. ob L(A ) = L(A ) \ L(A 2 ) = ist: falls ja, gib L(A ) L(A 2 ) aus; falls nein, gib L(A ) L(A 2 ) aus. 2/3, Folie 9 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

20 Eigenschaften regulärer Sprachen Äquivalenzprüfung ohne Minimalautomaten (Rest: L = L 2 ) Bekanntlich gilt für je zwei Sprachen L, L 2 Σ: L = L 2 L L 2 und L 2 L Abgeleiteter Lösungsalgorithmus Eingabe: zwei (deterministische) endliche Automaten A und A 2 mit demselben Eingabealphabet Σ Ausgabe: Antwort auf die Frage, ob L(A ) = L(A 2 ) gilt ) Überprüfe mit dem vorigen Unterprogramm, ob L(A ) L(A 2 ) gilt 2) Überprüfe mit dem vorigen Unterprogramm, ob L(A 2 ) L(A ) gilt 3) Antworte wie folgt: Falls nachgewiesen wurde, dass L(A ) L(A 2 ) und L(A 2 ) L(A ) gilt, so gib L(A ) = L(A 2 ) aus, andernfalls gib L(A ) L(A 2 ) aus. 2/3, Folie 2 28 Prof. Steffen Lange, Dr. Bernd Baumgarten - h_da/fbi - Theoretische Informatik

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung. Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen (noch weiter) 2.3. Kontextfreie Sprachen 2/4,

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten

Mehr

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Beweisidee: 1 Verwende den Keller zur Simulation der Grammatik. Leite ein Wort. 2 Problem: der Keller darf nicht beliebig verwendet werden, man kann

Beweisidee: 1 Verwende den Keller zur Simulation der Grammatik. Leite ein Wort. 2 Problem: der Keller darf nicht beliebig verwendet werden, man kann Automaten und Formale prachen alias Theoretische Informatik ommersemester 2011 Dr. ander Bruggink Übungsleitung: Jan tückrath Wir beschäftigen uns ab jetzt einige Wochen mit kontextfreien prachen: Kontextfreie

Mehr

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung Gliederung 1. Berechenbarkeitstheorie 2. Grundlagen 3. Grundlegende Ergebnisse aus der Komplexitätstheorie 4. Die Komplexitätsklassen P und NP 5. Die Komplexitätsklassen RP und BPP 3.1. Ressourcenkompression

Mehr

Kapitel 4: Komplexitätstheorie Gliederung

Kapitel 4: Komplexitätstheorie Gliederung Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 4.1. Motivation und Grundbegriffe 4.2. Die Komplexitätsklassen P und NP

Mehr

Diskrete Mathematik. Anna-Lena Rädler Christina Kohl Georg Moser Christian Sternagel Vincent van Oostrom

Diskrete Mathematik. Anna-Lena Rädler Christina Kohl Georg Moser Christian Sternagel Vincent van Oostrom Diskrete Mathematik Anna-Lena Rädler Christina Kohl Georg Moser Christian Sternagel Vincent van Oostrom Zusammenfassung der letzten LVA Definition Ein ɛ-nea N = (Q, Σ, δ, S, F) ist gegeben durch eine endliche

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Einführung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Algorithmische Probleme und Berechnungsmodelle 3.2. Das Berechnungsmodell

Mehr

Endliche Automaten Jörg Roth 101

Endliche Automaten Jörg Roth 101 Endliche Automaten Jörg Roth 101 Wir wollen im Folgenden die Abschlusseigenschaften regulärer Sprachen betrachten. Fragestellung: Wenn wir reguläre Sprachen haben, welche binären und unären Operationen

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. Chomsky-Grammatiken 2.2. Reguläre Sprachen 2.3. 2/5, Folie 1 2017 Prof.

Mehr

Kapitel 1: Endliche Automaten Gliederung 1. Endliche Automaten

Kapitel 1: Endliche Automaten Gliederung 1. Endliche Automaten Gliederung 0. Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechenbarkeitstheorie 4. Komplexitätstheorie.. Grundlagen.2. Minimierungsalgorithmus.3. /3, S. Gibt es Sprachen, die nicht Automatensprachen

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Algorithmische Probleme und Berechnungsmodelle 3.2. Das Berechnungsmodell

Mehr

Kapitel 4: Komplexitätstheorie Gliederung

Kapitel 4: Komplexitätstheorie Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 4.1. Motivation und Grundbegriffe 4.2. Die Komplexitätsklassen P und NP 4.3.

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

5.2 Endliche Automaten

5.2 Endliche Automaten 114 5.2 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Maximilian Haslbeck Fabian Mitterwallner Georg Moser David Obwaller cbr.uibk.ac.at Zusammenfassung der letzten LVA Definition Eine Grammatik G ist ein Quadrupel

Mehr

Kapitel 0: Grundbegriffe Gliederung

Kapitel 0: Grundbegriffe Gliederung Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechenbarkeitstheorie 4. Komplexitätstheorie 5. Kryptographie 0/2, Folie 1 2009 Prof. Steffen Lange - HDa/FbI - Theoretische Informatik

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Einordnung 3.2. Berechnungsmodelle 3.3. Diskussion 3.4. Ergebnisse und

Mehr

Das Pumping Lemma: Ein Anwendungsbeispiel

Das Pumping Lemma: Ein Anwendungsbeispiel Das Pumping Lemma: Ein Anwendungsbeispiel Beispiel: Die Palindromsprache ist nicht regulär. L = { } w {0, 1} w ist ein Palindrom Beweis: Angenommen, L ist doch regulär. Gemäß Pumping Lemma gibt es dann

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Sommersemester 2016 Steffen Lange 0/1, Folie 1 2016 Prof. Steffen Lange - HDa/FbI - Theoretische Informatik Literatur S. Lange, M. Margraf, Theoretische Informatik, Lehrmaterial

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Informatik 3 Theoretische Informatik WS 2015/16

Informatik 3 Theoretische Informatik WS 2015/16 2. Probeklausur 22. Januar 2016 Informatik 3 Theoretische Informatik WS 2015/16 Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg Institut für Informatik Name: Matrikel-Nr.: Schreiben Sie Ihren

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Grundbegriffe der Informatik Tutorium 33

Grundbegriffe der Informatik Tutorium 33 Tutorium 33 02.02.2017 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Gliederung 1 2 3 Ein ist ein Tupel A = (Z, z 0, X, f, Y, h)

Mehr

Software Engineering Ergänzung zur Vorlesung

Software Engineering Ergänzung zur Vorlesung Ergänzung zur Vorlesung Prof. Dr. Markus Müller-Olm WS 2008 2009 2.6.1 Endliche und reguläre Sprachen Endliche und reguläre Sprache: fundamental in vielen Bereichen der Informatik: theorie Formale Sprachen

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im

Mehr

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen:

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen: Homomorphismen Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen: h(l) := {h(u) : u L} Γ, für jede Sprache L Σ, h 1 (M) := {u Σ : h(u) M} Σ,

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit. Zugangsnummer: 9201

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit.  Zugangsnummer: 9201 Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Wiederholung Kapitel 3 und 4 http://pingo.upb.de Zugangsnummer: 9201 Dozent: Jun.-Prof. Dr.

Mehr

Die Nerode-Relation und der Index einer Sprache L

Die Nerode-Relation und der Index einer Sprache L Die Nerode-Relation und der Index einer Sprache L Eine zweite zentrale Idee: Sei A ein vollständiger DFA für die Sprache L. Repäsentiere einen beliebigen Zustand p von A durch die Worte in Σ, die zu p

Mehr

1 Eliminieren von ɛ-übergängen

1 Eliminieren von ɛ-übergängen 1 Eliminieren von ɛ-übergängen 1.1 Beispiel 1 (a) Ausgangspunkt: Zwei ɛ-übergänge (b) Entfernung eines ɛ-übergangs, Reduktion (c) Entfernen eines ɛ-übergangs, Reduktion Abbildung 1: Elimination von ɛ-übergängen,

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechenbarkeitstheorie 4. Komplexitätstheorie...2. Minimierungsalgorithmus.3. Grenzen endlicher Automaten /, S. 28 Prof.

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Diskrete Mathematik. Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl

Diskrete Mathematik. Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl OLC mputational gic Diskrete Mathematik Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl Fakultät für Mathematik, Informatik und Physik @ UIBK Sommersemester 2011 GM (MIP) Diskrete Mathematik

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung 02.11.2006 schindel@informatik.uni-freiburg.de 1 Kapitel III Reguläre Sprachen Reguläre Sprachen und Ausdrücke Informatik III

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Einordnung 3.2. Berechnungsmodelle 3.3. Diskussion 3.4. Ergebnisse und

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 12

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 12 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 20. Februar 2004 1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

F2 Zusammenfassung Letzte Tips zur Klausur

F2 Zusammenfassung Letzte Tips zur Klausur F2 Zusammenfassung Letzte Tips zur Klausur Berndt Farwer FB Informatik, Uni HH F2-ommersemester 2001-(10.6.) p.1/15 Funktionen vs. Relationen Funktionen sind eindeutig, Relationen brauchen nicht eindeutig

Mehr

Formale Grundlagen der Informatik 1 Kapitel 5 Abschlusseigenschaften

Formale Grundlagen der Informatik 1 Kapitel 5 Abschlusseigenschaften Formale Grundlagen der Informatik 1 Kapitel 5 Frank Heitmann heitmann@informatik.uni-hamburg.de 18. April 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/64 NFAs - Grundlagen DFAs vs. NFAs Der

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 4.3 Eigenschaften von L 0 /L 1 -Sprachen 1. Abschlußeigenschaften 2. Prüfen von Eigenschaften 3. Grenzen der Sprachklassen Sprachklassen Semi-entscheidbare Sprache Sprache,

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Einordnung 3.2. Berechnungsmodelle 3.3. Diskussion 3.4. Ergebnisse und

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

Theoretische Informatik Kap 2: Berechnungstheorie

Theoretische Informatik Kap 2: Berechnungstheorie Gliederung der Vorlesung 0. Grundbegriffe 1. Formale Sprachen/Automatentheorie 1.1. Grammatiken 1.2. Reguläre Sprachen 1.3. Kontextfreie Sprachen 2. Berechnungstheorie 2.1. Berechenbarkeitsmodelle 2.2.

Mehr

Einführung in die Computerlinguistik Satz von Kleene

Einführung in die Computerlinguistik Satz von Kleene Einführung in die Computerlinguistik Satz von Kleene Dozentin: Wiebke Petersen 5. Foliensatz Wiebke Petersen Einführung CL 1 Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von einem deterministischen

Mehr

Typ-0-Sprachen und Turingmaschinen

Typ-0-Sprachen und Turingmaschinen Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und

Mehr

Akzeptierende Turing-Maschine

Akzeptierende Turing-Maschine Akzeptierende Turing-Maschine Definition: Eine akzeptierende Turing-Maschine M ist ein Sechstupel M = (X, Z, z 0, Q, δ, F ), wobei (X, Z, z 0, Q, δ) eine Turing-Maschine ist und F Q gilt. Die von M akzeptierte

Mehr

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung Theoretische Informatik und Logik Übungsblatt (26S) en Aufgabe. Sei L = {w#w r w {, } }. Geben Sie eine deterministische Turingmaschine M an, welche die Sprache L akzeptiert. Wählen Sie mindestens einen

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

FORMALE SYSTEME. Der Satz von Myhill und Nerode. Automaten verkleinern mit Quotientenbildung. Verschiedene Äquivalenzrelationen

FORMALE SYSTEME. Der Satz von Myhill und Nerode. Automaten verkleinern mit Quotientenbildung. Verschiedene Äquivalenzrelationen Automaten verkleinern mit Quotientenbildung Wir betrachten DFAs mit totaler Übergangsfunktion. FORMALE SYSTEME 9. Vorlesung: Minimale Automaten (2) Markus Krötzsch TU Dresden, 9. November 207 C 0 A 0 [A]

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Lehrstuhl für Theoretische Informatik Prof. Dr. Markus Lohrey Grundlagen der Theoretischen Informatik Nachklausur Nachklausur zur Vorlesung Grundlagen der Theoretischen Informatik WS 2016/17 / 27. Februar

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 2. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 1 Einelementiges Alphabet (4 Punkte) (a) Geben

Mehr

Induktive Definition

Induktive Definition Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 3..2 INSTITUT FÜR THEORETISCHE KIT 7..2 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik INSTITUT FÜR

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 2 3. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Das Alphabet Σ sei eine endliche

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016.

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016. FORMALE SYSTEME 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten Markus Krötzsch TU Dresden, 14. November 2016 Rückblick Markus Krötzsch, 14. November 2016 Formale Systeme Folie 2 von

Mehr

Einführung in die Computerlinguistik Satz von Kleene

Einführung in die Computerlinguistik Satz von Kleene Einführung in die Computerlinguistik Satz von Kleene Dozentin: Wiebke Petersen 5. Foliensatz Wiebke Petersen Einführung CL 1 Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von einem deterministischen

Mehr

Vorlesung im Sommersemester Informatik IV. Probeklausurtermin: 21. Juni 2016

Vorlesung im Sommersemester Informatik IV. Probeklausurtermin: 21. Juni 2016 Heinrich-Heine-Universität Düsseldorf Institut für Informatik Prof. Dr. J. Rothe Universitätsstr. 1, D-40225 Düsseldorf Gebäude: 25.12, Ebene: O2, Raum: 26 Tel.: +49 211 8112188, Fax: +49 211 8111667 E-Mail:

Mehr

10 Kellerautomaten. Kellerautomaten

10 Kellerautomaten. Kellerautomaten 10 Kellerautomaten Bisher hatten wir kontextfreie Sprachen nur mit Hilfe von Grammatiken charakterisiert. Wir haben gesehen, dass endliche Automaten nicht in der Lage sind, alle kontextfreien Sprachen

Mehr

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

Musterlösung Informatik-III-Nachklausur

Musterlösung Informatik-III-Nachklausur Musterlösung Informatik-III-Nachklausur Aufgabe 1 (2+2+4+4 Punkte) (a) L = (0 1) 0(0 1) 11(0 1) 0(0 1) (b) Der Automat ist durch folgendes Übergangsdiagramm gegeben: 0, 1 0, 1 0, 1 0, 1 0 s q 1 1 0 0 q

Mehr

Kontextfreie Sprachen werden von PDAs akzeptiert

Kontextfreie Sprachen werden von PDAs akzeptiert Kontextfreie Sprachen werden von PDAs akzeptiert Sei G = (Σ, V, S, P) eine kontextfreie Grammatik. Dann gibt es einen PDA A mit L(A) = L(G). Der PDA A arbeitet mit nur einem Zustand q 0, besitzt das Kelleralphabet

Mehr

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Klausur zur Vorlesung Informatik III Wintersemester 2007/2008

Klausur zur Vorlesung Informatik III Wintersemester 2007/2008 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Klausur zur Vorlesung Informatik III Wintersemester 2007/2008 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer:

Mehr

Grundbegriffe der Informatik Tutorium 12

Grundbegriffe der Informatik Tutorium 12 Grundbegriffe der Informatik Tutorium 12 Tutorium Nr. 16 Philipp Oppermann 28. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 2. Mai 2 Einführung in die Theoretische Informatik

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.5 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibung des Aufbaus von Sprachen Mathematische Mengennotation Beschreibung durch Eigenschaften

Mehr

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung) Tutorium 23 Grundbegriffe der Informatik (10. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

DisMod-Repetitorium Tag 4

DisMod-Repetitorium Tag 4 DisMod-Repetitorium Tag 4 Endliche Automaten, Reguläre Sprachen und Kontextfreie Grammatiken 22. März 2018 1 Endliche Automaten Definition DFA Auswertungen Äquivalenzrelationen Verschmelzungsrelation und

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Algorithmische Probleme und Berechnungsmodelle 3.2. Das Berechnungsmodell

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung

Mehr

Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen

Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 6 7 7 8 8 12 err. Punkte Gesamtpunktzahl: Note: 1 Aufgabe 1 (3+1+1+1 = 6 Punkte) Es seien

Mehr

Operationen auf endlichen Automaten und Transduktoren

Operationen auf endlichen Automaten und Transduktoren Operationen auf endlichen Automaten und Transduktoren Kursfolien Karin Haenelt 1 Notationskonventionen L reguläre Sprache A endlicher Automat DEA deterministischer endlicher Automat NEA nichtdeterministischer

Mehr

1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik

1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik 1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik Ulrich Furbach Christian Schwarz Markus Kaiser Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Beispiel Produktautomat

Beispiel Produktautomat Beispiel Produktautomat 0 1 p 0 p 1 p 2 q 0 q 1 445 Vereinfachte Konstruktion f. NFAs Seien M 1,M 2 NFAs f. die Sprachen L 1 und L 2. Konstruktion eines NFAs für L 1 L 2 : Erzeuge Kopien von M 1 und M

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Seien M 1,M 2 NFAs f. die Sprachen L 1 und L 2. Konstruktion eines NFAs für L 1 L 2 : Erzeuge Kopien von M 1 und M 2. p 1

Seien M 1,M 2 NFAs f. die Sprachen L 1 und L 2. Konstruktion eines NFAs für L 1 L 2 : Erzeuge Kopien von M 1 und M 2. p 1 Beispiel Produktautomat p Vereinfachte Konstruktion f. NFAs Seien M,M 2 NFAs f. die Sprachen L und L 2. Konstruktion eines NFAs für L L 2 : Erzeuge Kopien von M und M 2. p q q p 2 Erzeuge neuen Startzustand

Mehr

2.3 Abschlusseigenschaften

2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften In diesem Abschnitt wollen wir uns mit Abschlusseigenschaften der regulären Sprachen, d.h. mit der Frage, ob, gegeben eine Operation und zwei reguläre

Mehr

Wie man eine Sprache versteht

Wie man eine Sprache versteht Aufzählbarkeit Formale Grundlagen der Informatik 1 Kapitel 10 Aufzählbarkeit und (Un-)Entscheidbarkeit Frank Heitmann heitmann@informatik.uni-hamburg.de 11. Mai 2015 Definition 1 Eine Menge M Σ heißt (rekursiv)

Mehr

2.2 Nichtdeterministische endliche Automaten

2.2 Nichtdeterministische endliche Automaten 2 Endliche Automaten arbeiten und hier kann dann ggf. auch wieder auf die Konstruktion verwiesen werden. Fragen 1. Wie viele Informationen kann man in einem DFA speichern? a) beliebig viele b) endlich

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Rückblick Theoretische Informatik I 1. Mathematische Methoden 2. Reguläre Sprachen 3. Kontextfreie Sprachen Themen der Theoretischen Informatik I & II Mathematische Methodik in

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 17. Januar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 17. Januar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 17.01.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Evaluation Ergebnisse

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s

Mehr