Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften

Größe: px
Ab Seite anzeigen:

Download "Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften"

Transkript

1 Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der vom Startzustand aus erreichbar ist und von dem aus ein akzept. Zustand erreichbar ist. Suche nach einem solchen Kreis Entferne alle vom Startzustand aus nicht erreichbaren Zustände/Knoten. Drehe alle Kanten um. Führe DFS von den akzeptierenden Zuständen ausgehend durch. Es wird eine B-Kante erzeugt. Ein Kreis ist von einem akzeptierenden Zustand aus erreichbar. Rechenzeit: O( Q Σ ) Abschlusseigenschaften Satz T4.6.4: Sei M ein DFA für eine Sprache L. Dann kann ein DFA für L in Zeit O( Q ) erzeugt werden. Insbesondere: Wenn L regulär ist, ist auch L regulär, d.h., die regulären Sprachen sind unter Komplementbildung abgeschlossen. Beweis: Ersetze F durch Q F. Vereinigung und Durchschnitt Satz T4.6.5: Seien M 1 und M 2 DFAs für L 1 und L 2. Dann kann ein DFA für L 1 L 2 (L 1 L 2 ) in Zeit O( Q 1 Q 2 Σ ) konstruiert werden. Insbesondere: Wenn L 1 und L 2 regulär sind, sind auch L 1 L 2 und L 1 L 2 regulär, d.h., die regulären Sprachen sind gegen Vereinigung und Durchschnitt abgeschlossen. Bemerkung: Funktioniert nicht für NFAs

2 Konstruktion d. Produktautomaten Konstruiere DFA M: Q = Q 1 Q 2. q 0 = (q 01,q 02 ). F = {(q 1,q 2 ) q 1 F 1 q 2 F 2 }. δ((q 1,q 2 ),a) = (δ 1 (q 1,a),δ 2 (q 2,a)). Idee: Parallele Simulation beider DFAs. Übungsaufgaben: Übertragung der Konstruktion auf NFAs. Vermeidung der Konstruktion überfüssiger Zustände 419 Beispiel Produktautomat 1 p 1 p 0 p 2 q 0 q Vereinfachte Konstruktion f. NFAs Seien M 1,M 2 NFAs f. die Sprachen L 1 und L 2. Konstruktion eines NFAs für L 1 L 2 : Erzeuge Kopien von M 1 und M 2. Erzeuge neuen Startzustand q 0 (akzeptierend, falls q 0,1 oder q 0,2 akzept.). Für alle a Σ erzeuge a-übergänge von q 0 zu den a-nachfolgern der Startzustände von M 1 und M 2. - Funktioniert aber nicht für Durchschnitt. 421 Symmetrische Differenz Definition: L 1 L 2 ={w w L 1 L 2 w L 1 L 2 } heißt symmetrische Differenz von L 1 und L 2. Beispiel: L 1 ={00,11,01}, L 2 ={00,10}. Dann ist L 1 L 2 ={11,01,10} Satz: Seien M 1 und M 2 DFAs für L 1 und L 2. Dann kann ein DFA für L 1 L 2 in Zeit O( Q 1 Q 2 Σ ) konstruiert werden. 422

3 Abschluss unter symm. Differenz Satz: Seien M 1 und M 2 DFAs für L 1 und L 2. Dann kann ein DFA für L 1 L 2 in Zeit O( Q 1 Q 2 Σ ) konstruiert werden. Beweis: Benutze Produktautomatenkonstruktion mit F = {(q 1,q 2 ) (q 1 F 1 q 2 F 2 ) (q 1 F 1 q 2 F 2 )}. Äquivalenztest für DFAs Gegeben: DFAs M 1 und M 2 für Sprachen L 1 und L 2. Konstruiere DFA für L 1 L 2. Wende darauf den Leerheitstest an. Rechenzeit: O( Q 1 Q 2 Σ ). Übungsaufgabe: Überlege, woran diese Konstruktion für NFAs scheitert Produktsprache (Konkatenation) Definition T4.6.9: Seien L 1 und L 2 Sprachen über Σ. Die Konkatenation von L 1 und L 2 ist definiert durch Beispiel: L 1 ={0 n 1 n n 0}, L 2 ={1 n 0 n n 0}. Dann L 1 L 2 ={0 n 1 n+m 0 m }. Abschluss gegen Konkatenation Satz T4.6.10: Seien M 1 und M 2 DFAs für L 1 und L 2. Dann kann ein NFA für L 1 L 2 in Zeit O(( Q 1 + Q 2 ) Σ ) konstruiert werden. Insbesondere ist L 1 L 2 regulär, d.h., die regulären Sprachen sind gegen Konkatenation abgeschlossen

4 Beweis Seien M 1 und M 2 gegeben, o.b.d.a Q 1 Q 2 =. Idee: In akzept. Zuständen kann M 1 raten, dass sein Teilwort zu Ende ist. q 0 M 1 M 2 Formalere Beschreibung Zustandsmenge: Q 1 Q 2. Startzustand: Startzustand von M 1. Akz. Zustände: F 2 (bzw. F 1 F 2, falls ε L 2 ). Zustandsübergänge: Zustandsübergänge aus M 1 und M 2 Für q F 1 und a Σ zusätzlich: δ(q,a)=δ 2 (q 0,2,a) Kleenescher Abschluss Definition T4.6.11: L i : i-fache Produkt von L mit sich selbst. (L 0 ={ε}, L 1 =L, L 2 =LL, L 3 =LLL, ) Beispiel: L={00,11}. Dann: L*= {w 1 w n mit n gerade und w 2i 1 =w 2i }. 429 Abschluss unter kleeneschen A. Satz T4.6.12: Sei M ein DFA für L. Aus M kann in Zeit O( Q Σ ) ein NFA für L* konstruiert werden. Insbesondere ist L* regulär und die regulären Sprachen sind unter dem kleeneschen Abschluss abgeschlossen. Beweis: Idee: Rate die Stellen, wo die Teilwörter aus L zu Ende sind. 430

5 Idee: Formalere Beschreibung Sei (Q,Σ,q 0,δ,F) DFA für L. q 0 Neuer akzept. Startzustand Fortsetzen der Rechnung an Nachf. des Startzust. ermögl. 431 NFA (Q,Σ,q 0,δ,F ) für L*: Zustandsmenge: Q =Q {q 0 }. Startzustand: q 0. Akz. Zustände: F = {q 0 } F. Zustandsübergänge in δ : Zustandsübergänge aus δ. Für q {q 0 } F und a Σ zusätzlich: δ (q,a)=δ(q 0,a). 432 Reguläre Ausdrücke [K5.3] Im folgenden Teil 4 der Vorlesung: Regelsysteme, die Sprachen erzeugen Grammatiken Hier: einfaches Regelsystem für reguläre Sprachen: reguläre Ausdrücke 433 Def. von regulären Ausdrücken Definition T5.3.2: Rekursionsende: : leere Sprache ε: leeres Wort a Σ: Wörter aus einem Buchstaben sind reguläre Ausdrücke. Rekursion: Wenn A und B reguläre Ausdrücke sind, dann auch (A)+(B), (A) (B) und (A)*. Vereinigung Konkatenation Kleenescher 434A.

6 Beispiele für reguläre Ausdrücke Menge aller Wörter, die mit 0 beginnen und 1 enden: (0) ((0)+(1))* (1) Vereinfachung: 0(0+1)*1 Menge aller Wörter mit einer geraden Anzahl Nullen: 1* ((0) (1)* (0) (1)*)* Vereinfachung: 1*(01*01*)* Vereinfachungen Klammern um, ε, a weglassen +, assoziativ Klammern weglassen Prioritäten der Operationen: Addition/Vereinigung + Multiplikation/Konkatenation Potenzbildung/kleenescher Abschluss * Klammern entsprechend weglassen Zeichen für Konkatenation weglassen Beispiele für reguläre Ausdrücke L k ={w {0,1}* In w ist der k-te Buchstabe von hinten eine 1}. Regulärer Ausdruck: (0+1)* 1 (0+1) (0+1) ()-mal Zum Vergleich: Ein DFA für L k benötigt 2 k Zustände (Satz T4.4.3). grep Befehl zur Suche von Mustern in den Zeilen einer Textdatei Beschreibung der Muster: reguläre Ausdrücke [abc] entspricht a+b+c? entspricht jedem Buchstaben \ entspricht + Hintereinanderschreiben entspricht * entspricht kleeneschen Abschluss Klammern: \(, \)

7 grep (Fortsetzung) grep PATTERN FILE gibt die Zeilen von FILE aus, die das durch den reg. Ausdruck PATTERN beschriebene Muster enthalten. grep x PATTERN FILE gibt die Zeilen von FILE aus, die (als ganze Zeilen gesehen) durch den reg. Ausdruck PATTERN beschrieben sind. Beispiele für grep-syntax Menge aller Wörter, die mit 0 beginnen und 1 enden: vorher: 0(0+1)*1 grep: [0][01]*[1] Menge aller Wörter mit gerader Anzahl Nullen oder gerader Anzahl Einsen vorher: 1*(01*01*)* + 0*(10*10*)* grep: [1]*\([0][1]*[0][1]*\)*\ [0]*\([1][0]*[1][0]*\)* Zshg. reg Ausdrücke reg. Spr. Satz T5.3.3: Genau die regulären Sprachen lassen sich durch reguläre Ausdrücke beschreiben. Beweis: 1. Alle regulären Ausdrücke beschreiben reguläre Sprachen. 2. Alle regulären Sprachen können durch reguläre Ausdrücke beschrieben werden. Reg. Ausdr. beschr. reg. Sprachen Betrachte rekursive Def. der reg. Ausdrücke:, {ε}, {a} sind reguläre Sprachen. Die regulären Sprachen sind gegen Vereinigung (+), Konkatenation ( ) und kleeneschen Abschluss (*) abgeschlossen. Alle regulären Ausdrücke beschreiben reguläre Sprachen

8 Umformung DFA reg. Ausdruck Sei M DFA für reg. Sprache L. Sei Q={1,,n} u. dynamische Zustand 1 der Startzustand. Programmierung Definiere: R i,jk : Menge aller Wörter, für die M beginnend mit Zustand i den Zustand j erreicht, wobei die Zwischenzustände aus {1,,k} sind. Idee: Zeige, dass sich alle R i,jk durch reguläre Ausdrücke beschreiben lassen. 443 Konstr. von reg. Ausdr. für R i,j k k=0 keine Zwischenzustände erlaubt. R i,j0 : kann nur aus einem Buchstaben a bestehen, nämlich dem a mit δ(i,a)=j. R i,i0 : enthält zusätzlich ε. Reguläre Ausdrücke für R i,j0 : R i,jk : Menge aller Wörter, für die M beginnend mit Zustand i den Zustand j erreicht, wobei die Zwischenzustände aus {1,,k} sind. 444 Rekursive Bestimmung von R i,j k Rekursionsformel: R i,jk = R i,j + R i,k (R k,k )*R k,j Wörter, bei deren Rechnung der Zwischenzustand k ev. mehrfach benutzt wird. Wörter, bei deren Rechnung Zwischenzustand k nicht benutzt wird. R i,jk : Menge aller Wörter, für die M beginnend mit Zustand i den Zustand j erreicht, wobei die Zwischenzustände aus {1,,k} sind. 445 Rekursionsformel erzeugt aus reg. Ausdrücken für R i,j reg. Ausdrücke für R i,jk. Wir können reguläre Ausdrücke für R i,j n berechnen. Dann gilt für die von M akzeptierte Sprache: L = +i F R 1,i n regulärer Ausdruck R i,jk : Menge aller Wörter, für die M beginnend mit Zustand i den Zustand j erreicht, wobei die Zwischenzustände aus {1,,k} sind. 446

Beispiel Produktautomat

Beispiel Produktautomat Beispiel Produktautomat 0 1 p 0 p 1 p 2 q 0 q 1 445 Vereinfachte Konstruktion f. NFAs Seien M 1,M 2 NFAs f. die Sprachen L 1 und L 2. Konstruktion eines NFAs für L 1 L 2 : Erzeuge Kopien von M 1 und M

Mehr

Seien M 1,M 2 NFAs f. die Sprachen L 1 und L 2. Konstruktion eines NFAs für L 1 L 2 : Erzeuge Kopien von M 1 und M 2. p 1

Seien M 1,M 2 NFAs f. die Sprachen L 1 und L 2. Konstruktion eines NFAs für L 1 L 2 : Erzeuge Kopien von M 1 und M 2. p 1 Beispiel Produktautomat p Vereinfachte Konstruktion f. NFAs Seien M,M 2 NFAs f. die Sprachen L und L 2. Konstruktion eines NFAs für L L 2 : Erzeuge Kopien von M und M 2. p q q p 2 Erzeuge neuen Startzustand

Mehr

Potenzmengenkonstruktion. Vergleich DFAs NFAs. NFA DFA ohne überflüssige Zust. Ansatz nicht praktikabel

Potenzmengenkonstruktion. Vergleich DFAs NFAs. NFA DFA ohne überflüssige Zust. Ansatz nicht praktikabel Vergleich DFAs NFAs Frage: Können NFAs nichtreguläre Sprachen erkennen? NEIN Potenzmengenkonstruktion Gegeben: NFA (Q,Σ,q 0,δ,F), konstruiere DFA: Q =P (Q), q 0 = {q 0 }, F ={q q F } Satz T4.4.5: Zu jedem

Mehr

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen:

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen: Homomorphismen Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen: h(l) := {h(u) : u L} Γ, für jede Sprache L Σ, h 1 (M) := {u Σ : h(u) M} Σ,

Mehr

Das Pumping Lemma: Ein Anwendungsbeispiel

Das Pumping Lemma: Ein Anwendungsbeispiel Das Pumping Lemma: Ein Anwendungsbeispiel Beispiel: Die Palindromsprache ist nicht regulär. L = { } w {0, 1} w ist ein Palindrom Beweis: Angenommen, L ist doch regulär. Gemäß Pumping Lemma gibt es dann

Mehr

Formale Grundlagen der Informatik 1 Kapitel 5 Abschlusseigenschaften

Formale Grundlagen der Informatik 1 Kapitel 5 Abschlusseigenschaften Formale Grundlagen der Informatik 1 Kapitel 5 Frank Heitmann heitmann@informatik.uni-hamburg.de 18. April 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/64 NFAs - Grundlagen DFAs vs. NFAs Der

Mehr

Äquivalenzrelation R A zu DFA A. Rechtsinvarianz. Relation R L zur Sprache L

Äquivalenzrelation R A zu DFA A. Rechtsinvarianz. Relation R L zur Sprache L Rechtsinvarianz Definition T4.2.8: Eine Äquivalenzrelation R auf Σ* heißt rechtsinvariant, wenn x R y z Σ*: xz R yz. Index von R: Anzahl der Äquivalenzklassen von R. Notation: ind(r) Im Folgenden: 2 rechtsinvariante

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

Die Nerode-Relation und der Index einer Sprache L

Die Nerode-Relation und der Index einer Sprache L Die Nerode-Relation und der Index einer Sprache L Eine zweite zentrale Idee: Sei A ein vollständiger DFA für die Sprache L. Repäsentiere einen beliebigen Zustand p von A durch die Worte in Σ, die zu p

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 2 3. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen

Mehr

Satz (Abschluß unter der Stern-Operation)

Satz (Abschluß unter der Stern-Operation) Satz (Abschluß unter der Stern-Operation) Wenn L eine reguläre Sprache ist, dann ist auch L regulär. Beweis: Es gibt einen NFA M = (Z, Σ, S, δ, S, E) mit L(M) = L. Wir bauen aus diesem NFA nun wie folgt

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Endliche Automaten Jörg Roth 101

Endliche Automaten Jörg Roth 101 Endliche Automaten Jörg Roth 101 Wir wollen im Folgenden die Abschlusseigenschaften regulärer Sprachen betrachten. Fragestellung: Wenn wir reguläre Sprachen haben, welche binären und unären Operationen

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung 02.11.2006 schindel@informatik.uni-freiburg.de 1 Kapitel III Reguläre Sprachen Reguläre Sprachen und Ausdrücke Informatik III

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten

Mehr

DisMod-Repetitorium Tag 4

DisMod-Repetitorium Tag 4 DisMod-Repetitorium Tag 4 Endliche Automaten, Reguläre Sprachen und Kontextfreie Grammatiken 22. März 2018 1 Endliche Automaten Definition DFA Auswertungen Äquivalenzrelationen Verschmelzungsrelation und

Mehr

liefern eine nicht maschinenbasierte Charakterisierung der regulären

liefern eine nicht maschinenbasierte Charakterisierung der regulären Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen

Mehr

2.3 Abschlusseigenschaften

2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften In diesem Abschnitt wollen wir uns mit Abschlusseigenschaften der regulären Sprachen, d.h. mit der Frage, ob, gegeben eine Operation und zwei reguläre

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 2. Mai 2 Einführung in die Theoretische Informatik

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 9. März 24 7. Reguläre Sprachen I Theorie der Informatik 7. Reguläre Sprachen I Malte Helmert Gabriele Röger Universität Basel 9. März 24 7. Reguläre Grammatiken 7.2 DFAs 7.3 NFAs

Mehr

Zusammenfassung. Endliche Sprachen. Fazit zu endlichen Automaten. Teil 4: Grammatiken und Syntaxanalyse

Zusammenfassung. Endliche Sprachen. Fazit zu endlichen Automaten. Teil 4: Grammatiken und Syntaxanalyse Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Induktionsprinzipien für andere Bereiche. falscher Induktionsbeweis über N Übung Beispiele. Reguläre Σ-Sprachen Abschnitt 2.

Induktionsprinzipien für andere Bereiche. falscher Induktionsbeweis über N Übung Beispiele. Reguläre Σ-Sprachen Abschnitt 2. Kap 1: Grundegriffe Induktion 1.2.3 Induktionsprinzipien für andere Bereiche Beispiele Bereich M M 0 M erzeugende Operationen N 0} S: n n + 1 Σ ε} ( w wa ) für a Σ, c}-terme c} (t 1, t 2 ) (t 1 t 2 ) endl.

Mehr

5.2 Endliche Automaten

5.2 Endliche Automaten 114 5.2 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch

Mehr

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 20.

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 20. Wiederholung FORMALE SYSTEME 4. Vorlesung: Nichtdeterministische Endliche Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19.

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19. Wiederholung FORMALE SYSTEME 4. Vorlesung: Nichtdeterministische Endliche Automaten Markus Krötzsch Professur für Wissensbasierte Systeme Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 2. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 1 Einelementiges Alphabet (4 Punkte) (a) Geben

Mehr

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW

Mehr

FORMALE SYSTEME. Der Satz von Myhill und Nerode. Automaten verkleinern mit Quotientenbildung. Verschiedene Äquivalenzrelationen

FORMALE SYSTEME. Der Satz von Myhill und Nerode. Automaten verkleinern mit Quotientenbildung. Verschiedene Äquivalenzrelationen Automaten verkleinern mit Quotientenbildung Wir betrachten DFAs mit totaler Übergangsfunktion. FORMALE SYSTEME 9. Vorlesung: Minimale Automaten (2) Markus Krötzsch TU Dresden, 9. November 207 C 0 A 0 [A]

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch TU Dresden, 17. Oktober 2016 Rückblick Markus Krötzsch, 17. Oktober 2016 Formale Systeme Folie 2 von 31 Wiederholung Mit Grammatiken können

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Der deterministische, endliche Automat. Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen

Der deterministische, endliche Automat. Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen Der deterministische, endliche Automat Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen Frank Heitmann heitmann@informatik.uni-hamurg.de 8. April 2014 Definition (DFA) Ein deterministischer,

Mehr

Klammersprache Definiere

Klammersprache Definiere Klammersprache w=w 1...w n {(,)}* heißt korrekt geklammert, falls die Anzahl ( ist gleich der Anzahl ). in jedem Anfangsstück w 1,...,w i (i n) ist die Anzahl ( nicht kleiner als die Anzahl ). Definiere

Mehr

Formale Sprachen. Reguläre Sprachen. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Reguläre Sprachen. Rudolf FREUND, Marian KOGLER Formale Sprachen Reguläre Sprachen Rudolf FREUND, Marian KOGLER Endliche Automaten - Kleene STEPHEN KLEENE (99-994) 956: Representation of events in nerve nets and finite automata. In: C.E. Shannon und

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016.

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016. FORMALE SYSTEME 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten Markus Krötzsch TU Dresden, 14. November 2016 Rückblick Markus Krötzsch, 14. November 2016 Formale Systeme Folie 2 von

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 4 Reguläre Ausdrücke Webseite zur Vorlesung http://ls11-www.cs.tu-dortmund.de/people/rahmann/teaching/ss2008/algorithmenaufsequenzen

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche Automaten und

Mehr

Konkatenation. Abschlusseigenschaften. Kleenescher Abschluss. Durchschnitt und Komplement

Konkatenation. Abschlusseigenschaften. Kleenescher Abschluss. Durchschnitt und Komplement Abschlusseigenschaften Satz T6.5.5: Die kontextfreien Sprachen sind gegen Vereinigung, Konkatenation und kleeneschen Abschluss abgeschlossen. Vereinigung: Seien G 1, G 2 Grammatiken für L 1, L 2. O.B.d.A.

Mehr

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 8. Vorlesung: Minimale Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 6. November 2017 Rückblick Markus Krötzsch, 6. November 2017 Formale Systeme Folie 2 von 26

Mehr

3. Vorlesung: Endliche Automaten Markus Kr otzsch Lehrstuhl Wissensbasierte Systeme

3. Vorlesung: Endliche Automaten Markus Kr otzsch Lehrstuhl Wissensbasierte Systeme Wiederholung Mit Grammatiken können wir Sprachen beschreiben und sie grob in Typen unterteilen: FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Formale

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Pumping Lemma Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges

Mehr

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}} 2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?

Mehr

Informatik IV. Pingo Sommersemester Dozent: Prof. Dr. J. Rothe. J. Rothe (HHU Düsseldorf) Informatik IV 1 / 13

Informatik IV. Pingo Sommersemester Dozent: Prof. Dr. J. Rothe. J. Rothe (HHU Düsseldorf) Informatik IV 1 / 13 Informatik IV Sommersemester 2019 Dozent: Prof. Dr. J. Rothe J. Rothe (HHU Düsseldorf) Informatik IV 1 / 13 Website http://pingo.upb.de/ Code: 1869 J. Rothe (HHU Düsseldorf) Informatik IV 2 / 13 Frage

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung. Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen (noch weiter) 2.3. Kontextfreie Sprachen 2/4,

Mehr

Berechenbarkeitstheorie 1. Vorlesung

Berechenbarkeitstheorie 1. Vorlesung Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Zentrale Themen

Mehr

WS07/08 Automaten und Formale Sprachen 5. Vorlesung

WS07/08 Automaten und Formale Sprachen 5. Vorlesung WS7/8 Automaten und Formale Sprachen 5. Vorlesung Martin Dietzfelbinger 3. November 27 FG KTuEA, TU Ilmenau Automaten und Formale Sprachen WS7/8 3..27 Stichworte Induktive Definitionen: (i) Basisobjekte,

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Diskrete Mathematik. Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl

Diskrete Mathematik. Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl OLC mputational gic Diskrete Mathematik Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl Fakultät für Mathematik, Informatik und Physik @ UIBK Sommersemester 2011 GM (MIP) Diskrete Mathematik

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung Technische Universität München Sommer 26 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Juli 26 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 3 Beachten Sie: Soweit nicht

Mehr

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel für eine Rechnung ##q ab##xq b##xyq 2 ##xyzq 3 ##xyq 4

Mehr

Ogden s Lemma (T6.4.2)

Ogden s Lemma (T6.4.2) Weiteres Beispiel L={a r b s c t d u r=0 s=t=u} Nahe liegende Vermutung: L nicht kontextfrei. Kann man mit dem Pumping-Lemma nicht zeigen. r=0: Pumpen erzeugt Wort aus L. r>0: Pumpen der a s erzeugt Wort

Mehr

a b b a Alphabet und Wörter - Zusammengefasst Formale Grundlagen der Informatik 1 Kapitel 2 Endliche Automaten und reguläre Sprachen

a b b a Alphabet und Wörter - Zusammengefasst Formale Grundlagen der Informatik 1 Kapitel 2 Endliche Automaten und reguläre Sprachen Formale Grundlagen der Informatik Kapitel 2 und reguläre Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de 5. April 26 Frank Heitmann heitmann@informatik.uni-hamburg.de /52 Alphabet und Wörter

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit. Zugangsnummer: 3288

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit.  Zugangsnummer: 3288 Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Wiederholung Kapitel 2 http://pingo.upb.de Zugangsnummer: 3288 Dozent: Jun.-Prof. Dr. D. Baumeister

Mehr

Beweisidee: 1 Verwende den Keller zur Simulation der Grammatik. Leite ein Wort. 2 Problem: der Keller darf nicht beliebig verwendet werden, man kann

Beweisidee: 1 Verwende den Keller zur Simulation der Grammatik. Leite ein Wort. 2 Problem: der Keller darf nicht beliebig verwendet werden, man kann Automaten und Formale prachen alias Theoretische Informatik ommersemester 2011 Dr. ander Bruggink Übungsleitung: Jan tückrath Wir beschäftigen uns ab jetzt einige Wochen mit kontextfreien prachen: Kontextfreie

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Endliche Automaten. Endliche Automaten J. Blömer 1/24

Endliche Automaten. Endliche Automaten J. Blömer 1/24 Endliche Automaten Endliche Automaten J. Blömer /24 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben)

Mehr

1 Eliminieren von ɛ-übergängen

1 Eliminieren von ɛ-übergängen 1 Eliminieren von ɛ-übergängen 1.1 Beispiel 1 (a) Ausgangspunkt: Zwei ɛ-übergänge (b) Entfernung eines ɛ-übergangs, Reduktion (c) Entfernen eines ɛ-übergangs, Reduktion Abbildung 1: Elimination von ɛ-übergängen,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (III) 7.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Organisatorisches 1. Teilklausur: Mittwoch, 10.06.2015, D028,

Mehr

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit

Mehr

Software Engineering Ergänzung zur Vorlesung

Software Engineering Ergänzung zur Vorlesung Ergänzung zur Vorlesung Prof. Dr. Markus Müller-Olm WS 2008 2009 2.6.1 Endliche und reguläre Sprachen Endliche und reguläre Sprache: fundamental in vielen Bereichen der Informatik: theorie Formale Sprachen

Mehr

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 23. Januar 2008 2/18 Das Pumping-Lemma Sein L eine unendliche reguläre Sprache über ein endliches Alphabet

Mehr

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften Formalismen für RE Formale rundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de Satz Zu jeder regulären Sprache L gibt es einen DFA A mit L(A) =

Mehr

Teil VI. Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke

Teil VI. Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke Teil VI Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke XML anhand von Beispielen... Anwendungen XML 1 / 10 XML-Schema In vielen Anwendungen sollen nur bestimmte XML-Dokumente zugelassen

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten

Mehr

Ogden s Lemma: Der Beweis (1/5)

Ogden s Lemma: Der Beweis (1/5) Ogden s Lemma: Der Beweis (1/5) Wir betrachten zuerst die Rahmenbedingungen : Laut dem auf der vorhergehenden Folie zitierten Satz gibt es zur kontextfreien Sprache L eine Grammatik G = (Σ, V, S, P) in

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Zwei Bemerkungen zum Schluss

Zwei Bemerkungen zum Schluss Man könnte sich fragen, ob eine Typ-3 Sprache inhärent mehrdeutig sein kann (im Sinn von Einheit 8). Die Antwort lautet: NEIN. Zwei Bemerkungen zum Schluss Denn für jede Typ-3 Sprache gibt es einen DEA,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Deterministische Kellerautomaten Von besonderem Interesse sind kontextfreie Sprachen,

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 1. Automaten und Sprachen 1.1 Endlicher Automat Einen endlichen Automaten stellen wir uns als Black Box vor, die sich aufgrund einer Folge von

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 4. Reguläre Ausdrüce Theoretische Informati Mitschrift indutive Beschreibung von Sprachen, die durch endliche Automaten erennbar sind Definition 4.1: Sei Σ ein Alphabet. (a) Die Menge RA(Σ) der regulären

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie prachen (VI) 25.06.2015 Viorica ofronie-tokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 3. April 2 Einführung in die Theoretische Informatik

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im

Mehr

2.2 Nichtdeterministische endliche Automaten

2.2 Nichtdeterministische endliche Automaten 2 Endliche Automaten arbeiten und hier kann dann ggf. auch wieder auf die Konstruktion verwiesen werden. Fragen 1. Wie viele Informationen kann man in einem DFA speichern? a) beliebig viele b) endlich

Mehr

Die mathematische Seite

Die mathematische Seite Kellerautomaten In der ersten Vorlesung haben wir den endlichen Automaten kennengelernt. Mit diesem werden wir uns in der zweiten Vorlesung noch etwas eingängiger beschäftigen und bspw. Ansätze zur Konstruktion

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten Reguläre Sprachen und endliche Automaten 1 Motivation: Syntaxüberprüfung Definition: Fließkommazahlen in Java A floating-point literal has the following parts: a whole-number part, a decimal point (represented

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai 2016 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 2 Beachten Sie: Soweit

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Abgeschlossenheit (Definition)

Mehr

2.2 Reguläre Sprachen Endliche Automaten

2.2 Reguläre Sprachen Endliche Automaten 2.2.1 Endliche Automaten E I N G A B E Lesekopf endliche Kontrolle Signal für Endzustand Ein endlicher Automat liest ein Wort zeichenweise und akzeptiert oder verwirft. endlicher Automat Sprache der akzeptierten

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 04.06.2013 An den Transitionen sieht man zunächst, dass nur die folgenden Zustandsübergänge

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Kellerautomaten u. kontextfr. Spr.

Kellerautomaten u. kontextfr. Spr. Kellerautomaten u. kontextfr. Spr. Ziel: Maschinenmodell für die kontextfreien Sprachen. Überblick Greibach-Normalform für kontextfreie Grammatiken Kellerautomaten Beziehung zwischen Kellerautomaten und

Mehr

Induktive Definition

Induktive Definition Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2013 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Reguläre Ausdrücke Wozu

Mehr

Kontextfreie Sprachen werden von PDAs akzeptiert

Kontextfreie Sprachen werden von PDAs akzeptiert Kontextfreie Sprachen werden von PDAs akzeptiert Sei G = (Σ, V, S, P) eine kontextfreie Grammatik. Dann gibt es einen PDA A mit L(A) = L(G). Der PDA A arbeitet mit nur einem Zustand q 0, besitzt das Kelleralphabet

Mehr