Klammersprache Definiere

Größe: px
Ab Seite anzeigen:

Download "Klammersprache Definiere"

Transkript

1 Klammersprache w=w 1...w n {(,)}* heißt korrekt geklammert, falls die Anzahl ( ist gleich der Anzahl ). in jedem Anfangsstück w 1,...,w i (i n) ist die Anzahl ( nicht kleiner als die Anzahl ). Definiere L={w {(,)}* w korrekt geklammert} Nicht regulär Folie 350f. Kontextfreie Grammatik: S SS, S (S), S ε. 485

2 Bsp: L={w w 0 = w 1 } w 0 : Anzahl Nullen in w, w 1 : Anzahl Einsen in w. Übungsaufgabe: Zeige, dass L nicht regulär. Kontextfreie Grammatik G: V={S}, Σ={0,1} P={S ε, S 0S1S, S 1S0S} Korrektheit: G erzeugt nur Wörter aus L. G erzeugt alle Wörter aus L. L(G) L L L(G) 486

3 Beispiel Ableitung von S 1S0S 11S0S0S 1100S 11001S0S S 1 S 0 S Syntaxbaum 1 S 0 S 1 S 0 S ε ε ε ε P={S ε, S 0S1S, S 1S0S} 487

4 Korrektheit: L(G) L G erzeugt nur Wörter aus L : folgt, da bei jedem Ableitungsschritt gleichviele Nullen wie Einsen erzeugt werden. P={S ε, S 0S1S, S 1S0S} 488

5 Korrektheit: L L(G) Induktion über w w =0 w=ε L(G). w >0, o.b.d.a. beginne w mit 0. Sei i>0 kleinste Zahl m. w 1 w i 0 = w 1 w i 1. Dann gilt: w 1 =0, w i =1, w 2 w i 1 0 = w 2 w i 1 1 und w i+1 w n 0 = w i+1 w n 1. Also w 2 w i 1 L und w i+1 w n L und S 0S1S * 0w 2 w i 1 1w i+1 w n. I.V. 489

6 Syntaxbaum Graphische Darstellung der Ableitung eines Wortes Wurzel: markiert mit S. Blätter: markiert mit Terminalen/Buchstaben oder ε. Innere Knoten: markiert mit Variablen A Nachfolger entsprechen Anwendung einer Ableitungsregel A α 1 α r. 490

7 Anmerkungen Zu jeder Ableitung gibt es einen Syntaxbaum. Zu einem Syntaxbaum kann es mehrere (äquivalente) Ableitungen geben. Linksableitung: Ableitung, bei der die jeweils linkeste Variable ersetzt wird. Rechtsableitung: Ableitung, bei der die jeweils rechteste Variable ersetzt wird. 491

8 Eindeutigkeit und Mehrdeutigkeit Definition T6.1.5: Eine kontextfreie Grammatik G heißt eindeutig, wenn es für jedes Wort w L(G) nur einen Syntaxbaum gibt. Eine kontextfreie Sprache heißt eindeutig, wenn es für sie eine eindeutige kontextfreie Grammatik gibt, anderenfalls heißt sie inhärent mehrdeutig. 492

9 Beispiel: Klammersprache Die Grammatik S SS, S (S), S ε ist nicht eindeutig. Beispiel: ()()() Linksableitungen: S SS SSS (S)SS ()SS ()(S)S ()()S ()()(S) ()()() S SS (S)S ()S ()SS ()(S)S ()()S ()()(S) ()()() Eindeutige Grammatik: S (S)S, S ε 493

10 Weiteres Beispiel S ε, S 0S1S, S 1S0S ist mehrdeutig: das Wort hat die Linksableitungen S 0S1S 01S0S1S 011S0SS0S1S * und S 0S1S 01S 011S0S 0110S 01100S1S * Etwas schwieriger: Konstruktion einer eindeutigen Grammatik. 494

11 Beispiel Die Grammatik S 01, S 0S1 für L={0 n 1 n n 1} ist eindeutig. 495

12 Motivation Nahe liegende Vermutung: Syntaxanalyse für eindeutige Grammatiken einfacher. Verschiedene Ableitungsbäume haben bei Programmiersprachen häufig verschiedene Semantiken, Beispiel: dangling else. 496

13 Chomsky-Normalform Ziel: einfachere Algorithmen für kontextfreie Grammatiken. Definition T6.2.1: Eine kontextfreie Grammatik ist in Chomsky-Normalform, wenn alle Ableitungsregeln von der Form A BC oder A a (mit A,B,C V, a T) sind. 497

14 Chomsky-Normalform Besonderheit: ε kann nicht erzeugt werden. Im Folgenden Umformung G G Kontextfreie Kontextfreie Grammatik Grammatik in Chomsky-Normalform mit L(G ) = L(G) {ε} 498

15 Umformung Sei s(g) die Größe (Anzahl der Buchstaben in allen Produktionen) der kontextfreien Grammatik G. Satz T6.2.2: Eine kontextfreie Grammatik G kann in Zeit O(s(G) 2 ) in Chomsky- Normalform umgeformt werden. Beweis: Umformung in 4 Schritten 499

16 Schritt 1: Separation Ziel: Auf den rechten Seiten der Regeln entweder 1 Terminal oder nur Variablen. Dazu: erzeuge für jedes a T eine neue Variable Y a und die Regel Y a a, Ersetze auf jeder rechten Seite einer Regel a durch Y a. 500

17 Beispiel für Schritt 1 A AbcDeF (mit A,D,F V, b,c,e T) wird ersetzt durch A AY b Y c DY e F, Y b b, Y c c, Y e e 501

18 Schritt 2: Lange rechte Seiten A B 1 B m (mit m 3, A,B 1,,B m V) wird ersetzt durch A B 1 C 1 C 1 B 2 C 2 C i B i+1 C i+1 (für 1 i m 3) C m 2 B m 1 B m Dabei sind C 1,,C m 2 neue Variablen, die nur für die betrachtete Regel eingeführt werden. 502

19 Resultat der Schritte 1 und 2 Nur noch Regeln der Form: A ε (ε-regeln) A B (Kettenregeln) A BC (o.k.) A a (o.k.) Bisher: Grammatik hat sich nur um konstanten Faktor vergrößert. 503

20 Schritt 3: Beseitigung der ε-regeln 1. Teilschritt: Finde alle Var. A mit A ε. * Initialisierung: Variablen A mit Regel A ε in Mengen V und Q einfügen. Solange Q Variable B aus Q entnehmen. Auf allen rechten Seiten von allen Regeln B durch ε ersetzen. Falls neue Regel C ε entsteht (d.h. C V ): C in V und Q aufnehmen. Ausgabe: V 504

21 Korrektheit des 1. Teilschritts Behauptung: V enthält genau die Variablen A mit A * ε. offensichtlich. Induktion über die Länge l der kürzesten Ableitung A * ε. l=1: Es gibt die Regel A ε. Dann wird A in V eingefügt. l>1: Dann A BC * ε oder A B * ε. Dann haben B (und C) ε-ableitungen mit Länge <l und kommen in V. A wird in V aufgenommen. 505

22 Beseitigung der ε-regeln, 2. Teil Entferne alle ε-regeln. Für jede Regel A BC: Falls B V : erzeuge Regel A C, falls C V : erzeuge Regel A B. Resultat: Grammatik vergrößert sich nur um konstanten Faktor. 506

23 Schritt 4: Entf. der Kettenregeln 1. Teilschritt: Äquivalente Variablen entfernen. Erzeuge Graphen: Knoten: Variablen Kante A B, falls Kettenregel A B vorh. Suche mit DFS nach Kreisen A 1 A 2 A 3 A r A 1 Dann sind A 2,,A r zu A 1 äquivalent und können überall durch A 1 ersetzt werden. 507

24 Schritt 4: Entf. der Kettenregeln 2. Teilschritt: Kettenregeln beseitigen Ber. Graphen d. Kettenregeln, ist kreisfrei. Ber. topologische Ordnung A 1,,A r. For i:=r downto 1 do Seien A i α 1,,A i α s die Regeln mit linker Seite A i. Falls A j A i mit j<i vorhanden, lösche A j A i und erzeuge A j α 1,,A j α s. 508

25 Beispiel für den 2. Teilschritt Graph der Kettenregeln (auf A,B,C,D,E): 1 A 3 D a C B E b 2 RS Topologische Nummerierung berechnen Regeln für E: C b, C RS, B b, B RS Regeln für D: C a, (C b) 4 5 Regeln für C: A a, A b, A RS, B a, B b, B RS 509

26 Größenänderung im 4. Schritt Sei A 1,,A r die topol. Ordnung der Var. Im ungünstigen Fall: Alle A r -Regeln werden zu A 1 -,...,A r 1 - Regeln, alle A r 1 -Regeln werden zu A 1 -,...,A r 2 - Regeln, usw. Höchstens Quadrierung der Größe. 510

27 Folgerung Zu jeder kontextfreien Grammatik G gibt es eine äquivalente kontextsensitive Grammatik, also L 2 L 1. Chomsky-Hierarchie L 3 L 2 L 1 L 0 {0 n 1 n } Alle kontextsens. Sprachen sind rekursiv. {w w a = w b = w c } 511

28 Das Wortproblem [T6.3] Wortproblem für kontextfreie Grammatiken Eingabe: Eine kontextfreie Grammatik G, ein Wort w. Frage: Ist w L(G)? Motivation: Entwurf v. Programmiersprachen Wortproblem Programm syntaktisch korrekt? 512

29 CYK-Algorithmus benannt nach Cocke, Younger, Kasami löst das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform Ansatz: Dynamische Programmierung Rechenzeit O(n 3 P ) zu langsam für Compiler 513

30 CYK-Algorithmus Eingabe: Wort w 1...w n Definiere: V i,j : Menge der Variablen A mit A * w i...w j. Idee: Berechne die Mengen V i,j mit wachsender Differenz j i und speichere die berechneten Mengen. i=j. Dann: V i,i = {A es gibt die Regel A w i } 514

31 CYK-Algorithmus j>i. Dann kann w i...w j aus A hergeleitet werden, wenn A B C * w i... w k w k+1... w j für eine passende Regel A BC und passenden Schnittpunkt k {i,,j 1}. Also: V i,j = { A Regel A BC und k {i,,j 1} mit B V i,k und C V k+1,j } * V i,j : Menge der Variablen A mit A * w i...w j. 515

32 CYK-Algorithmus Entscheidung: w 1...w n L(G) S V 1,n. Rechenzeit: Es sind O(n 2 ) Mengen V i,j zu berechnen. Jede Berechnung kostet O(n P ) Rechenzeit. Rechenzeit O(n 3 P ). Durchprobieren aller k V i,j : Menge der Variablen A mit A * w i...w j. Durchprobieren aller Regeln 516

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

Teil 4: Grammatiken und Syntaxanalyse. (Kapitel T5-T7)

Teil 4: Grammatiken und Syntaxanalyse. (Kapitel T5-T7) Teil 4: Grammatiken und Syntaxanalyse (Kapitel T5-T7) Grammatiken und die Chomsky- Hierarchie [T5.1] Ziel: Regelsysteme zur Erzeugung von Sprachen. Beispiel: arithmetische Ausdrücke können definiert werden

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO).

Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO). 1 Grammatiken Autor: Tilman Blumenbach Letzte Änderung: 28. Juni 2012 18:15 Ziel von Grammatiken Wollen die Struktur von Sprachen modellieren und charakterisieren. Beispiel Ein Satz der deutschen Sprache

Mehr

4.2 Die Chomsky Normalform

4.2 Die Chomsky Normalform 4.2 Die Chomsky Normalform Für algorithmische Problemstellungen (z.b. das Wortproblem) aber auch für den Nachweis von Eigenschaften kontextfreier Sprachen ist es angenehm, von CFG in Normalformen auszugehen.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

Theoretische Informatik I (Grundzüge der Informatik I)

Theoretische Informatik I (Grundzüge der Informatik I) Theoretische Informatik I (Grundzüge der Informatik I) Literatur: Buch zur Vorlesung: Uwe Schöning, Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag, Heidelberg/Berlin, 4. Auflage, 2001.

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Alphabet, formale Sprache

Alphabet, formale Sprache n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l

Mehr

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)

Mehr

6 Kontextfreie Grammatiken

6 Kontextfreie Grammatiken 6 Kontextfreie Grammatiken Reguläre Grammatiken und damit auch reguläre Ausdrücke bzw. endliche Automaten haben bezüglich ihres Sprachumfangs Grenzen. Diese Grenzen resultieren aus den inschränkungen,

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

2.6 Deterministisches Top-Down-Parsen

2.6 Deterministisches Top-Down-Parsen 48 2.6 Deterministisches Top-Down-Parsen Als nächstes wollen wir uns mit Methoden zur syntaktischen Analyse befassen. Der lexikale canner eines Compilers liest die Eingabe Zeichen für Zeichen und erzeugt

Mehr

Die Chomsky Hierarchie

Die Chomsky Hierarchie Die Chomsky Hierarchie Slide 1 Die Chomsky Hierarchie Hans U. Simon (RUB) mit Modifikationen von Maike Buchin (RUB) Lehrstuhl Mathematik und Informatik Homepage: http://www.ruhr-uni-bochum.de/lmi Die Chomsky

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 2. Grammatiken und die Chomsky-Hierarchie Beispiel: Syntaxdefinition in BNF :=

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten Inhalt 1 Einführung 2 Automatentheorie und Formale Sprachen Grammatiken Reguläre Sprachen und endliche Automaten Kontextfreie Sprachen und Kellerautomaten Kontextsensitive und Typ 0-Sprachen 3 Berechenbarkeitstheorie

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische nformatik inheit 3 Kontextfreie Sprachen 1. Kontextfreie Grammatiken 2. Pushdown Automaten 3. igenschaften kontextfreier Sprachen Theoretische nformatik inheit 3.1 Kontextfreie Grammatiken

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Fachseminar Compilerbau

Fachseminar Compilerbau Fachseminar Compilerbau WS 08/09 Matthias Schiller Syntaktische Analyse 1. Prinzip der Top-Down-Analyse 2. LL(1)-Grammatiken Modell-Vorstellung Der Scanner liefert als Ergebnis der lexikalischen Analyse,

Mehr

Pumping-Lemma. Beispiel. Betrachte die kontextsensitive Grammatik G mit den Produktionen. S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc.

Pumping-Lemma. Beispiel. Betrachte die kontextsensitive Grammatik G mit den Produktionen. S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc. Pumping-Lemma Beispiel Betrachte die kontextsensitive Grammatik G mit den Produktionen S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc. Sie erzeugt z.b. das Wort aabbcc: S asbc aabcbc aabhbc aabhcc

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Beschreibungskomplexität von Grammatiken Definitionen

Beschreibungskomplexität von Grammatiken Definitionen Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 5: Reguläre Ausdrücke und Grammatiken schulz@eprover.org Software Systems Engineering Reguläre Sprachen Bisher: Charakterisierung von Sprachen über Automaten

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume

a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume Kap 3: Grammatiken Chomsky-Hierarchie 32 Kap 3: Grammatiken Kontextfreie 33 a n b n c n ist kontextsensiti Beispiel 3111 modifizieren: Σ = {a, b, c G = (Σ, V, P, X ) V = {X, Y, Z P : X ε X axyz ZY YZ ay

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Dr.-Ing. Sven Hellbach S. Hellbach Grundlagen der Informatik II Abbildungen entnommen aus: Dirk W. Hoffmann: Theoretische Informatik; Hanser Verlag 2011, ISBN: 978-3-446-42854-6

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

FORMALE SYSTEME. Sprachen beschreiben. Wiederholung. Wie kann man Sprachen beschreiben? 2. Vorlesung: Grammatiken und die Chomsky-Hierarchie

FORMALE SYSTEME. Sprachen beschreiben. Wiederholung. Wie kann man Sprachen beschreiben? 2. Vorlesung: Grammatiken und die Chomsky-Hierarchie Wiederholung FORMALE SYSTEME 2. Vorlesung: Grammatiken und die Chomsky-Hierarchie Markus Krötzsch Formale Sprachen sind in Praxis und Theorie sehr wichtig Ein Alphabet ist eine nichtleere, endliche Menge

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

6 Modellierung von Strukturen 6.1 Kontextfreie Grammatiken

6 Modellierung von Strukturen 6.1 Kontextfreie Grammatiken 6 Modellierung von Strukturen 6.1 Kontextfreie Grammatiken Mod-6.1 Kontextfreie Grammatik (KFG): formaler Kalkül, Ersetzungssystem; definiert Sprache als Menge von Sätzen; jeder Satz ist eine Folge von

Mehr

Grammatiken und die Chomsky-Hierarchie

Grammatiken und die Chomsky-Hierarchie Grammatiken und die Chomsky-Hierarchie Def.: Eine Grammatik G=(Σ,V,S,R) besteht aus endlichem Alphabet Σ endlicher Variablenmenge V mit V Σ= Startsymbol SєV endlicher Menge R с (V Σ) + x(v Σ)* von Ableitungsregeln

Mehr

Tutoraufgabe 1 (ɛ-produktionen):

Tutoraufgabe 1 (ɛ-produktionen): Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Proseminar 1999/2000

Proseminar 1999/2000 1 1 Proseminar 1999/2000 2 Thema Syntaktische Analyse von Programmiersprachen Ausarbeitung von Kapitel II Kontextfreie Grammatiken Autor Michael Bergau Student der Informatik und Mathematik an der Universität

Mehr

Kapitel: Kontextfreie Sprachen. Kontextfreie Sprachen 1 / 78

Kapitel: Kontextfreie Sprachen. Kontextfreie Sprachen 1 / 78 Kapitel: Kontextfreie Sprachen Kontextfreie Sprachen 1 / 78 Die Syntax von Programmiersprachen Wie lässt sich die Syntax einer Programmiersprache definieren, so dass die nachfolgende Syntaxanalyse effizient

Mehr

Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN

Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN Universität Heidelberg / Institut für Informatik 7. Juli 24 Prof. Dr. Klaus Ambos-Spies Nadine Losert Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 2 LÖSUNGEN Aufgabe Verwenden

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Kapitel 5: Syntax-Analyse

Kapitel 5: Syntax-Analyse Kapitel 5: Syntax-Analyse Aufgabe Die Token-Folge wird strukturiert in Anweisungen, Ausdrücke etc., um die Semantische Analyse und Code-Erzeugung zu ermöglichen Themen Kontextfreie Grammatik Äquivalente

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. Chomsky-Grammatiken 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen

Mehr

Sprachen und Programmiersprachen

Sprachen und Programmiersprachen Sprachen und Programmiersprachen Natürliche Sprachen versus Programmiersprachen / Spezifikationssprachen Syntax legt die grammatikalische Korrektheit fest. Semantik legt die Bedeutung von syntaktisch korrekten

Mehr

Motivation natürliche Sprachen

Motivation natürliche Sprachen Motivation natürliche Sprachen (Satz) (Substantivphrase)(Verbphrase) (Satz) (Substantivphrase)(Verbphrase)(Objektphrase) (Substantivphrase) (Artikel)(Substantiv) (Verbphrase) (Verb)(Adverb) (Substantiv)

Mehr

Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht

Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht Zusammenhang: Formale Sprache Grammatik Formale Sprache kann durch Grammatik beschrieben werden. Zur Sprache L = L(G) gehören nur diejenigen Kombinationen der Zeichen des Eingabealphabets, die durch die

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2009/10 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2009/10 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2009/10 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; inführung rsetzungsverfahren:

Mehr

16. Die Chomsky-Hierarchie

16. Die Chomsky-Hierarchie 16. Die Chomsky-Hierarchie Die Chomsky-Sprachen sind gerade die rekursiv aufzählbaren Sprachen: CH = RA Da es nicht rekursive (d.h. unentscheidbare) r.a. Sprachen gibt, ist das Wortproblem für Chomsky-Grammatiken,

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Grundbegriffe. Grammatiken

Grundbegriffe. Grammatiken Grammatiken Grammatiken in der Informatik sind ähnlich wie Grammatiken für natürliche Sprachen ein Mittel, um alle syntaktisch korrekten Sätze (hier: Wörter) einer Sprache zu erzeugen. Beispiel: Eine vereinfachte

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 6. Kontextfreie Sprachen Theoretische Informatik Mitschrift Typ-2-Grammatiken: Regeln der Form A mit A N und N * Beispiel: Grammatik für arithmetische Ausdrücke G= {E,T,F },{,,,,a}, P, E, P : E ET T T

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München akultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 6 11. Juni 2010 Einführung in die Theoretische

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2012 17. DIE KONTEXTFREIEN SPRACHEN II: ABSCHLUSSEIGENSCHAFTEN, MASCHINENCHARAKTERISIERUNG, KOMPLEXITÄT Theoretische

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

liefern eine nicht maschinenbasierte Charakterisierung der regulären

liefern eine nicht maschinenbasierte Charakterisierung der regulären Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen

Mehr

Werkzeuge zur Programmentwicklung

Werkzeuge zur Programmentwicklung Werkzeuge zur Programmentwicklung B-15 Bibliothek Modulschnittstellen vorübersetzte Module Eingabe Editor Übersetzer (Compiler) Binder (Linker) Rechner mit Systemsoftware Quellmodul (Source) Zielmodul

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 20.12.07 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Rückblick Semi-Thue-Systeme Ein Semi-Thue-System besteht

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 17. DIE CHOMSKY-HIERARCHIE Theoretische Informatik (SoSe 2011) 17. Die Chomsky-Hierarchie 1 / 15 Einleitung Die

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Theoretische Informatik. Alphabete, Worte, Sprachen

Theoretische Informatik. Alphabete, Worte, Sprachen Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele

Mehr

Speicherplatz-Komplexität 1 / 30

Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Tutorium zur theoretischen Informatik Übungsblatt 4 (2006-12-13)

Tutorium zur theoretischen Informatik Übungsblatt 4 (2006-12-13) Ein verständiges Herz erwirbt Kenntnisse, und das Ohr der Weisen lauscht dem Wissen. (Die Bibel, "Buch der Sprüche", Kapitel 18 Vers 15) Inhalt 1. Empfehlenswerte Referenzen 2. Aufgabe 1 CF Grammatik für

Mehr

Von der Grammatik zum AST

Von der Grammatik zum AST Von der Grammatik zum AST Welche Eigenschaften soll ein Parser haben? Wann ist eine Grammatik eindeutig? Wie sollte eine Grammatik aussehen? Theoretischer Hin tergrund: FIRST, FOLLOW Einschränkungen von

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

Formale Sprachen, reguläre und kontextfreie Grammatiken

Formale Sprachen, reguläre und kontextfreie Grammatiken Formale Sprachen, reguläre und kontextfreie Grammatiken Alphabet A: endliche Menge von Zeichen Wort über A: endliche Folge von Zeichen aus A A : volle Sprache über A: Menge der A-Worte formale Sprache

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit Die Programmiersprache LOOP (i) Syntaktische Komponenten: Variable: x 0, x 1, x 2,... Konstanten: 0, 1, 2,... Trennsymbole: ; := Operationszeichen: + Schlüsselwörter: LOOP DO END (ii) LOOP-Programme: Wertzuweisungen:

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),

Mehr

1 Die Chomsky-Hirachie

1 Die Chomsky-Hirachie Hans U. imon Bochum, den 7.10.2008 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik W 09/10 Vorbemerkung: Hier findet sich eine ammlung von Beispielen und Motivationen zur Vorlesung Theoretische

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b}

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} Klausuraufgaben 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} L = {a n b m n > 0, m > 0, n m} a) Ist L kontextfrei? Wenn ja, geben Sie eine kontextfreie Grammatik für L an. Wenn nein,

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr