1. Welche Länge hat ein Kupferstab bei 0 C, wenn er bei 18 C eine Länge von 200 mm hat? -6-1

Größe: px
Ab Seite anzeigen:

Download "1. Welche Länge hat ein Kupferstab bei 0 C, wenn er bei 18 C eine Länge von 200 mm hat? -6-1"

Transkript

1 Thermische Ausdehnung 1. Welche Länge hat ein Kupferstab bei 0 C, wenn er bei 18 C eine Länge von 00 mm hat? ( a = K ). Um wie viel vergrössert sich die Fläche einer rechteckigen Tafel aus Kupferblech (0.8 m x 1.5 m) beim Erwärmen von 5 C auf 45 C?. Ein 1 Liter - Glaskolben wird bei 10 C bis zum Rand mit Alkohol gefüllt. Wieviel Alkohol wird überlaufen, wenn die Temperatur auf 0 C ansteigt? ( g = K, a = K ) Alk Glas 4. Ein Metallstab von 0.8 m Länge wird um 80 C erwärmt und dehnt sich dabei auf m aus. Wie gross ist der Längenausdehnungskoeffizient? 5. Bei einem Temperaturanstieg von 0 C auf 0 C steigt die Quecksilbersäule eines Thermometers um genau cm. ie Kapillare hat innen eine Querschnittsfläche von 0. mm ( g Hg = K ) a) Um wie viel ändert sich das Volumen des Quecksilbers bei dieser Erwärmung? b) Welches Volumen nimmt das vorhandene Quecksilber bei 0 C ein? 6. Ein Eisendraht wird bei 0 C zwischen zwei Pfosten im Abstand von 5 m gespannt. In der Mitte hängt ein kleines Gewicht. Nimm an, der raht sei am Anfang gerade gespannt. Jetzt erwärmt sich dieser raht auf 50 C. Um welche Höhe sinkt das Gewicht? ( a Fe = 1110 K ) 7. In untenstehender Skizze bedeuten AB und C zwei Eisenstäbe gleicher Länge, BC ist ein Zinkstab. In welchem Verhältnis müssen die Längen l 1 und l stehen, wenn der Abstand d bei einer Temperaturänderung erhalten bleiben soll? ( a Zn = K ) r 8. Berechne die ichte von Silber bei 10 C. ( = kg/m, a = K ) Ag 9. Auf welche Temperatur ist eine Eisenkugel, welche bei 0 C einen urchmesser von 19 mm hat, zu erhitzen, damit sie in einem Metallring von mm Öffnung gerade stecken bleibt? Um welchen Betrag hat sich dabei das Kugelvolumen vergrössert?

2 Ideale Gase (Zustandsgleichung) 10. Welches Volumen nehmen (= 1 Mol) ideale Gasteilchen bei 0 C und 101'5 Pa ein? 11. Ein ideales Gas nimmt bei 100 C und.5 bar ein Volumen von Liter ein. Wie viele Teilchen enthält das Gas? 1. Eine bestimmte Gasmenge habe bei 0 C ein Volumen von Liter bei einem ruck von 101'5 Pa. Sie werde auf 60 C erhitzt und auf 1.5 Liter komprimiert. Wie hoch ist nun der ruck? g Kohlendioxid nimmt bei einem ruck von 1. bar ein Volumen von 55 Liter ein. (44 g Kohlendioxid enthalten CO Moleküle) a) Berechne die Temperatur, welche sich im thermischen Gleichgewicht einstellt. b) Welcher ruck stellt sich ein, wenn das Volumen bei gleicher Temperatur auf 80 Liter erhöht wird? 14. Auf einer Bergspitze (p 1 = 0.9 bar) werden bei einer Temperatur von 0 C 1000 Liter Luft in eine Stahlflasche von 50 Liter Volumen gepresst. er Enddruck in der Flasche beträgt p = 0 bar. Welche Temperatur hat die Luft in der Flasche? 15. Ein Gerätetaucher verwendet eine Pressluft-Flasche mit 00 bar ruck. as Innenvolumen der Flasche beträgt 15 Liter. a) Wie gross wäre das Luft-Volumen bei 1 bar und derselben Temperatur? b) Wie viele Liter Luft von 1 bar könnten der Flasche effektiv entnommen werden? c) Ein Taucher atmet an der Wasseroberfläche bei leichter Betätigung zirka 0 l Luft von 1 bar pro Minute ein. Wie lange reicht also der Vorrat? Wärmekapazität 16. a) Auf welche Geschwindigkeit könnte man 1 kg Wasser mit 4187 J beschleunigen? b) Um welche Höhe könnte man 1 kg Wasser mit 4187 J heben? c) Wie lange bräuchte ein Mensch bei einer auerleistung von 100 W, um z.b. mittels Reibung 1 Liter Wasser von 14 C auf 95 C zu erwärmen? ( c W = 4187J kg K ) 17. Ein Becher Joghurt nature enthält ca. 00 kj Energie. Um wie viel könnte man (theoretisch) mit dieser Energie a) kg Wasser erwärmen? b) kg Gold erwärmen? ( c Gold = 19J kg K ) 18. Ein urchlauferhitzer erwärmt pro Minute 6 Liter Wasser von 10 C auf 50 C. Welche Leistung hat er? 19. Wie lange dauert es, mit einer Eisen-Kochherdplatte ( m = 0.5kg, c = 450J kg K, P= kw ) 1 Liter Wasser in einer Alupfanne ( m erwärmen? Alu Alu Platte Fe = 0.kg, c = 896J kg K ) von 0 C auf 95 C zu

3 Mischungsgleichung 0. rei Mengen Wasser werden gemischt. Welche Mischtemperatur ergibt sich? m = 1kg, J = 0 C, m = kg, J = 40 C, m = kg, J = 60 C) ( Ein Eisenstück von 90 C wird in Liter Wasser von 15 C geworfen und vermag dieses um.5 C zu erwärmen. Welche Masse hat das Eisenstück?. u kochst 89 g Aluminium 10 min lang in einem Wasserbad von 97. C und wirfst es dann in einen Kupfertopf ( mcu = 146g, ccu = 8J kg K ). er Kupfertopf ist mit 15 g Wasser gefüllt. Sowohl Kupfertopf wie auch das enthaltene Wasser haben eine Anfangstemperatur von 17 C. Nach dem Einwerfen des Aluminiumklotzes steigt die Temperatur von Wasser und Topf auf 6.5 C. Berechne aus diesen Werten die spezifische Wärmekapazität von Aluminium. ( c W = 4187J kg K ) Vermischte Aufgaben. Welche Temperaturerhöhung könnte in einem Wasserfall von 0 m Höhe maximal auftreten, wenn das Wasser am oberen Ende schon eine Geschwindigkeit von 4 m/s hat? 4. Ein Bleigeschoss mit anfangs 0 C fange gerade an zu schmelzen, wenn es inelastisch auf eine Platte aufschlägt. Nimm an, die gesamte kinetische Energie des Projektils gehe beim Aufprall in seine innere Energie über und bewirke dadurch die Temperaturerhöhung, die zum Schmelzen führt. Wie hoch war die Geschwindigkeit des Projektils? ( J = 7.4 C, c = 19J kg K ) schmelz Pb

4

5 Lösungen l 0.m 1. l = l1( 1+ a T) fi l1 = = = m 1+ a T K 18K. ( a ) A= A - A = A 1+ T - A = A a T = 0.8m1.5m14 10 K 40K = m. ( ) V = V - V = V g T -V g T = V T g - a Alk Glas 1 Alk 1 Glas 1 Alk Glas = 1dm 0K K K = dm = m ( 1 ) l = l + a T = l + l a T fi l a T = l -l l -l m K 1 fi a = = = l1 T 0.8m 80K a) V = h A= 0.0m 10 m = 410 m = 4mm -7-9 V 410 m b) V = V T fi V = = = m = cm K 0K -9 1 ghg ghg T ( 1 a ) l = l + T 1 Fe Êl ˆ Êl1ˆ h l l1 l1 Fe T l1 l1 Fe T ( ( a )) ( a ) = Á - Á = - = 1+ - = = Ë Ë 5m = ( K 0K) - 1 = 0.1m 7. l l 1 Ges.:?,sodass d konst d 0 = = = d = l - l = l a T -l a T = Fe Zn l a fi = fi = = 1 Zn l1 afe l azn l afe

6 8. r r r kg m = = = = kg m K 10K - 0C 0C 10 C + gag T + aag T ( 1 ) d = d + a T = d + d a T fi d a T = d -d 1 Fe 1 1 Fe 1 Fe 1 d -d 0.04mm 1 fi T = = = d1 afe 19mm K 191.4K 4p Êd1 ˆ -8 1 afe K 191.4K.7 10 m V = V T = Á = Ë 10. V N k T = = = = p 1015Pa J K 7K 0.04m.4Liter pv.5 10 Pa 0.00m N= = = k T J K 7K Teilchen 1. p V p V V T m K 5 5 = fi p = p1 = Pa = Pa = 1.48bar T1 T V T m 0K g a) N = = g 4 5 pv Pa 0.055m T= = = 49.4K 4 - N k J/K V 0.055m 5 4 b) p V = pv fi p = p = Pa = Pa = 0.85bar V 0.080m 14. p V p V p V Pa 0.05m = fi T = T1 = 5 9K = 6K T1 T p1 V Pa 1m 15. V p o o m 00bar a) Vo po = V1 p1 fi V1 = = = m = 000Liter (@ 1bar) p1 1 bar b) 985 Liter (@ 1bar),15Liter kommen "von alleine" nicht raus (es sei denn, man nimmt eine Pumpe) c) V 985Liter t1 = = = min v 0Liter/min

7 16. m v E 4187J m a) E = fi v= = = 91.5 m 1kg s E 4187J b) E = m g h fi h= = = 46.8m m g 1kg 9.81m/s W = P t W cw m J 4187J kg K 1kg 81K c) fi t = = = = 91s Q= c W Q w m J = P P 100W 17. Q= E E fi J = Q= c m J c m E 00kJ a) J = = = 5.8K 4187J kg K kg w cw mw E 00kJ b) J = = = 116.8K 19J kg K kg G cg mg W Q cw mw J 4187J kg K 6kg 40K 18. P= = = = = 16.75kW t t t 60s Q cw mw + cfe mfe + calu malu J 19. t = = = 176s P P 0. Mischungsgleichung fi Q1 + Q + Q = 0 fi m c ( J - J ) + m c ( J - J ) + m c ( J - J ) = 0 1 w m 1 w m w fi J m + m + m -m J -m J -m J = 0 m m J + m J + m J 1 1 fi Jm = = m1 + m + m 46.7 C m 1. Q Fe =J m c - = m c - m = ( J J ) ( J J ) Fe Fe Fe m w w m w Q w c J kg 4187J kg K.5K w w mfe = = = 0.91kg cfe ( JFe -Jm) 450J kg K ( 90 C-18.5 C). Q + Q + Q = 0 Alu Cu w ( J J ) ( J J ) ( J J ) m c - + m c - + m c - = 0 Alu Alu m Alu Cu Cu m Cu w w m w c Alu ( J J ) ( J J ) malu ( Jm -JAlu ) 0.089kg ( 6.5 C- 97. C) -m c - -m c - = Cu Cu m Cu w w m w kg 8 J kg K 6.5 C - 17 C kg 4187 J kg K 6.5 C- 17 C = = 87J kg K

8 . Energieerhaltung: m v Q= m g h+ fi m cw J = m g h+ 0.5 v J = = C c g h+ m v w 4. m v m Energieerhaltung: = Q= m cpb J fi v= cpb J = 77 s

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Ausdehnung und Temperatur

Ausdehnung und Temperatur Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Physik 4 (Wärmelehre) Dozent: - Brückenkurs Mathematik / Physik 2016 Modul: Physik

Mehr

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik, Inhalt VE 2.1: Temperatur und Wärmeausdehnung VE 2.2: Zustandsgleichung idealer Gase VE 2.3: Erster

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

Lösungen Serie 16: Kalorimetrie

Lösungen Serie 16: Kalorimetrie en Serie 16: Kalorimetrie Aufgabe 16.1 A Sie wollen in einem Kochtopf ( =0.6, =0.4 ( =4.182 k K gegeben: =0.6 =0.4 k K ) einen halben Liter Wasser ) von 10 auf 40 erwärmen. Welche Wärmemenge ist dazu notwendig?

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik für Nicht-Physikerinnen und Nicht-Physiker Prof. W. Meyer 5. Juni 2014 Wärmelehre Lernziele Alle Körper haben eine Temperatur Die Temperatur

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG)

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG) Datei Alugefaess.docx Kapitel Thermodynamik ; thermische Ausdehnung Titel Aluminiumgefäß randvoll gefüllt Hinweise: Orear: Kap. 12.4, 12.5, Hering: Kap. 3.3.1 Dobrinski: Kap. 2.3 Alonso Finn: Kap. 13.7-9

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Thermische Ausdehnung I. Längenausdehnung Die Längenausdehnung fester Körper ist bei nicht zu großen Temperaturschwankungen proportional zur Temperatur: Die Konstante α heißt linearer Ausdehnungskoeffizient

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

E X P E R T E N V O R L A G E

E X P E R T E N V O R L A G E 2012 Qualifikationsverfahren Lüftungsanlagenbauer/-in EFZ Pos. 2.1 Berufskenntnisse schriftlich Fachrechnen Teil 2 E X P E R T E N V O R L A G E Zeit für Teil 2 Bewertung Hilfsmittel 60 Minuten für 15

Mehr

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden

Mehr

Tutorium Hydromechanik I und II

Tutorium Hydromechanik I und II Tutorium Hydromechanik I und II WS 2017/2018 12.03.2018 Prof. Dr. rer. nat. M. Koch Vorgelet von: Ehsan Farmani 1 Aufgabe 46 Wie groß ist die relative Änderung (%) vom Druck, wenn a) wir die absolute Temperatur

Mehr

Übungsprüfung A zur Physik-Prüfung vom 19. April 2012

Übungsprüfung A zur Physik-Prüfung vom 19. April 2012 Übungsprüfung A zur Physik-Prüfung vom 19. April 2012 1. Temperatur-Umrechnung (6 Punkte) a) Die tiefste natürliche Temperatur, die jemals auf der Erde gemessen wurde, beträgt 89.2 C (Wostok-Station in

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Technische Thermodynamik

Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 6., überarbeitete und erweiterte Auflage 1.3 Thermische Zustandsgrößen 13 1 1.3.2 Druck Beispiel 1.2 In einer Druckkammer unter Wasser herrscht ein

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #10 30/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Thermisches Gleichgewicht Soll die Temperatur geändert werden, so muss dem System Wärme (kinetische

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Tutorium Physik 2. Fluide

Tutorium Physik 2. Fluide 1 Tutorium Physik 2. Fluide SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 7. FLUIDE 7.1 Modellvorstellung Fluide:

Mehr

( ) ( ) J =920. c Al. m s c. Ü 8.1 Freier Fall

( ) ( ) J =920. c Al. m s c. Ü 8.1 Freier Fall Ü 8. Freier Fall Ein Stück Aluminium fällt aus einer Höhe von z = 000 m auf den Erdboden (z = 0). Die Luftreibung wird vernachlässigt und es findet auch kein Energieaustausch mit der Umgebung statt. Beim

Mehr

Übungsprüfung A zur Physik-Prüfung vom 19. April 2012

Übungsprüfung A zur Physik-Prüfung vom 19. April 2012 Übungsprüfung A zur Physik-Prüfung vom 19. April 2012 1. Temperatur-Umrechnung (6 Punkte) a) Die tiefste natürliche Temperatur, die jemals auf der Erde gemessen wurde, beträgt 89.2 C (Wostok-Station in

Mehr

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli Ideale Gase 1 Empirische Gasgesetze, Einblick in die Geschichte der Naturwissenschaften. Wie hängt das Volumen eines Gases von Druck, Temperatur und Stoffmenge ab? Definition Volumen V: Das Volumen V ist

Mehr

Typische Fragen. Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische Energien 2. Gasgesetze 3. Innere Energie 4. Aggregatszustandsänderungen

Typische Fragen. Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische Energien 2. Gasgesetze 3. Innere Energie 4. Aggregatszustandsänderungen 28.05.2004 - Seite 1 von 7 Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische nergien 2. Gasgesetze 3. Innere nergie 4. Aggregatszustandsänderungen Typische Fragen F1. Mechanische nergien 1. Welche

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Musterprüfung Themen:

Musterprüfung Themen: Musterprüfung Themen: Spezifische Wärmekapazität Latente Wärme Heizwert Wärmetransport Wärmeausdehnung Zustandsgleichung der idealen Gase Zustandsänderungen von Gasen Erster und zweiter Hauptsatz 1. Welche

Mehr

Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Lösungen zu den Zusatzübungen zur hysik für Ingenieure (Maschinenbau) (WS 13/14) rof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Zusatzübung (Lösung) alle Angaben ohne Gewähr Zusatzaufgabe

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Kühlprozesse: Technik/Alltag

Kühlprozesse: Technik/Alltag Kühlprozesse: Technik/Alltag Drossel donat.adams@fhnw.ch B. Phys. 16/73 Prinzip Entfernen der schnellsten Atome Abstrahlung Anwendung Kühlturm Radiator (auf Mikro- Kältemaschine Alltagsphänomen Physikalische

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten?

8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten? Staatliche Schule für technische Assistenten in der Medizin Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main Testklausur Physik 1. 10 2 10 3 =... 2. 4 10 3 2 10 3=... 3. 10 4 m= cm 4.

Mehr

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG)

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG) Datei Debye.docx Titel Debye-Temperatur Debye-Temperatur Bei tiefen Temperaturen (T

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

gibb BMS Physik Berufsmatur v [m/s]

gibb BMS Physik Berufsmatur v [m/s] v [m/s] gibb MS Physik erufsmatur 2010 1 ufgabe 1 Multiple Choice Kreuzen Sie alle korrekten Lösungen direkt auf dem latt an. Es können mehrere ntworten richtig sein. a) Ein Hebel ist im Gleichgewicht,

Mehr

Bezeichnungen der Phasenübergänge Zwischen den drei Aggregatszuständen fest, flüssig und gasförmig sind die folgenden Übergänge möglich:

Bezeichnungen der Phasenübergänge Zwischen den drei Aggregatszuständen fest, flüssig und gasförmig sind die folgenden Übergänge möglich: Phasenübergänge Bezeichnungen der Phasenübergänge Zwischen den drei Aggregatszuständen fest, flüssig und gasförmig sind die folgenden Übergänge möglich: Energie und Temperatur bei den Phasenübergängen

Mehr

Grund- und Angleichungsvorlesung Physik der Wärme.

Grund- und Angleichungsvorlesung Physik der Wärme. 2 Grund- und Angleichungsvorlesung Physik. Physik der Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Musterlösung Thermodynamik 3 Besprechung in der Woche vom bis

Musterlösung Thermodynamik 3 Besprechung in der Woche vom bis E2-E2p: Experimentalphysik 2 Prof. J. Lipfert SS 2018 Musterlösung 3 Musterlösung Thermodynamik 3 Besprechung in der Woche vom 30.04.18 bis 04.05.18 Anmerkung: Es wird jede Aufgabe bepunktet, nicht jede

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Musterlösung Aufgabe 1: Zweikammermesssysatem

Musterlösung Aufgabe 1: Zweikammermesssysatem Klausur Thermodynamik I (08.09.2016) 1 Musterlösung Aufgabe 1: Zweikammermesssysatem Teilaufgabe a) Da die Membrane zunächst für Wärme undurchlässig ist, handelt es sich um eine adiabate Zustandsänderung

Mehr

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s Aufgabe 1: Wie schnell muss ein Wagen in einem Looping mit 8 m Durchmesser am höchsten Punkt sein, damit er gerade nicht herunterfällt? (im Schwerefeld der Erde) A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

gibb / BMS Physik Berufsmatur 2008 Seite 1

gibb / BMS Physik Berufsmatur 2008 Seite 1 gibb / BMS Physik Berufsmatur 008 Seite 1 Aufgabe 1 Kreuzen Sie alle korrekten Lösungen direkt auf dem Blatt an. Es können mehrere Antworten richtig sein. Alle 4 Teile dieser Aufgabe werden mit je einem

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Urs Wyder, 4057 Basel U.Wyder@ksh.ch Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Hinweis: Verwenden Sie in Formeln immer die SI-Einheiten Meter, Kilogramm und Sekunden resp. Quadrat- und Kubikmeter!

Mehr

4. Stegreifaufgabe aus der Physik Lösungshinweise

4. Stegreifaufgabe aus der Physik Lösungshinweise 4. Stegreifaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 Das Gewicht des Körpers nimmt ab Das Gewicht des Körpers bleibt gleich Das Gewicht des Körpers nimmt zu Das Volumen des Körpers nimmt

Mehr

N & T 1 Stoffeigenschaften 01 Name: Vorname: Datum:

N & T 1 Stoffeigenschaften 01 Name: Vorname: Datum: N & T 1 Stoffeigenschaften 01 Name: Vorname: Datum: Aufgabe 1: Natur und Technik wird aufgeteilt in drei Teilbereiche: diese sind jedoch nicht immer ganz klar abgetrennt: Wasser kann zum Kochen und zum

Mehr

Experimentalphysik EP, WS 2011/12

Experimentalphysik EP, WS 2011/12 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/ Probeklausur (ohne Optik)-Nummer:. Februar 0 Hinweise zur Bearbeitung Alle benutzten

Mehr

Tutorium Physik 2. Fluide

Tutorium Physik 2. Fluide 1 Tutorium Physik. Fluide SS 16.Semester BSc. Oec. und BSc. CH Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 1. Radioaktivität 7. FLUIDE 7.1 Modellvorstellung Fluide: Lösung 5

Mehr

Experimentalphysik EP, WS 2012/13

Experimentalphysik EP, WS 2012/13 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/3 Probeklausur (ohne Optik)-Nummer: 7. Januar 03 Hinweise zur Bearbeitung Alle benutzten

Mehr

Kompetenztraining: Schaubilder, Tabellen, unbekannte Formeln, funktionale Zusammenhänge, Alltagsbezug physikalischer Phänomene und Textarbeit

Kompetenztraining: Schaubilder, Tabellen, unbekannte Formeln, funktionale Zusammenhänge, Alltagsbezug physikalischer Phänomene und Textarbeit Kompetenztraining: Schaubilder, Tabellen, unbekannte Formeln, funktionale Zusammenhänge, Alltagsbezug physikalischer Phänomene und Textarbeit Im Folgenden findest du Aufgaben, um deine Kompetenzen in den

Mehr

Übungsaufgaben Physikalische Chemie

Übungsaufgaben Physikalische Chemie Übungsaufgaben Physikalische Chemie A1. Welchen Druck übt gasförmiger Stickstoff mit einer Masse von 2,045 g bei 21 C in einem Gefäß mit einem Volumen von 2,00 l aus? A2. In Haushaltgeräten zur Erzeugung

Mehr

N & T (R) 1 Stoffeigenschaften 01 Name: Vorname: Datum:

N & T (R) 1 Stoffeigenschaften 01 Name: Vorname: Datum: N & T (R) 1 Stoffeigenschaften 01 Name: Vorname: Datum: Aufgabe 1: Natur und Technik wird aufgeteilt in drei Teilbereiche: diese sind jedoch nicht immer ganz klar abgetrennt: Wasser kann zum Kochen und

Mehr

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 01. März 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Übungsprüfung A zur Physik-Prüfung vom 21. Juni 2012

Übungsprüfung A zur Physik-Prüfung vom 21. Juni 2012 Physik FS 2012 Übungsprüfung A zur Physik-Prüfung vom 21. Juni 2012 1. Glühbirne (2 Punkte) a) Wie viel Energie verbraucht eine 60-Watt-Glühbirne (Glühbirne mit einer Leistung von 60 W), wenn sie vier

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Bestimmung der Molaren Masse von Dichlormethan mit der Methode nach Dumas 1 (MOL)

Bestimmung der Molaren Masse von Dichlormethan mit der Methode nach Dumas 1 (MOL) Seite 1 Bestimmung der Molaren Masse von Dichlormethan mit der Methode nach Dumas 1 1 Literatur W. Walcher, Praktikum der Physik, Teubner Themengebiet: Thermodynamik Bundesanstalt für Arbeitsschutz und

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

A. p = Pa B. p = Pa C. p = 294 Pa D. p = Pa E. p = Pa

A. p = Pa B. p = Pa C. p = 294 Pa D. p = Pa E. p = Pa Aufgabe 1: Eine beidseitig geschlossene Orgelpfeife sei 4 m lang und mit Xenon gefüllt. Was ist die Frequenz f der niedrigsten Schwingungsmode? (Schallgeschwindigkeit in Xenon 176 m/s). A. f = 44 Hz B.

Mehr

Experimentalphysik EP, WS 2013/14

Experimentalphysik EP, WS 2013/14 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung

Mehr

Hydrodynamik: bewegte Flüssigkeiten

Hydrodynamik: bewegte Flüssigkeiten Hydrodynamik: bewegte Flüssigkeiten Wir betrachten eine stationäre Strömung, d.h. die Geschwindigkeit der Strömung an einem gegebenen Punkt bleibt konstant im Laufe der Zeit. Außerdem betrachten wir zunächst

Mehr

Das Modell ideales Gas ist folgendermaßen gekennzeichnet:

Das Modell ideales Gas ist folgendermaßen gekennzeichnet: Ideales Gas Das Modell ideales Gas ist folgendermaßen gekennzeichnet: * Die Teilchen des Gases werden als Punkte (Massepunkte) betrachtet, die zwar eine Masse, aber kein Volumen haben. * Zwischen den Teilchen

Mehr

Aufgabe 1: Die Schallgeschwindigkeit in Luft ist temperaturabhängig, sie ist gegeben durch

Aufgabe 1: Die Schallgeschwindigkeit in Luft ist temperaturabhängig, sie ist gegeben durch Aufgabe 1: Die Schallgeschwindigkeit in Luft ist temperaturabhängig, sie ist gegeben durch (Temperatur in Kelvin). Wenn eine Orgelpfeife bei einer Temperatur von T=25 C (298 K) einen Ton mit einer Frequenz

Mehr

1. Klausur zur Vorlesung Physikalische Chemie I

1. Klausur zur Vorlesung Physikalische Chemie I 1. Klausur zur Vorlesung Physikalische Chemie I Sommersemester 2006 8. Juni 2006 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort... Matrikelnummer...

Mehr

Aufgabe 3 Metallstäbe in Wassertank

Aufgabe 3 Metallstäbe in Wassertank Aufgabe 3 Metallstäbe in Wassertank Zwei 400 Gramm schwere Zylinder aus Kupfer und Aluminium werden mit verschiedenen Temperaturen (T Kupfer,1 = 900 C und T Aluminium,1 = 800 C) in zwei verschiedene Kammern

Mehr

Zur Erinnerung Stichworte aus der 12. Vorlesung:

Zur Erinnerung Stichworte aus der 12. Vorlesung: Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Experimentalphysik I SS 2008 13-1 Hydrostatik

Mehr

Tutorium Hydromechanik I + II. S. Mohammad Hosseiny Sohi Dezember 2015

Tutorium Hydromechanik I + II. S. Mohammad Hosseiny Sohi Dezember 2015 Tutorium Hydromechanik I + II S. Mohammad Hosseiny Sohi Dezember 2015 FB14/Geohydraulik und Ingenieurhydrologie/ Tutorium Hydromechanik/ Mohammad Hosseiny Sohi 14.12.2015 In einer hessischen Wetterstation

Mehr

Hydromechanik-Tutorium vom

Hydromechanik-Tutorium vom Hydromechanik-Tutorium vom 12.01. 2015 Aufgabe 1: Eine Wetterstation in Florida misst vor dem Sonnenuntergang einen Luftdruck von 1011 hpa, eine Temperatur von 30 C und eine relative Luftfeuchtigkeit von

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

Übungsaufgaben Energie und Energieerhaltung

Übungsaufgaben Energie und Energieerhaltung Übungsaufgaben Energie und Energieerhaltung 1. Ein Körper wird mit der Kraft 230 N eine Strecke von 120 Metern geschoben. a) Berechne die dafür notwendige Arbeit. Es handelt sich um eine waagerechte Strecke

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Hydrostatik ideale Flüssigkeit Druck

Mehr

2.2 Spezifische und latente Wärmen

2.2 Spezifische und latente Wärmen 1 Einleitung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 2 Wärmelehre 2.2 Spezifische und latente Wärmen Die spezifische Wärme von Wasser gibt an, wieviel Energie man zu 1 kg Wasser zuführen

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

Hydrostatik. Von Wasser und Luft und anderem 1. OG. Stiftsschule Engelberg, Schuljahr 2016/2017

Hydrostatik. Von Wasser und Luft und anderem 1. OG. Stiftsschule Engelberg, Schuljahr 2016/2017 Hydrostatik Von Wasser und Luft und anderem 1. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Die Dichte Ziele dieses Kapitels Du weisst, was die Dichte ist und wie man sie messen kann. Du kannst Berechnungen

Mehr

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen:

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Größen mit Formelzeichen, Einheiten und Umrechnungen: Bsp.: 520 mm : 10 = 52 cm Bsp.: 120 h : 24 = 5 d 6 Weg FZ: s Einheiten: mm; cm;

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1.

Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1. Physik Inhaltsverzeichnis 1. Mechanik...1 1.1 Mechanische Grössen...1 1.1.1 Kraft (F) und Masse (m)...1 1.1.2 Die Masse m...1 1.1.3 Die Kraft F...1 1.1.4 Die Geschwindigkeit (v) und die Beschleunigung

Mehr

Fachrichtung Klima- und Kälteanlagenbauer

Fachrichtung Klima- und Kälteanlagenbauer Fachrichtung Klima- und Kälteanlagenbauer 1-7 Schüler Datum: 1. Titel der L.E. : 2. Fach / Klasse : Fachrechnen, 3. Ausbildungsjahr 3. Themen der Unterrichtsabschnitte : 1. Zustandsänderung 2. Schmelzen

Mehr

1.3. Fragen zu chemischen Reaktionen

1.3. Fragen zu chemischen Reaktionen 1.3. Fragen zu chemischen Reaktionen Reaktionsgleichungen Ergänze die fehlenden Koeffizienten: a) PbI 4 PbI 2 + I 2 b) PbO 2 PbO + O 2 c) CO + O 2 CO 2 d) SO 2 + O 2 SO 3 e) N 2 + H 2 NH 3 f) N 2 + O 2

Mehr

Wie man die Physik eines Autos versteht

Wie man die Physik eines Autos versteht EP-Klausur am 6.2.2008 Name, Vorname: Immatrik.Nr.: Studienrichtung: 1. Mechanik Gegeben sei ein Fahrzeug der Masse 1000kg. a) Wie groß ist die geleistete Arbeit und die mittlere Leistung, wenn das Fahrzeug

Mehr

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V.

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V. Gesetz von Boyle Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V Isothermen Gesetz von Gay-Lussac Jacques Charles und Joseph-Louis Gay-Lussac fanden

Mehr

Probeklausur: Thermodynamik

Probeklausur: Thermodynamik E2-E2p: Experimentalphysik 2 Prof. J. Lipfert SS 2018 Probeklausur: Thermodynamik Probeklausur: Thermodynamik Vorname: Nachname: Matrikelnummer: Studiengang: Fachsemester: Studierende der E2p (6 ECTS)

Mehr

Versuch 1. Baue ein Thermometer. Nun erwärme das Wasser im Erlenmeyerkolben auf einem Stövchen. Was geschieht?

Versuch 1. Baue ein Thermometer. Nun erwärme das Wasser im Erlenmeyerkolben auf einem Stövchen. Was geschieht? Versuch 1 Nun erwärme das Wasser im Erlenmeyerkolben auf einem Stövchen. Was geschieht? Baue ein Thermometer Fülle den Erlenmeyerkolben mit Wasser und verschließe ihn mit dem Stopfen. Im Stopfen befindet

Mehr

Lest euch folgende Seite durch und schaut das Video an:

Lest euch folgende Seite durch und schaut das Video an: Station 1 Lest euch folgende Seite durch und schaut das Video an: http://bit.ly/9c-station1 Zur Beantwortung folgende Grafik heranziehen: http://bit.ly/9c-station1b Aufgaben: 1. Weshalb sollte die Flasche

Mehr

Name: Punkte: Note Ø: Achtung! Es gibt Abzüge für schlechte Darstellung: Klasse 7b Klassenarbeit in Physik

Name: Punkte: Note Ø: Achtung! Es gibt Abzüge für schlechte Darstellung: Klasse 7b Klassenarbeit in Physik Name: Punkte: Note Ø: Achtung! Es gibt Abzüge für schlechte Darstellung: Klasse 7b 16. 1. 01 1. Klassenarbeit in Physik Bitte auf gute Darstellung und lesbare Schrift achten. Aufgabe 1) (4 Punkte) Bei

Mehr

4.1.2 Quantitative Definition durch Wärmekapazitäten

4.1.2 Quantitative Definition durch Wärmekapazitäten 4 Energie Aus moderner (mikroskopischer Sicht ist klar, daß die Summe U der kinetischen Energien der Moleküle eines Gases (und ggf. ihrer Wechselwirkungsenergien eine thd. Zustandsgröße des Gases ist,

Mehr

Klausur Thermodynamik I ( )

Klausur Thermodynamik I ( ) Klausur Thermodynamik I (14.09.2017) Musterlösung Aufgabe 1: 1 Atmosphären-Messsystem a) Stellen Sie die Zustandsänderungen 0 bis 4 in Kammer A in einem p, v - Diagramm dar. 0 1 : adiabate Kompression

Mehr

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2: Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände

Mehr

Kapitel 2 Übungsaufgaben

Kapitel 2 Übungsaufgaben Fluidmechanik Hydrostatik Fluide unter Beschleunigung 1 Kapitel 2 Übungsaufgaben Üb. 2-1: Berechnung des Drucks am Boden in einem nach oben offenen, mit Wasser gefüllten Behälters geg.: T = 12 C (Wassertemperatur

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Prüfungsvorbereitung Physik: Wärme

Prüfungsvorbereitung Physik: Wärme Prüfungsvorbereitung Physik: Wärme Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt (Theoriefragen, physikalische Grössen, Fähigkeiten). Das heisst: Gut repetieren! Theoriefragen:

Mehr